Tailored Dispersion and Nonlinear Effects in Flint Glass Honeycomb PCF for Optical Communication
DOI:
https://doi.org/10.47852/bonviewJOPR32021750Keywords:
flint glass-based honeycomb photonic crystal fiber (FGH-PCF), nonlinear optics, dispersion compensation, honeycomb lattice structure, supercontinuum generationAbstract
This paper describes a highly nonlinear flint glass-based honeycomb photonic crystal fiber (FGH-PCF) with a wavelength of 1550 nm. The PCF’s distinctive honeycomb lattice structure, combined with the nonlinear capabilities of flint glass, enables a wide range of nonlinear optical applications. To adjust the PCF's dispersion and nonlinear effects, numerical simulations and optimization approaches were used. To achieve maximum performance, fabrication procedures were carefully regulated. Dispersion values of −436.6 ps/(nm.km) for x polarization and −448.1 ps/(nm.km) for y polarization were verified by experimental characterization. The PCF displayed low confinement losses of 2.289 dB/cm (x polarization) and 4.935 dB/cm (y polarization), as well as birefringence of 2.202×10-3. The PCF measured 558.8 and 547.9 W-1 km-1 for x and y polarization, respectively, indicating a high nonlinear coefficient. The highly nonlinear FGH-PCF shows promising potential for nonlinear optical applications such as four-wave mixing, supercontinuum generation, frequency conversion, and parametric amplification. This research paves the way for compact and efficient nonlinear devices in modern optical communication systems and other cutting-edge technologies.
Received: 19 September 2023 | Revised: 17 November 2023 | Accepted: 20 November 2023
Conflicts of Interest
The authors declare that they have no conflicts of interest to this work.
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.