Data Science in Cybersecurity to Detect Malware-Based Domain Generation Algorithm: Improvement, Challenges, and Prospects
DOI:
https://doi.org/10.47852/bonviewJCCE42022875Keywords:
domain generation algorithms, data science, malware, cybersecurity, machine learningAbstract
Nowadays, the malware communicates with command and control servers using domains generated algorithmically. Domain generation algorithms (DGAs) are continually evolving, which degrades the accuracy of the existing methods calls for the continuous tracking of how DGAs develop and their detection methods and calls for a good evaluation of the stage to open horizons for new detection methods. Data science plays a key role in cybersecurity by providing methods for detecting and analyzing network traffic data, including DGAs, and helping to improve the overall security of computer systems and networks. It can also be used to analyze large datasets of domain names and to develop and optimize solutions for DGA detection, by applying techniques such as machine learning, deep learning, and genetic algorithms, which have shown their effectiveness in detecting new and unknown DGAs. This paper reviews the role of data science in cybersecurity systems to detect DGAs. Hence, it also brings together publicly available domain name datasets and data science techniques utilized in recent DGA detection systems to highlight current issues and potential directions. This article additionally explains issues related to DGA detection. This will assist researchers in improving the current DGA detection algorithms as well as creating new powerful models.
Received: 21 March 2024 | Revised: 6 May 2024 | Accepted: 21 May 2024
Conflicts of Interest
The authors declare that they have no conflicts of interest to this work.
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Metrics
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.