Towards Faster and Efficient Lightweight Image Super Resolution Using Transformers and Fourier Convolutions

Authors

DOI:

https://doi.org/10.47852/bonviewAIA42021930

Keywords:

lightweight image super resolution, transformers, Fourier Convolutions

Abstract

Lightweight Single Image Super Resolution has seen many advances in recent times. Transformer-based methods have achieved great improvements over CNN-based methods. This is mainly driven by the transformer's ability to effectively model long-range dependencies and retain textures in images. However, these transformer-based approaches have many parameters and are computationally expensive during inference. In this work, we propose SWIFT, a hybrid of transformers and Fast Fourier Convolutions (FFC) for Lightweight Single Image Super Resolution. We designed a novel Dual Spectrum Frequency Block (DSFB) that processes features in both the spatial domain and the Fourier domain. DSFB allows us to effectively maintain global context in features and extract high-frequency information. Additionally, to mitigate the frequency erasing nature of transformers, we introduce SwinV2+ transformers that use attention scaling to promote high-frequency information. Experimental results on popular benchmarking datasets show that SWIFT outperforms state-of-the-art transformer-based methods in the realm of lightweight SISR, using 34% fewer parameters and being up to 60% faster during inference.

 

Received: 22 October 2023 | Revised: 8 November 2023 | Accepted: 4 January 2024

 

Conflicts of Interest

The authors declare that they have no conflicts of interest to this work.

 

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

 

Author Contribution Statement

Vishal Ramesha: Conceptualization, Methodology, Software, Formal analysis, Resources, Data curation, Writing - original draft, Writing - review & editing. Yashas Kadambi: Conceptualization, Software, Validation, Investigation, Data curation, Writing - original draft, Writing - review & editing. B.S. Abhishek Aditya: Methodology, Software, Investigation, Data curation, Visualization. T. Vijay Prashant: Software, Formal analysis, Data curation, Visualization. S. S. Shylaja: Conceptualization, Validation, Resources, Writing - review & editing, Supervision, Project administration.


Metrics

Metrics Loading ...

Downloads

Published

2024-01-16

Issue

Section

Online First Articles

How to Cite

Ramesha, V. ., Kadambi, Y. ., Aditya B.S., A. ., Prashant, T. V. ., & S. S., S. . (2024). Towards Faster and Efficient Lightweight Image Super Resolution Using Transformers and Fourier Convolutions. Artificial Intelligence and Applications. https://doi.org/10.47852/bonviewAIA42021930