Voice Biomarkers for Parkinson's Disease Prediction Using Machine Learning Models with Improved Feature Reduction Techniques

Authors

  • Nalini Chintalapudi The Clinical Research Center, University of Camerino, Italy
  • Venkata Rao Dhulipalla The Research Centre of the ECE Department, V. R. Siddhartha Engineering College, India https://orcid.org/0000-0001-6143-4011
  • Gopi Battineni The Clinical Research Center, University of Camerino, Italy https://orcid.org/0000-0003-0603-2356
  • Ciro Rucco The Clinical Research Center, University of Camerino, Italy https://orcid.org/0000-0003-3734-7078
  • Francesco Amenta The Clinical Research Center, University of Camerino, Italy

DOI:

https://doi.org/10.47852/bonviewJDSIS3202831

Keywords:

Parkinson's disease, machine learning, SMOTE, accuracy, AUC

Abstract

As a chronic and life-threatening disease, Parkinson's disease (PD) causes people to become rigid and inactive and have shaky voices. There is an argument that current PD detection techniques are ineffective due to their high latency and low accuracy. To enhance the accuracy of PD identification, voice recordings were used as biomarkers in conjunction with the synthetic minority oversampling technique (SMOTE). Three machine learning (ML) models namely support vector machine (SVM), K-nearest neighbors (KNN), and random forest (RF)were adopted to calculate the prediction accuracy. By applying an unsupervised dimensional reduction method, the generated model eliminates redundant data and speeds up training and testing. Model performance is estimated with three parameters, including accuracy, F1 score, and area under the curve (AUC) values. Experimental outcomes suggested that the RF model outperforms other models with 97.4% of classification accuracy. This type of research aims to analyze patient voice recordings to determine the disease severity.

 

Received: 6 March 2023 | Revised: 6 April 2023 | Accepted: 17 April 2023

 

Conflicts of Interest

The authors declare that they have no conflicts of interest to this work.


Downloads

Published

2023-04-17

Issue

Section

Research Articles

How to Cite

Chintalapudi, N., Dhulipalla, V. R., Battineni, G., Rucco, C. ., & Amenta, F. . (2023). Voice Biomarkers for Parkinson’s Disease Prediction Using Machine Learning Models with Improved Feature Reduction Techniques. Journal of Data Science and Intelligent Systems, 1(2), 92-98. https://doi.org/10.47852/bonviewJDSIS3202831