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Abstract: Studies on developing future generation wireless systems are expected to support increased infrastructure development and device
subscriptions with densely deployed base stations (BSs). Economically, decreasing BS energy consumption levels and achieving “greenness”
remain key factors for the giant industry. Some research works have proposed deep reinforcement techniques to solve energy management
(EM) issues in cellular networks. However, these techniques are inefficient in a distributive network environment and expose the devices to
privacy issues. Federated learning (FL) is proven to enforce device privacy and train models distributively. Thus, this work proposes an
autonomous switching mode framework for BSs based on federated-deep reinforcement learning (Fed-DRL) to address the
aforementioned challenges encountered by prior studies. Specifically, we deploy multiple DRL agents to influence the decision of the
BS for EM. On the other hand, to make DRL-based decisions feasible and satisfy device quality-of-service, we train the DRL agents
distributively by employing the FL concept. The results show the effectiveness of our proposed framework under distributed network
scenarios compared with other benchmark algorithms.
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1. Introduction

Energy management (EM) is a key objective in next-generation
networks. Studies reveal that base stations (BSs) consume 70–80%
of operational energy, which account for 3% of the total energy
produced globally and 2–4% of carbon dioxide (CO2) emissions,
doubling the energy consumption (EC) rate of 15–20% annually
(Githiru et al., 2011). According to Habibi et al. (2019), data
traffic density foretells a 1000-fold increase in the next decade.
This has motivated researchers to concentrate on EM in wireless
networks. As the telecommunications industries sought to promote
“greenness,” innovative ideas (such as EARTH and Green Touch
projects) were initiated (Ahmed et al., 2017).

Researchers came up with an alternative relay-station-based
energy-efficient (EE) switching algorithm that turns off BSs
during low-traffic intervals. Device association and resource
allocation problems were considered in Zhuang et al. (2016) and
Mesodiakaki et al. (2014). The model-based technique is set to
achieve an EE solution by augmenting a particular independent
task for the real-time slot. In Ashraf et al. (2010), sleep strategies

were proposed to regulate devices and core networks to optimize
power consumption in cellular networks. With the ability to utilize
bandwidth more effectively than current cellular communication
technologies, cognitive radio (CR) has recently emerged as
the most promising next-generation communication technology. The
precision of the sensing findings has a significant impact on the CR
system’s performance. But sensing ambiguities like false alarms and
missed detections result in underuse of the spectrum and significant
interference to the main user, respectively. In order to solve the
problem of sensing ambiguities, the typical frame structure was
modified in this research by adding two sensor slots as well as a
gearbox slot. Sensing results are recorded in a flag bit up to that
period, and the initial sensing slot is kept small and fixed for the
specified likelihood of detection (Bala & Ahuja, 2023). When the
flag bit status in the current frame differs from the previous frame,
the second sensing slot (optional) is utilized. The second sensing
slot was optimized to increase the effective throughput and energy
efficiency of the secondary communication system while taking
the trade-off between sensing throughput and energy efficiency
into account. The simulation results are shown to demonstrate the
viability of the suggested system, which uses a redesigned frame
structure to outperform existing schemes in terms of throughput
and energy efficiency.
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Recently, reinforcement learning (RL) schemes became one of
the techniques researchers adopted to solve EM problems in cellular
networks (Cheng et al., 2017). Most of these optimization policies
focused on deep reinforcement learning (DRL) and Q-learning,
taking into account the load on BSs. Liu et al. (2018) use a Deep
Q-Network (DQN)-based ON/OFF policy for BSs to control how
much energy they use. However, these techniques are inefficient
in a distributive network environment. This is because of the
unpredictable nature of devices on the network which can be
problematic because device mobility impacts the network signal at
each period.

Federated learning (FL) (Jiang et al., 2020), as introduced,
collaboratively trains a model under the moderation of a main
server while protecting the decentralized training set (or
distributed) without necessarily exposing its private attributes. It
serves as a wrapper over the well-known traditional machine
learning (ML) techniques. Its mechanism employs centralized
datasets to train similar models that have the ability to train
models distributively, record low power consumption, and ensure
device privacy. For this reason, our approach solves the EM
problem and considers the device quality-of-service (D-QoS)
requirement.

1.1. Contribution

In this work, we propose federated-DRL (Fed-DRL), an
autonomous switching mode framework for BSs that employs FL
to train DRL agents in a distributive manner. FL improves
learning performance, ensures device-data privacy, and solves the
EM problem. We formulate the switching mode problem as a
Markov decision process (MDP), where we define states, actions,
rewards, and the next (future) states. Finally, we optimize EC and
meet the D-QoS satisfaction requirement with the smallest
quantity of active BSs. Extensive simulations and comprehensive
analysis are presented in terms of convergence rate, D-QoS
satisfaction, and EC in a distributed fashion. The effects of Fed-
DRL and the traditional DRL agent are both examined.

The work is structured as follows: Section 2 provides
knowledge work, and Section 3 describes the system model.
Section 4 deals with problem formulation to solve the BS’s EM
and provide D-QoS satisfaction. Furthermore, we describe our
Fed-DRL framework in Section 5. We provide simulation results
and analysis in Section 6 and conclude with Section 7.

2. Knowledge Work

Decreasing operational expenditure (OPEX) has been a key
objective in telecommunications, since BS EC increases daily.
Wang and Zheng (2015) proposed an EM procedure to predict
and adjust the traffic load of BSs according to the mobility of the
device. Although EM procedures are shown, there is a high level
of EC due to the highly complex and stochastic existence of
distributive training.

Recently, RL models have made a lot of progress and have
become an interesting area for reducing energy use. In Chen et al.
(2022), Hoffmann et al. (2021), Hsieh et al. (2021), Kim et al.
(2022), Lee et al. (2020), and Sun et al. (2020), deep learning-
based aiding algorithms were introduced to control features in an
end-to-end fashion. Data-driven schemes were applied for various
optimization sections in wireless communication problems (Li
et al., 2018; Sheng et al., 2021; Sun et al., 2020; Xiong et al.,
2020). These researchers introduced several learning systems to
monitor data consumption rates and determine the EE of devices on

the network. These developments inspire many researchers to use
DRL-based resources to learn successful BS sleeping strategies. Liu
et al. (2018) suggested improving the typical DQN model with
action-wise replay capability and flexible compensation balancing
to solve non-stationary traffic challenges. However, the distributive
network scenario’s high-dimensional state and action space can
impact the efficacy of the aforementioned methods. To minimize
the network’s high-dimensional state space and activity, Li et al.
(2014) suggested a method based on the actor-critic approach to
derive the ON/OFF technique of the BS for the EC issue in the
network, and they also included transfer learning (TL) in the actor-
critic algorithm to utilize information gained over time. Sharma
et al. (2017) also use a TL method for the ON/OFF toggling of BSs
in diverse cellular networks. In Nishio and Yonetani (2019), FL
was used to randomly choose clients with resource restrictions,
allowing the server to combine as many clients’ updates as possible
and expedite the performance improvement of ML models. To
lower OPEX in EM, they analyzed the issue of deploying FL in a
cellular network utilized by heterogeneous devices with diverse
data resources, computing capabilities, and wireless channel
conditions.

In actual use, battery-powered IoT devices complete local
training and communicate wirelessly with the main server.
However, the constant communication between IoT devices and
the main server would require many resources. The authors
propose using the intelligent reflecting surface (IRS), a newly
developed technology, to re-organize the wireless propagation
environment to use the most available resources. In particular, we
focus on the crucial problem of energy efficiency in the
reconfigurable wireless communication network. Zhang and Mao
(2022) propose an energy minimization issue in an IRS-assisted
FL system subject to the complete training time restriction. The
parameters are jointly configured using an iterative resource
allocation technique with quick convergence.

The authors also adopt the FL framework for computation
offloading optimization and prove their EM problem (Han et al.,
2019; Jiao et al., 2021; Ye et al., 2020). Due to the lack of
terrestrial connectivity and the limited battery life of FL users,
certain FL tasks may not be possible. Pham et al. (2022) use
unmanned aerial vehicles (UAVs) and wireless powered
communications (WPCs) for FL networks to solve these issues.
The UAV with edge computing and WPC capabilities is deployed
as an aerial energy source and as an aerial server to carry out FL
activities in order to provide sustainable FL solutions. They put
forth the energy-efficient FL (E2FL) algorithm, a combined
algorithm of UAV placement, power control, transmission time,
model accuracy, bandwidth allocation, and computing resources,
with the goal of reducing the overall EC of the aerial server and
users after solving the original no convex problem effectively.

Although BS scheduling and EM problems in wireless
networks using these techniques have been investigated, only
some considered training DRL agents in a distributed fashion. Our
work utilizes a federated-DRL-based framework that adjusts
preferences for BS EC while still meeting the D-QoS satisfaction
requirement.

3. System Model

3.1. Network model

With a collection of BSs as: Every BS k 2 K; is linked using
devices i 2 I ¼ f1; 2; 3; . . . ; Ig. Assume each device is made up of
a local set data element. Every βi ¼ fxil; yilg � l ¼ 1; xil 2 Rd
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represents the input vector of the device i while the output is yil
respectively. Each device trains a local-FL (L-FL) model on its
own dataset. The input of all L-FL models is used to create a
global-FL (G-FL). For each BS, B denotes framework bandwidth,
and Ptk denotes total energy utilization for transmission in watts.
The path loss in this scenario is computed as:

PL dikð Þ ¼ 20 � 32:4þ ðlog FÞ � 20þ ðlog dikÞ½ �; (1)

where F signifies frequency bandwidth while dik means the interval
between devices i and BS k. We adopt a channel model gik as (Buzzi
et al., 2016):

gik ¼ 10
�PLðdikÞ

20 � bikϕf g0:5
h i

; (2)

where bik depicts its channel gain, and ϕ denotes the enormous scope
shadow blurring. As the standard deviation and the Gaussian arbi-
trary variable are signified by σ, PL is indicated as PLðdikÞ. One
important use case in our network is the ability to manage transmis-
sion between BSs and devices. A device can only be connected to
one BS. However, a beam forming system can link a device to multi-
ple BS in edge computing. In this study, we implement a maximum
received signal power (MRSP)-based device combination model
(Tabassum et al., 2014) to help associate devices on the network with
a BS. MRSP is the conventional device affiliation system in which
the device decides on the BS fromwhich the full instantaneous signal
power is received. We enable a down-link broadcasting rate for devi-
ces beyond loss of consensus as in Tian and Jiang (2021). The signal-
to-interference-plus-noise ratio (SINR) of a device i aligned to a BS k
is denoted as:

SINRik ¼
gHik � ωik

�� ��2P
u6¼i σ2 þ ħHik

�� �� ; i 2 I; k 2 K; (3)

where ωik denotes the beam-formed weights from the BS k to the
device i and the spectral density, σ2, of an added substance white
Gaussian variable. The successful data rate can be resolved using
a characterized channel transfer bandwidth, B, and SINR as in Tian
and Jiang (2021). Adopting the Shannon capacity formula (SCF), the
transmit rate rik of the device i linked with the BS k as:

rik ¼ xik � B � log2ð1þ SINRikÞf g; (4)

where xik is a portion of the BS bandwidth B allotted to the device i.
For each BS k, an M/G/1 processor sharing system was used, with
packets arriving in the Poisson process (PP) with parameter λik:
The resource time for device i and BS k is indicated with boundary
hik = λ-

rik
¼ 1

r�ik
, and the standardized feasible rate is r�ik. The average

packet size is denoted by λ- and is expressed as the mean. The entire
time a device demands a resource while in procession for BS k is rep-
resented by the average delay τik. The delay’s average encountered
by the device i on BS k is indicated by the property of M/G/1 PS
queue as follows:

τik ¼ r�ik � λik
� ��1: (5)

Historically, the traffic load has been determined by the arrival rate of
systems and the BS sequence. The computational traffic model is
unfeasible due to the unpredictable traffic of devices. The
notations used in the system architecture are summarized in Table 1.

3.2. Traffic model

We base this model on the network setting evaluations
indicating the difference in BS traffic arrival. The device structure
shift is used to model device traffic variation based on the regular
trapezoidal traffic pattern. Because cellular traffic is highly
dynamic in time and space, we defined it as a time-homogeneous
PP with a traffic circulation intensity parameter T and a stabilized
rate f ðtÞ (Alam&Dooley, 2015). This changes the trapezoidal traffic
design within a period, differing its probabilistic traffic system χðtÞ
in the network. With this, χðtÞ is interpreted as:

χðtÞ ¼ ðf ðtÞ � ψÞ; (6)

where the function ψ � Poi ({T }) represents its random variable
with parameter T . As a result, if each device arrived at a BS k
and sustained a service time hik per second, standardized traffic load
at each BS k at time t is regarded as:

ρkðtÞ ¼
X
i

cðλikÞyikzkf ðtÞ;8 ¼ 1; . . . jKj; (7)

where a portion of B is zk at BS k allocated to devices.

3.3. Energy consumption

In this part, BSs are made up of continuous load-dependent and
non-load-dependent energy utilization that corresponds to their
traffic volume (Abdulmula et al., 2019). When the BS is loaded,
load-dependent energy utilization is provided by the energy
amplifier and transceiver. The load-dependent energy utilization
has been mounted with the standardized traffic-load ρ�kðtÞ to deter-
mine the energy usage at a stage. Therefore, the overall energy uti-
lization at time t is

Table 1
Major notation

Notation Description

k=jKj Number of BSs
B System bandwidth
I Maximum number of devices
λ Packet arriving rate
Pt
max Maximum transmit per BS

σ Noise power spectrum density
F Carrier frequency band
dik Distance between BS k and device i
δ Shadowing effects
η Steepness coefficient in satisfaction function
rmin=τmax Device demand
Pt
k Power consumption (active mode)

Ps
k Power consumption (sleep mode)

L Mean packet size
xik Fraction of the bandwidth of BS k allocated to device i
ρ�k The normalized traffic load on BS k
rik Transmit rate of the device i attached to the BS k
τik The average delay e experienced by the device i on BS k
T Traffic intensity coefficient in the traffic model
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Pt
j ¼ fPl

k � Pt
kg þ Pc

k

� �
; (8)

where Pl
k denotes load dependence, P

c
k denotes constant energy flow,

and BS k traffic load is Pt
k at the time slot t. Given the difference in

traffic demands, our proposed framework is to regulate the complex
network’s energy utilization by switching idle BS OFF to efficiently
manage energy.

3.4. Utility model

The prerequisite for managing the EC of BSs is to meet D-QoS
requirements and ensure device network scalability. To guarantee
this, the delay and requisite communication rate must be ensured.
With the complexities associated with device i behavior, traffic
request per connection, and service permeability, we model this
part using a sigmoid function. To meet device satisfaction, we
adopt ξð:Þ as a function that sets dissimilar optimized goals for both
rate constraint and delay as identified in Delaram et al. (2021). In our
work, we define our QoS utility as the user’s satisfaction with either
data rate or delay depending on the application type in our study. The
device satisfaction on the rate is defined as:

ξðrτÞ ¼ e�nðrτ�rmin
τ Þ þ 1

� ��1; (9)

where rmin
τ is the least rate demand of device i and the sustained n

responsible for the device satisfaction curve. We can validate that
(a)ξðrτÞ is a monotonous function in relation to rI since individual
devices would be satisfied if a higher output is achieved above its
least requirement, otherwise (b) ξðdτÞ of each device is mounted
between 0 and 1, ξðrτÞ 2 ½0; 1�:Delay on device satisfaction is set as:

ξðdτÞ ¼ e�nðdmax
τ �dτÞ þ 1

� ��1; (10)

where τmax denotes the optimum tolerant delay necessary to meet the
upper bound delay for the device i. In analyzing device network scal-
ability in our distributed network environment, we set an assumption
on the following:

1. Time stationarity = likðtÞ ¼ lik
2. Device Independence, lik ¼ f ðsi; skÞ
3. Switch mode (ON/OFF) = lik 2 ½0; 1�

Note that the transmission link between device i and BS k is lik. The
geometric distance ðdÞ between the device i and BS kis denoted as:

dik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsiÞ2 þ ðskÞ2

q� 	
: (11)

4. Problem Formulation

A tuple < S;A;P;R; γ > is defined as MDP, where A and S
represent the finite set of all legitimate states, as well as the finite
set of all legitimate actions. The state P : S� A! PðSÞ represents
a transition probability, where P sðtþ1Þjst; at


 �
is the transitioning

probabilities of time t þ 1 into states, and stþ1 is an agent begins
action at execution at time t. Our reward function
R : S� A� S! R and γ, where Rt ¼ ðst ; at ; stþ1Þ. With the action
ðaÞ, the switch dynamically situates the BS k into sleep/off mode, i.e.,
sets ak ¼ 0, else sets ak ¼ 1 (Büttner et al., 2021; Sun et al., 2022).

At any stage t with a traffic-load state sðtÞ, the objective is to
discover the ideal policy π� which corresponds to sðtÞ of an action

aðtÞ that exploits the action-value task. Let U j sð0Þ; sð1Þ; . . . ; sðtÞ j;�
aðtÞ� signify a Markov chain utility. The continuing cumulative
reduced reward of sðtÞ at stage t is assumed:

RðsðtÞÞ þ γ1Rðsðtþ1ÞÞ þ γ2Rðsðtþ2ÞÞ þ . . . :γnRðsðtþnÞÞ; (12)

where the discount factor γ 2 ½0; 1�. The state-value task of a random
policy at the stage t is denoted as:

VπðsðtÞÞ ¼ Ef
X1
t¼0

γtRðsðtÞÞg: (13)

The goal of MDP is to find an optimum strategy to exploit the
upcoming reward of the resulting agent. From Markov’s theory,
the policy π can be defined as:

VπðsðtÞÞ ¼ EfRðsðtÞ; aðtÞÞ þ γ
X
s0

Pðs0jsðtÞ; aðtÞÞVπðs0Þg; (14)

where VπðsðtÞÞ is the expected utility given the optimum strategy π.
With Bellman’s mathematic theory, the state-value task for the best
policy π is expressed as:

lVπ� ðsðtÞÞ ¼ arg maxaðtÞ2AfRðsðtÞ; aðtÞÞ
þ γ

X
s0

Pðs0jsðtÞ; aðtÞÞVπðs0Þg; (15)

where the present reward is RðsðtÞ; aðtÞÞ, and the discount factor is γ
while the current utility is Vπ� ðsðtÞÞ and its future utility is Vπðs0Þ,
respectively. Our objective is to find the optimum strategy
π� ¼ argfmaxπVπðsÞ that affects the on/off switching results for
each BS, which reduces the overall EC in this scenario. With our cell
activation, the state space, action space, and reward task are as fol-
lows:

a. State Space: For ð8t ¼ 0; 1; 2; 3; . . . :; 23Þ; the state space of the
devices and BSs is represented as:

Sði;kÞ ¼ ðt; pt;Tactive
t�1 ;Tsleep

t�1 Þ: (16)

In a day, Tactive
t�1 and Tsleep

t�1 denote the predicted active and sleep
states at a time t. The traffic arriving rate is denoted as pt.

b. Action Space: The learning agent must set the ON and OFF
strategy at each time t for the best reward. We establish the action
as ak ¼ 0; otherwise set ak ¼ 1: Since ak 2 0; 1½ � as formulated in
Boltzmann distribution probability (Shingu et al., 2021).

c. Reward: Our primary aim is to manage BS EC level and, on the
other hand, meet D-QoS requirements. For managing EC, E s; að Þ; the
agent obtains a reward that proves an enhanced system EC built on
the switching procedure of the BS. With the D-QoS satisfaction
δðs; aÞ; the delay optimal metrics and rates are used to assess each
device performance. On the basis of the device satisfaction, the
agent sets an rmin threshold value. With this, we define our reward,
Rðs; aÞ as:

Rðs; aÞ ¼ ðα � Eðs; aÞ þ β � δðs; aÞÞ: (17)

Note that α and β denote the coefficients that show the significance of
device satisfaction and EC. A secularization function is often used to
describe a multi-objective reward that reducesmultiple goals to a sin-
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gle scalar that can be optimized. In this work, we define the given
transition, Da0 ¼ ðsa0 ; aa0 ; s0; ra0 Þ, in the FL setting as collected by
agent a0; and pairs of actions and states Db0 ¼ ðsb0 ; ab0 Þ as collected
by agents b0. The objective is to distributively build policies π�a0 and
π�b0 for agents a

0 and b0, respectively. For simplicity, we considered
two federated participating devices. However, the same mechanism
could be extended between the two or more class agents. We illus-
trate state-action policies and Q-functions with respect to a0 and b0;
as: sa0 2 Sa0 ; aa0 2 Aa0 ;π

�
a0 ;Qa0 2 Sa0

� �
and, sb0 2 Sb0 ; ab0 2 Ab0 ;π

�
b0 ;

�
Qb0 2 Sb0 �, respectively. Based on these assumptions, we aim to learn
policies π�a0 and π

�
b0 of high quality for agents a

0 and b0 by performing
efficient switching and meeting D-QoS status.

5. Methodology

We briefly explain the concept of FL and describe our Fed-DRL
framework.

5.1. FL algorithm

Algorithm 1 describes the adopted FL procedure. Specifically,
the local device and the global server communicate iteratively to train
a model. In this setup, the global server computes a weighted average
of the resulting models after each device performs one step of
gradient descent on an intermediate model using its own local
data. There are five parameters: the local mini-batch size B, the
number of local epochs E, the fraction of devices ic to choose for
training, a learning rate decay λ, and a learning rate η. Mostly, for
stochastic gradient decent (SGD), B; E; λ; η are used. Before the
server is updated, the number of iterations needed via the local device
is E. The global model w0 is randomly initialized. A single round of
communication involves the following: A subset of devices
St ; jSt j ¼ ic � I1, shares current global model wt to all devices in
St . After they have revised their local models wi

t to the distributed
model, wi

t  wt ; each device creates its own local data into batches
B to perform E epochs of SGD. Lastly, the local devices upload their
trained model wi

tþ1 to the server to generate new global models by
calculating the weight of all local device models.

Algorithm 1: Fed-DRL algorithm

1: Global server:
2: initialize ω0

3: for each round t= 0,1,2, 3, : : : : : : , do
4: St = (random set of max (ic � I,1) devices)
5: for each device I 2 St in parallel do
6: ωi

tþ1← DeviceUpdate i; ωtð Þ
7: Compute: ωtþ1 ←

P
I
t¼1

ni
n i;ωtð Þ

8: end for
9: end for
10: DeviceUpdate:
11: for each round local epoch, i from 1 E do
12: batches ← data Pi split into batches Bð Þ
13: for batch b in batches do
14: ω ω� ηrπ ω; bð Þ
15: end for
16: end for
17: return ω to the server

5.2. The proposed Fed-DRL for EM

We describe and demonstrate the effectiveness of our proposed
Fed-DRL framework that manages BSs EC in a distributed network

architecture. In this process, the local device and the global server
communicate with each other iteratively and effectively to train
the model. As stated, we consider multiple DRL agents to train
our model.

In our distributive scenario, the corresponding agents in a
continuous action space schedule the EC of the BS. All agents are
considered to initiate their learning process synchronously and
select their actions through an initial distribution. Furthermore, the
agents add a neural network to receive the initial state function
Qðst ; atÞ and measure Aðst ; atÞ in order to improve model efficiency.
Note that the action A is controlled by the switching (ON/OFF)
method. Thus, we fixed the action as ak 2 f0; 1g. If BS kis in
OFF mode, it indicates ak ¼ 0, otherwise ak ¼ 1. The function
Rðs; aÞ ¼ ðβ � ξðs; aÞ þ Pðs; aÞ � αÞ defines the reward. Hence, a
and β represent the constants objective of EC and device QoS satis-
faction. The reward model will independently learn and adapt to the
scale of its value to fit the updated scenario according to the score-
based merging mechanism. We denote the constant α as:

α ¼ σ
1
E
� ξð�Þ

� 
; (18)

where σð�Þ is illustrated as:

σðxÞ ¼ 1
e�x

: (19)

After completing the local training process, each agent sends its
trained model to the global server. Finally, all device agents receive
globally produced models at the same time. The agents synchro-
nously resume the learning process by using the given global model.

6. Performance Evaluation

This part evaluates our proposed framework with other
algorithms. Simulation and experimental findings reveal that our
proposed Fed-DRL significantly improves EC and meets D-QoS
satisfaction in a distributed network environment. For comparison,
we compare our framework against Q-Learning, deep DQN, and
dueling DQN, and we adopted performance metrics in terms of
energy, D-QoS, and convergence analysis with different mobility
scenarios to test the robustness of our proposed framework. The
BSs have been arbitrarily distributed within the range of coverage
of the distributed network. We presume that our distributed
network system initially handles a maximum of 10 BSs. The
device bandwidth is set at 20 MHz, and the device sensitivity
level for edge devices is set at -120 dBm. The population of
participating devices varies according to dynamic mobility to
reflect the profile of the traffic model.

Furthermore, we carried out all simulations in a Python 3.8
environment. We experiment on an Ubuntu 20.04 operating
system with 16GB of RAM and a RTX 2060 12-core GPU.

Fed-DRL is implemented with both the Tensor Flow and Keras
Python library. Table 2 shows other simulation parameters of our
experiment.

6.1. EC and device QoS satisfaction

In our simulation, we consider 1 h as a decision cycle and
observe the performance within 24 h as an episode, as shown in
Figure 1.
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We see that increased traffic load is linked to a high amount of
stabilized energy use by BSs. This is because more BSs are needed to
meet high device demands.

To control the total amount of energy BSs use, our proposed
Fed-DRL algorithm performs better than the benchmarked
algorithms in light-load and heavy-load situations within an
episode. Based on the results of the experiments, the training
performance that was set helps to use the least amount of energy.

Relatively greater EC is seen in Q-learning, which also suffers
from the curse of dimensionality as the number of participating
devices and BSs increases. We measure our D-QoS satisfaction in
Figure 2 to determine the superiority of the switching procedure

in the distributive network. The assessment value for an
appropriate distribution of resources to devices is QoS
satisfaction. Comparing D-QoS satisfaction to the benchmark
algorithms, we observe that Fed-DRL recorded the highest device
level of satisfaction.

We can clearly state that using Q-learning increases OPEX in
terms of energy utilization. The participating device’s level of
QoS satisfaction is reduced by 33% and 25%, respectively, as the
episode increases. For participating devices, the deep DQN and
dueling DQN maintain an average QoS satisfaction level of about
52%. The proposed Fed-DRL recorded an appraisal device QoS
satisfaction of about 67%.

6.2. Effects of decision epoch

We illustrate the EC variance and device satisfaction variance in
Figures 3 and 4 under diverse mechanism schemes.

The mobility behavior of devices under diverse epochs permits
us to describe statistically how individual BSs react to their
respective mobility trails in the distributive network.

Table 2
Simulation parameters

Parameters Values

Number of BSs, k 10−18
The radius of the coverage area for BS 150 m
System bandwidth 20 MHz
Maximum transmit power per BS 1 W
Mean package size 4000 bit
Noise power spectrum density −174 dBm/Hz
Carrier frequency band 2.4 GHz
Active mode of energy consumption Equation (8)
Sleep mode of energy consumption 4.3 W
Shadowing effects (0–8) dB
Packet arriving rate 160 (packet/s)
Discount factor 0.5
Device demand 0.5 Mbps
Steepness coefficient in device
satisfaction

1e–5

Bach size 64
Size of replay memory 6000
Learning rate 0.01 s
Decision epoch time, t 10, 20, 40, and 60

min

Figure 1
Stabilized energy consumption

Figure 2
Algorithm comparison on device QoS satisfaction

Figure 3
Effects of decision epochs for Fed-DRL in BS energy

consumption
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In this case, we look at our differences to see what happens at
decision epochs 10, 20, 40, and 60. We experienced that with a long
interval, the decision epoch upturned the variance between
participants’ satisfaction and BS’s EC. This indication simply
points out that the algorithm rises with the decision epoch and
takes a long time to converge. However, as illustrated, our
proposed Fed-DRL outperforms the benchmark algorithms for D-
QoS satisfaction and BS EC. With BS’s EC, Figure 3 indicates
that Fed-DRL recorded the least variance, as there was an increase
in the decision epoch. Compared to the dueling DQN, the EC
variance is reduced when the decision epoch is set from 10 to 60.

Similarly, in deep DQN recorded an approximate reduction
when observed between 10 and 60 min. In the proposed
framework, we realize that setting the decision epoch to 10 min
yields the paramount EC of BS. Deep DQN and dueling DQN
recorded extraordinary variance owing to their poor convergence
output.

Figure 4 shows a comparison of the changes in D-QoS
satisfaction in the same scenario. Our research shows that the
device requirement for D-QoS satisfaction is met as decision-
making periods increase. We also found that the system is very
unstable when the decision epoch is high because of the time
between decision epoch 40 and decision epoch 60. Our proposed
Fed-DRL has a significance value of about 0.008, which is lower
than Q-learning, deep DQN, and dueling DQN, which have
values of 0.013, 0.033, and 0.028, respectively. The proposed
framework has a fairly low average value, which shows that it is
strong and can converge for different decision epochs.

6.3. Convergence analysis

In this part, we only concentrated on the convergence analysis
of the proposed Fed-DRL framework in terms of cumulative reward,
BS EC, and D-QoS satisfaction. This is because the results in these
preceding works indicate a slow convergence rate in Q-learning,
deep DQN, and dueling DQN algorithms. For our convergence
performance, simulation was conducted under countless
distributed traffic loads. As shown in Figure 5, the Fed-DRL
framework converges speedily at about Episode 260 in terms of
cumulative reward. The framework displays consistently lower
average EC levels than other results for Q-leaning, deep DQN,
and dueling DQN, respectively.

Similarly, the framework recorded a 0.5 satisfaction threshold,
while most participating devices in deep DQN and dueling DQN do
not converge to the desired satisfaction. The Fed-DRL framework
achieves the required satisfaction with lower EC, as it can attain
stable convergence. Since our framework trains distributively, it is
observed that EC and device satisfaction increase significantly
before convergence while minimizing their variance until they
attain convergence.

With the convergence performance, we concluded that the
proposed framework is robust in a distributed scenario. Our
proposed framework seems to outperform deep DQN and dueling
DQN because it converges faster at about episode 170. This
indicates significant regularity in terms of network scalability.
Also, we show that our proposed framework can generate
switching configurations that balance all devices and keep track of
how much energy they use in a distributed network.

While FL offers several advantages, it has limitations and
potential drawbacks, particularly in the above scenario.
Communication overhead is one of the drawbacks of this
approach. Communication is typically slower and less reliable in a
wireless network than in wired networks. Transmitting model
updates and gradients over wireless connections can introduce
delays and increase communication overhead, impacting the
training process. The limited bandwidth and potential packet loss
in wireless networks can hinder the efficiency of our proposed
approach. In addition, with privacy concerns, keeping the data
decentralized and performing model updates locally. However,
wireless networks, especially public or unsecured networks, pose
additional privacy and security risks. Malicious actors could
attempt to intercept or manipulate the communication during the
FL process, potentially compromising the integrity and privacy of
the data or model.

7. Conclusion

In this work, we propose a switching framework for EM using
Fed-DRL. Specifically, we employ FL to help train the DRL agents
efficiently because of its ability to improve learning performance,
solve EM problems, and finally outperform the traditional DQN in
training.

Finally, the framework solves the EM problem by balancing the
levels of EC of the BS and achieving device satisfaction with a

Figure 4
Effects of decision epochs for Fed-DRL in device satisfaction

Figure 5
Convergence analysis
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minimum number of active BS deployed. Results from the
experiment reveal that our proposed Fed-DRL framework
outperformed other benchmark algorithms.
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