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Abstract: The prediction of remaining useful life is critical in predictive health management. This is done to reduce the expenses associated
with operation and maintenance by avoiding errors and failures in dynamic processes. Recently, the abilities of feature classification and
automated extraction of neural networks in its convolutional forms have shown fascinating performance when used for estimating the
remaining useful life of dynamic processes using deep learning structures. This was accomplished by putting these talents to the task of
predicting how long the procedures would be beneficial. Existing network topologies, on the other hand, virtually entirely extract
features at a single scale while neglecting important information at other sizes. Meanwhile, because of the architecture of a single
network path, the comprehensiveness of the features discovered by these tools is limited. To address these concerns, the authors propose
a network structure based on a feature fusion strategy on a parallel multiscale architecture. This structure is then utilized to compute the
remaining useful life. This prototype is divided into two sections: the first is a multiscale feature extraction module designed to extract
local information features, and the second is a causal convolution module designed to extract global information features by combining
multi-layer causal convolution with average pooling. The multiscale feature extraction module is intended for the extraction of local
information features, while the causal convolution module is intended for the extraction of global information features. Finally, the two
distinct paths are joined to create a fully integrated layer. The simulations and results show that this method has the potential to improve
the efficiency and accuracy of estimating the remaining useful life index. Furthermore, the advantages of the established strategy are
shown by comparing the results obtained with those produced by applying cutting-edge techniques on a well-known data-set depicting a
simulated turbofan engine.
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1. Introduction

The increasing demand and use of industrial equipment is a
direct result of the rising productivity in today’s modern,
industrialised society. The estimate of the Ramaining Useful Life
(RUL) indicator is a vital problem in predictive health management
(PHM), i.e. the reconstruction of the time left before defects or
failures occur and therefore a promising area of technology.
To prevent catastrophic failures in dynamic processes, the technical
staff responsible for the plant’s upkeep must be provided with an
effective RUL pertaining to the processes or components under
surveillance. This is essential for carrying out operations and
maintenance effectively, leading to successful maintenance activities

and choices (Lei et al., 2018). To minimise the likelihood of failure
due to a problem, it is essential to improve and establish a proper
operating and maintenance schedule. Because of this, we may
anticipate a reduction in expenses.

However, thanks to the quick and substantial deployment of
computer infrastructures and facilities, deep learning using
deep neural networks has begun to become an intriguing and
successful research subject, even in the prediction and estimation
frameworks. The reason for this is because they are better than
previous methods in capturing hierarchical connections in deep
structures (Ma et al., 2017). Therefore, the goal of this study is to
provide an accurate RUL reconstruction by means of a deep
learning technique, which is applied here in the form of
convolutional neural networks (CNNs).

Degenerate model schemes, data-driven techniques and fusion
methods are the usual foundations for RUL estimates. Key to RUL*Corresponding author: Silvio Simani, Department of Engineering, University
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reconstruction are model-based approaches, which often make use of
models generated from physical laws characterising the operating
circumstances of the dynamic process (Pan et al., 2020).

To complicate matters further, rapid technological
advancement has rendered modern components and their tools
exceedingly difficult to analyse in depth; in particular, it is
challenging to define an effective failure model that can be used
in practice and real-time conditions (Mao et al., 2020).

Data-driven schemes, on the other hand, do not take into
account the physical laws that govern the mechanisms and the
effective working conditions of the entire process; instead, they
provide static or dynamic relationships between historical data
sequences acquired from the process sensors, and the RUL
estimations are derived using data mining methodologies (Lei
et al., 2018). It is possible to use data-driven strategies to
construct RUL estimates using parametric and nonparametric
methods under these circumstances if enough sequences of
operational data can be collected.

To offer an estimate of the RUL metric, hybrid techniques may
use degradation models based on combination processes, which are
included in data-driven schemes (Wang et al., 2020). Unfortunately,
efficient degradation models with multiple processes may be
expensive to develop and implement, which places a premium on
hybrid techniques. Due to its usefulness in real-world scenarios
and cutting-edge contexts, data-driven methods have recently
gained considerable traction.

The major goal of these data-driven schemes is to adaptively
construct approximation descriptions for degradation models, the
processes of which make use of measurements and the knowledge
of the RUL categorisation. Here, RUL estimation has been
accomplished using a variety of techniques, including shallow
auto-regressive prototypes (Li et al., 2018), Wiener processes (Yu
et al., 2022) and Bayesian approaches (Duan & Wang, 2022).
RUL prediction becomes more difficult because these schemes
need attention to feature engineering and feature quality. The
authors in Xia et al. (2019), Zhang et al. (2021), Chen et al.
(2022a) all point to the growing interest in RUL prediction using
CNNs as examples of deep learning’s general-purpose tools.

CNNs have been demonstrated to be capable of fitting
complicated signals in recent deep learning research. These CNNs
can retain local spatial correlation while being scale-, shift-, and
distortion-invariant. By employing data collected for condition
monitoring, these structures provide a clear roadmap for extracting
fault characteristics. However, even the most recent methods are
not without their flaws. While basic CNN may work for short-
term data, they struggle to extract information effectively and
reliably from longer-term sequences. Truth be told, there is a great
deal of superfluous data in sensor readings that will cloud the
model’s ability to make informed judgments. The drawback is that
the information at other scales is lost because of the fixed filter
size used to collect the characteristics. The multiscale deep
convolutional neural network (MS-DCNN) is superior to other
networks in feature extraction because its design includes filters of
varying size at each layer.

This paper proposes a new parallel structured network (PSN)
for RUL prediction of industrial equipment, which uses causal
convolution and multiscale extraction architecture as two
submodules for the same input processed simultaneously in two
paths to improve prediction accuracy, address the high complexity
and account for the time series nature of RUL data characteristics.
To begin, we build two modules that can process the input
simultaneously. Module 1’s convolution layer incorporates causal
attributes, and it feeds a mean pooling layer to get the global

features. The module 2 tool is the multiscale feature extraction
framework. To further enhance local feature selection, a channel
attention module has been included. Then, to produce a feature
fusion of global and local information, the knowledge gained by the
two modules is coupled. A fully connected layer then takes
the combined output and uses it to do data regression analysis and
provide an RUL estimate. The findings obtained verify that the
suggested method can reliably forecast the RUL for each component.
This is also a significant improvement over the most recent findings
on the same data set, so it is important to keep that in mind.

New research has shown that multiscale learning strategies have
promising applications in many fields, including but not limited to
scene and image resolution management, autonomous vehicle
design and medical diagnostics (Zhang et al., 2022; Zhou et al.,
2022). By developing numerous CNN prototypes with different
input sizes all at once in the same setting, multiscale architectures
can learn and extract features from a variety of scales. Using this
method, characteristics are processed by several models before
being combined into fully linked modules (Chen et al., 2018).

U-Nets, which stand for CNNs with multiscale feature fusion,
were the focus of study Ronneberger et al. (2015) in the target
identification and segmentation tasks. The experiments that
employed this solution came out well. Target features were also
abstracted layer by layer in Takacs et al. (2019), and feature
information from many scales was combined to enhance the
detection impact. With a multiscale approach in the width direction,
convolutional kernels of varying sizes are employed to represent
perceptual fields of varying dimensions in Szegedy et al. (2015).
This improved visual representation is the result of the stitching
process, which allows for the fusing of elements at various scales.

While first developed for computer vision applications,
multiscale feature fusion networks are seeing increasing use in
research applications focused on the establishment of approaches
for the estimate of the RUL performance indicator. For instance,
the CNN presented by Li et al. (2019b) uses layers of filters of
varying sizes to choose multiscale features from converted
frequency sequences into temporal spectrograms. Their conclusions
were more precise than those of simpler single-scale structures.
Contrarily, in this study Wang et al. (2021b), convolutional
structures with varying dilation frequencies were combined to
produce a larger convolutional module that improved prediction
accuracy when trained with information from several sensor types.
In order to pinpoint the specifics of deterioration, the publication
Wang et al. (2021a) provided a method for comparing sequences
collected by various sensors. The use of several time sequences
at varying frequencies also allowed for the development of a
multiple scale learning structure that could automatically construct
representations.

As a result of these considerations, this work makes use of a
multiple scale feature learning approach to create a technique that
can reliably estimate the RUL indication. Training the network to
anticipate the necessary indices is made easier by being able to
discern the granularity of the features resulting from the usage of
several scales.

As a result, this paper’s goals are outlined and summarised below
considering the relevant and more recent state-of-the-art tactics.

• In this work, the benefits of using causal convolution in the
processing of time series are investigated. The improvements
of multiscale extraction architecture are also thoroughly
incorporated. Additionally, a PSN is recommended to offer the
estimate of the RUL indication when it is applied to aero-engine
data; as a result, the traditional network structure is altered.

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023

02



• The created PSN is able to extract features with multiscale
properties by using filters with varied dimensions; this is
favourable to the network’s ability to learn in a more
comprehensive manner. After the multiscale feature extraction
module has been completed, the channel attention module is
implemented to improve the performance of the multiscale
features, further emphasise the information that is vital to the
channel and boost the potential of the features to learn.

• In order to increase the accuracy of the estimate of the RUL index,
it is possible to make use of the causal convolution in order to
extract the correlation from data sequences that display long-
term dependencies.

As a last point of discussion, it is crucial to highlight that the
need to examine and limit the complexity of an architecture may
be prompted by several events, the majority of the time in order
to reduce the amount of processing that is necessary. However,
complexity cannot be arbitrarily reduced since it is the only model
that produced excellent results after several cycles of training and
testing. This issue is actively being researched, and the outcomes
of that study are being included into this work. This paper
examines several alternative solutions to the same problem that
CNNs confront when implemented in a variety of frameworks.
CNNs, for example, are impeded by the fact that they have an
excessive number of trainable parameters, which reduces their
computational efficiency. Consequently, the complexity reduction
problem is investigated at the end of the task, and numerous
conclusions are drawn from that investigation.

In conclusion, the structure of the remaining portions of the
work is as follows. In Section 2, an analysis of comparable
contributions from recent research on the state of the art is
presented. These contributions use frameworks for the learning of
multiscale features and the estimate of the RUL indicator. The
architecture that uses the deep learning principle and is exploited
for the purpose of deriving strategies that are able to estimate the
RUL index is described in full in the section that can be found in
Section 3. The sequences that are utilised for the experimental
validation of the solutions presented in Section 5 are detailed in
detail in Section 4. These sequences were taken from a well-
known benchmark of an aero-propulsion system data set
(Berghout et al., 2023), which may be found in Section 5. The
findings that were obtained help to illustrate the effectiveness and
advantages of the suggested PSN, which is also contrasted with
several other methods. Last but not least, the study is brought to a
close in Section 6, which provides a brief summary of the most
significant accomplishments and identifies certain unresolved
issues that need more research and analysis.

2. RUL Estimation with Deep Learning
Architectures

The architecture relying on deep learning structures exploited
for providing the estimation of the RUL indicator and applied to
the turbofan engine data considered in this work is described in
Section 2.1. First, a general description of the network’s
component architecture is given, and then, the components are
described in detail in Section 2.2.

2.1. RUL prediction methods

The estimation of the RUL indicator has been investigated
for decades in the related literature. In the recent state of the art,
the significant advancement in CNNs and deep learning
methodologies, many artificial intelligence schemes based on

these principles have been developed for providing the
reconstruction of the RUL indicator. Therefore, some strategies
that exploit these tools are addressed in this section.

As already remarked, the increasing interest in these artificial
intelligence tools in connection with deep learning and CNNs has
led to good results in predicting remaining life expectancy studies.
In recent years, CNN, networks implementing long-short-term
memory (LSTM) modules and units with recursive gates (GRU)s
can be considered when the application is oriented to the
estimation of the RUL indicator, and good results need to be
achieved. By analysing similar strategies, the paper Li et al.
(2018) developed a new strategy for the prediction of the lifetime
of a dynamic process via a deep CNN (DCNN) based on
constructing samples with time-varying windows. The samples
were prepared by time windows to better achieve feature
extraction, and experiments on the aero-propulsion system data set
(Berghout et al., 2023), which are exploited by this paper,
highlighted that the reconstruction of the RUL index was more
accurate than other mainstream research approaches. On the other
hand, the work Zhu et al. (2019) considered an approach using
CNN tools for the estimation of the RUL indicator for multiple
scale bearings. This method showed that the global and local
information can be kept synchronised by using convolutional
kernels of different sizes compared with the conventional CNN.
Kim and Sohn (2021) proposed a CNN structure using multiple
task learning algorithms to highlight the correlation between the
RUL reconstruction and the healthy status of the monitored plant.
The paper Li et al. (2019a) proposed a novel directed acyclic
graph (DAG) structure used as prediction prototype that integrates
the LSTM module into a CNN. This prototype was developed for
predictive maintenance applications to turbofan engine systems.
By replacing the conventional linear function with a degradation
mechanism and segmented remaining life function, the operational
status of turbofan engines can be effectively graded. The work
Al-Dulaimi et al. (2019) addressed a neural network with an
hybrid structure for the estimation of the RUL indicator. To this
end, LSTM modules were considered again to derive possible
temporal correlations among the features, while CNN was
proposed to obtain features in the spatial domain. This approach
showed interesting prognostic characteristics when applied to
complex processes. The authors in Zhu et al. (2023) described an
end-to-end approach to the RUL index estimation relying on
feature fusion, which combines attention mechanisms, CNNs, and
bidirectional GRUs (BGRU)s to achieve multiple feature fusions.
Moreover, the work Li et al. (2020) developed a solution using
MS-DCNN models for aero-engine RUL prediction that were
exploited to extract simple static and dynamic links between
health monitoring sequences and the RUL indicator. The
manuscript Liu et al. (2021) used a BGRU model to derive
correlations in long-term sequences from filtered input sequences;
moreover, a CNN was introduced to extract the features with local
characteristics from the output data generated by the BGRUmodule.

Compared with the problem considered in this paper, LSTM
still has some shortcomings when the elaboration of extended
time sequences with many samples. This issue derives from the
limited information stored in memory cells. Therefore, the work
Lea et al. (2017) addressed a temporal convolutional network
(TCN) which, having more sensory fields, achieved higher
prediction performance over long histories by introducing the null
causal convolution. Therefore, the network structure in temporal
convolution can be exploited for the problem of the estimation of
the RUL indicator. On the other hand, given that TCNs exhibit
significantly longer memory, the work Chen et al. (2021)
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investigated the first application of TCN to the RUL estimation.
Immediately after, the paper Chen et al. (2022b) developed a
genetic algorithm optimised RUL prediction model based on
TCN, which improved the estimation accuracy of the system, thus
providing an effective solution for the condition monitoring of
turbofan engine systems. On the other hand, Zeng et al. (2021)
suggested a new neural network including deep attention residual
(DARNN) prototypes for machine RUL prediction. Moreover,
time convolution was used as the basic building module of the
developed deep attention residual (DAR) block, which allowed to
obtain good prediction results.

To further enhance the performance of CNN, the most common
and practical way is the principle of attention. This characteristic
feature originated from the analysis of human visual system: the
visual perception mechanism implies that the human eye focuses
on what it wants to highlight on in the visual field and ignores
other things consciously, and it was first applied to machine
translation tasks (Feng et al., 2020). In recent years, also the
attention mechanism (AM) has been applied to the field of the
estimation of the RUL indicator. As an example, the authors Song
et al. (2021) developed a novel AM scheme to be applied to the
reconstruction of the RUL index. In this way, the problem
experimented with existing methods that do not directly
understand the links between several time sequences of data has
been overcome, thus improving the effectiveness in the estimation
of the RUL indicator. The work Muneer et al. (2021) proposed a
DCNN including the AM, which was exploited to provide the
estimation of the RUL indicator for turbofan plants with good
results. On the other hand, Fan et al. (2022) addressed a new
methodology with end-to-end features for solving the RUL
prediction task. In this approach, an efficient and powerful AM
was specifically designed to increase the estimation capabilities,
which was relying on the analysis of the signal characteristics for
the RUL prediction task. Tseng and Tran (2023) included the AM
block into the LSTM structure, thus combining the information
from the previously hidden layers and the input modules into the
actual state to effectively discriminate which new feature needs to
be added to the storage module.

Based on the above literature review, the effective capabilities
of CNNs to extract features allow to obtain good results when they
are applied to fault monitoring by using input and output sensor data
sequences. The implementation of the AM in the CNN structures
further improves the effectiveness of the RUL estimation. Null
causal convolution also shows a better prediction performance in
longer time series. However, most current networks perform only
feature extraction of single network paths and do not well fuse the
advantages of multiple networks. Considering the need to both
grasp the relationship between long time series data globally and
capture the local degradation feature characteristics, this work
suggests exploiting parallel multiple scale CNN with fusion
mechanisms for the reconstruction of the RUL indicator.

2.2. Deep learning architectures

The architecture relying on the strategies suggested in this
manuscript, i.e. the methodology using PSN prototypes, is shown
in Figure 1.

As shown in Figure 1, the data sequences feed the PSN
architecture as parallel inputs. In this way, these inputs enter a
causal convolution module and an inception block. On one hand,
causal convolutions are a kind of convolution that is utilised for
temporal data. They ensure that the model does not violate the
order in which we model the data. In particular, the model’s

forecast at one timestep cannot depend on any of the succeeding
timesteps. A masked convolution is the visual equivalent of a
causal convolution. A masked convolution may be performed by
first producing a mask tensor and then doing an element-wise
multiplication of this mask with the convolution kernel before
applying it. This is the same as a causal convolution. When
dealing with one-dimensional data, such as audio, this is
considerably easier to implement simply shifting the output of a
standard convolution forward or backwards by a few timesteps.
On the other hand, Inception modules are used in CNNs to enable
more effective computation and deeper networks by lowering the
network’s dimensionality via the use of stacked 1� 1 convolutions.
This has been completed. The modules were created to give a solu-
tion to the problem of computational cost as well as overfitting and
other issues. In a nutshell, the solution is to arrange various kernel
filter sizes within the CNN to act on the same level rather than stack-
ing them sequentially. This will fix the issue.

According to Figure 1, the information flow continues through
the average pooling and the channel attention modules. The method
known as ‘Average Pooling’ is a kind of pooling that builds a down-
sampled feature map by computing the average value for each patch
of a feature map and then using that average value to construct the
down-sampled feature map. In most situations, it comes after a layer
that implements the convolutional approach. It adds a minor bit of
translation invariance, which implies that translating the image by
a small amount has little effect on the values of most pooled
outputs. This is because the modest amount of translation
invariance that it offers is additive. Max Pooling may extract
features that are more conspicuous, such as edges, while this
approach can extract features that are extracted with more
smoothness. A ‘Channel Attention Module’ is a component of a
CNN that oversees channel-based attention. We may create a
channel attention map by using the inter-channel connectivity of
attributes. Because each channel of a feature map is viewed as a
unique feature detector, channel attention is focused on ‘what’ is

Figure 1
Diagram of the parallel structured network (PSN) architecture
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significant in the context of the image being processed. We reduce
the spatial dimension of the input feature map in order to improve the
efficiency of channel attention calculation.

Finally, Figure 1 highlights that the two parallel flows processed
according to these modules are concatenated, thus resulting in a
sharing of information. Then, dense and dropout blocks follow the
signal processing to achieve the RUL estimation. CNNs can have
one kind of layer, known as the dense or completely connected
layer. Because each output neuron considers all input neurons, this
layer is known as being completely connected. As a result, the
number of parameters that the network must learn is on the order of
magnitude that corresponds to the product of the number of input
neurons and the number of hidden neurons. On the other hand,
there are many different types of layers, each of which performs a
unique set of calculations and takes a unique collection of input.
This research considers convolutional layers as well as dropout
layers, both of which are useful not just in the context of image
data but also in a broad range of other types of (organised) data.

Therefore, in PSN, the time series achieved via different
measurements from the monitored dynamic process are employed
as inputs to extract and identify multiple channel information.
Moreover, these inputs are learned in the causal convolution
submodule and the multiscale feature extraction submodule, and
then, the learning results of the two modules are fused. Finally,
the fused results are fed to the structure including the fully
connected module that is used to provide the RUL estimation.
This PSN prototype is analysedwithmore details in the next sections.

In this manuscript, in the causal convolution module, after the
operation of three layers of causal convolution, the averaging pooling
operation is performed to reduce the model size, decrease the number
of variables, and reconstruct the overall details regarding the
extracted features. This multiple scale feature extraction module
exploits different convolution kernel operations to extract local
information at different scales, while combining channel attention
to strengthen the weight of important local information, while
suppressing redundant information. Therefore, this paper suggests
to employ feature fusion concatenation (FFC) in order to extract
and fuse the feature information of these two modules, which is
commonly used in both fully CNN (U-Net) and dense CNN
(DenseNet) architectures, as shown in Ronneberger et al. (2015)
and Huang et al. (2017). These methodologies can effectively
integrate the feature information, while reducing the dimension of
the CNN at the same time. However, the width of the CNN is
also improved, so that this architecture can be trained by using
more features, thus leading to an improvement of the prediction
effectiveness and its accuracy.

This work assumes that input sequences are organised as two-
dimensional variables, where the first dimension represents the
number of features, while the second one indicates the length of
the time sequences. However, considering that the mechanical
features collected for solving this prediction problem are acquired
from different sensors, the links among features that are spatially
adjacent and present in the time sequences can be neglected. In
this way, although the input sequences and the related maps of
features present two-dimensional characteristics, in practice, the
filter implementing the convolution operation and included in the
proposed architecture has only one dimension.

3. Parallel Structured Neural Network Prototypes

The structure of the considered PSN proposed in this work is
analysed in this section and exploited for the reconstruction of the
RUL indicator.

3.1. Causal convolution module

Temporal convolution achieves excellent results on RUL
prediction, thanks to the inclusion of a causal convolution module
(submodule 1) with an expansion rate. In this paper, causal
convolution (CC) is used to enhance the capability of the
developed deep learning model to extract proper representai4ons.
For sequential problems, usually RNN or LSTM are exploited. In
fact, the major advantage of CNN with respect to RNN consists of
its capabilities to share weights and the availability of a
convolution module with local awareness features. When the
weight parameters are shared, the number of variables in the
network that must be trained can be reduced. Moreover, local
perception module can provide a smoother representation of the
information regarding the local features characterising the input
time sequences managed by the actual convolutional module.
Thus, causal convolution can not only understand the correlation
time with long-term characteristics among the input historical
sequences but also execute computations in parallel mode as the
case of CNN architectures.

In the following, causal and dilated convolution operations are
considered.

On one hand, unlike traditional convolutional operations, the
output of the module performing the convolution task with causal
behaviour when considered at the instant t is only convolved with
the signals at the instant t and previous samples. This represents
the causal convolutional block of the CNN, which thus enables a
sequence of samples generated as moving average of its lagged
inputs. In this way, the proposed architecture does not lose any infor-
mation provided to the network from the oldest to the newest samples
of the sequence, as highlighted in Zeng et al. (2021).

This task can be specifically described in mathematical form as
in Equation (1):

y t þ 1ð Þ ¼ F u 1ð Þ; u 2ð Þ; . . . ; u t � 1ð Þ; u tð Þð Þ (1)

where u tð Þ is a one-dimensional vector containing n dimensional fea-
tures, and ytþ1 is the value of the variable to be represented in the
current next time period. F �ð Þ is the function that establishes the
mathematical relationship between u and y. However, one limitation
of causal convolution is that the coverage of historical information is
not large, and each output value can only be associated with a small
portion of the input information when the layers of the network are
deepened. Therefore, an extended convolution operation is sug-
gested in this paper for processing the signals in a causal way, to
solve this problem.

Secondly, a different convolution operation with a dilated mode
enables to include different sampling times from several time
sequences, where the number of acquired samples is defined by
the parameter d. This block and its dynamics are shown in Figure 2.

In particular, the higher level presents a delay d ¼ 1. This rep-
resents the case where each sample is acquired from the considered
input; on the other hand, an intermediate level can present a delay
parameter d ¼ 2, thus implying that two samples are feeding the con-
sidered layer. In general, as highlighted in Figure 2, the lower layer
includes the larger number of delays d that are computed there. In this
way, it is evident that this convolution operation with dilated effects
leads to moving window with a size that increases exponentially
depending on the considered number of levels (layers).

This architecture of CNN leads to generate extended perceptual
field by including only a limited number of layers. Moreover, this
convolution processing with causal features that includes a dilated
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sampling frequency scheme is thus sketched in Figure 2, with
reference also to the relation of Equation (1).

3.2. Average pooling module

The principle of the pooling block consists of sampling and
mapping the considered feature representations after the
convolution operation. The essence of this process is to compress
and downscale the feature maps, which simplifies the model
parameters while filtering out the important feature information
and avoiding the redundancy of useless feature information, which
not only speeds up the model computation but also improves the
robustness of the model. Averaging pooling performs the selection
of regional averages that tends to preserve the characteristics of
the overall data. The process of averaging pooling for 1D
convolution is shown in Figure 3.

3.3. Multiple scale feature extraction module

This section is focused on the submodule 2 of the architecture of
Figure 1 and in particular the multiscale extraction network.

In CNN, the design of its structure and, in particular, the
selection of the dimension of its convolutional kernel represent a

key point. This depends on the fact that these kernels
implementing the convolutional features with varying dimensions
allow the extraction of the information by considering variable
time scales. Specifically, it is better to use large convolutional
kernels for information distributed on a global scale and small
convolutional kernels for data distributed on a local scale.

In this study, attention is made to the inception module in the
model structure of inception-v3. The inception module embeds
multiscale information and aggregates features on multiple different
sensory fields to obtain performance gains. The architecture of
inception-v3 (Szegedy et al., 2015; Tang, 2018) represents a CNN
specifically designed for allowing image processing, their analysis
and feature detection. It was built as block for GoogLeNet. In its
third version, it appears as module of the Google’s Inception CNN
(Khosravi et al., 2018), originally introduced during the challenge
focusing on image recognition, i.e. ImageNet, considered in
Russakovsky et al. (2015).

The structure of inception-v3 was proposed to develop deeper
neural architectures networks, while maintaining a reduced number
of variables. For example, it can easily reach about 25 million
variables, which can become more than 60 million in the model
of AlexNet (Szegedy et al., 2015). It can be considered as a
collection and classification of visual features, thus enhancing
the recognition of objects, when considering the computer
vision domain (Tang, 2018). Moreover, the prototype relying in
inception-v3 has been exploited and applied to a huge number of
different examples and often employed as pre-trained architecture
by ImageNet. One example of its common application can be
found in life sciences, since it helps to investigate research topics
regarding leukaemia, as described in Poojary and Pai (2019).

The inception module has four paths of convolutional and
pooling layers with different hyperparameters to extract different
information, which is quite equal to a module with four streams.
In this way, it is used to extract features and working in parallel
with convolutional blocks implementing windows of different
dimensions, as well as layers with maximum pooling modules.
In particular, the architecture exploits those modules with a
one-dimensional convolutional block, to limit the complexity of
the structure. Moreover, also the channel dimensions are
reduced, thus presenting a small number of parameters and low
computational complexity. The scheme of the inception module
considered in this paper is sketched in Figure 3.

3.4. Attention module block

Neural structures consider different streams of several feature
representations that are usually exploited for interpreting different
features. In particular, the attention module performs the object
selection process in each channel, which can selectively tune its
weights with an adaptive strategy, thus allowing to focus on the
specific channel, depending on the considered task.

The feature maps for each channel have varying levels of
accuracy depending on the status of the monitored machinery.
Some inputs may represent fundamental aspects that are extremely
important for monitoring the machine conditions, while other
channels can be useless due to the low level of signal-to-noise ratio.

Therefore, the attention module applied to channels is added to
the multiple scale CNN to further highlight the important input
information. A representative of the channel attention model is
Squeeze-and-Excitation Net (SENet), as addressed in Wang et al.
(2019b). In this way, SENet is chosen as a part of the CNN
architecture proposed in this paper, as sketched in Figure 1.

Figure 3
Example of average pooling of one-dimensional convolution

Figure 2
Causal convolution that uses dilated rate strategy

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023

06



4. Experimental Setup

The paper considers the time series from the set known as C-
MAPSS, which represents a benchmark for testing solutions
regarding the estimation of the RUL indicator. As reported in
Table 1, these sequences consist of 4 subsets, labelled as ‘FD001’,
‘FD002’, ‘FD003’, and ‘FD004’. Each group of data contains
training and test data. The sequences indicated as ‘FD002’ and
‘FD004’ are more challenging than ‘FD001’ and ‘FD003’.
Moreover, they include more training and testing examples, while
involving six different working situations, especially ‘FD004’ or 2
failure modes. Therefore, this subset implies the most complex task.
These data sets will be shortly referred to ‘set i’, with the index i
varying from 1 to 4, respectively. More details on these time
sequences are available in Ramasso (2014), Thakkar and Chaoui
(2022), Berghout et al. (2023).

The training sequences are characterised bymultivariate signals
acquired from the nominal engine. After one working period, a first
fault commences, and then, the number of malfunctions increases. At
the end of the time series, each multivariate set is concluded with a
completely faulty machine. Differently from the training data, the
test sequence terminates before the machine is faulty.

To perform the feature selection, in the above 24-dimensional
feature data, the sets 1 and 3 consist of single working situations. In
this way, the time sequences that contain three fixed working
situations can generate high correlations among the features
extracted with degraded characteristics. Moreover, since the data
acquired from the sensors 1, 5, 6, 10, 16, 18, and 19 present
anomalous conditions, only the data from 14 sensors can be
exploited as inputs to the model.

Before constructing this model, the original sequences need to
be filtered to have normalised features. This pre-processing of the
data is usually performed to enhance the convergence speed of the
training and estimation algorithms. In particular, this study
proposes to exploit a min-max pre-filtering for normalisation
purpose. Therefore, each sample of the sequences ui;j assumes a nor-
mal value in the range between �1; 1½ �. The relation to compute this
transformation has the form of Equation (2):

ui;jn ¼ 2
ui;j � ujm

ujM � ujm
� 1 (2)

where ui;j represents the i-th signal from the j-th sensing device, ui;jn is

the corresponding filtered value of ui;j. The terms ujM and ujm stand
for the maximum and minimum samples taken from the original sig-
nals acquired by the j-th sensing device, respectively.

For RUL prediction, a piecewise affine degradation prototype is
required. In order to fulfil this assumption, the component or
equipment is in normal condition for a longer period of time

throughout its life cycle. Therefore, it is considered a segmented
linear behaviour for the degradation dynamics that is applied to
the C-MAPSS data from the turbofan engines, as described in
Ramasso (2014). In most cases, once the RUL index assumes
values around 116, the health state of the equipment starts to
change at this point, so the maximum RUL is limited to about
116 in the experiments of this paper. The considered behaviour of
the monitored machine assumes that it usually performs in the
early conditions, while its life does not vary. If a fault affects the
monitored process, its lifetime starts to decrease in a linear way.
Finally, the machine is completely failed. These assumptions
represent reasonable and practical issues when a general
degradation model is considered for describing the behaviour of
plant equipment or component.

As further data pre-processing, by aggregating the data in a time
window, this makes the data smoother, while minimising the effect
of noise on the features used in the model. In multivariate time series-
based problems (such as the estimation of the RUL index), more
details can be usually acquired from time sequences than from
multivariate samples obtained at single sampling frequency. Thus,
the processing of data sequences with causal features provides
better predictive performance. The most suitable time window size
is taken for each subset in the experiments performed in this
paper. These time window sizes for the sets 1, 2, 3 and 4 are
equal to 36, 20, 36 and 19, respectively.

Moreover, in the experiments considered in this paper, the
effectiveness of the developed approach is evaluated by using a
suitable performance function, which provides a proper score
value, as described in the following Wang et al. (2019a). On the
other hand, the normalised root mean square error (NRMSE)
index is employed to analyse the normalised average estimation
error, i.e. the normalised difference between the predicted and the
actual values of the considered signals. The NRMSE is computed
as shown in Equation (3):

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 RULi � RÛLi

� �
2P

N
i¼1 RUL

2
i

s
(3)

where the index i refers to the instant, for a number of data N.
Note that the NRMSE index weights the different samples with

the same attention. However, the scoring indicator assumes higher
values when the estimated value of the RUL indicator is smaller
than its actual one. This fact is due to the property that ’over-
predicting’ the RUL indicator may imply important mechanical
failures or even catastrophic incidents. The score index has the
form of Equation (4):

score ¼
PN
i¼1

e�
RÛLi�RULi

13 � 1
� �

; RÛLilt;RULi

PN
i¼1

e�
RÛLi�RULi

10 � 1
� �

; RÛLi � RULi

8>><
>>: (4)

where RULi and RÛLi denote the actual and the estimated RUL val-
ues at the ith time index, respectively.

With reference to the hyperparameter configuration considered
in this paper, the NRMSE performance index is exploited for
evaluating the fitness of the estimated model, tuning the model
parameters and improving the reconstruction capabilities of the
estimated model. Finally, the parameter combination setting, i.e.
the so-called model structure, corresponding to the model that
leads to optimal estimations is shown in Table 2. The values of

Table 1
Time sequence details

Details Set 1 Set 2 Set 3 Set 4

Training cases # 100 260 100 249
Testing cases # 100 259 100 248
Max. fault-free cases 362 378 525 543
Min. fault-free cases 128 128 145 128
Measured signals 21 21 21 21
Working situations 1 6 1 6
Fault cases 1 1 2 2
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the neurons included in the Fully Connected (FC) modules are also
summarised.

5. Achievements and Comparisons

This section summarises the achievements that were obtained to
illustrate the effectiveness and advantages of the suggested PSN,
which is also contrasted with several other methods. The sequences
that are utilised for the experimental validation of the solutions
presented in Section 5 were detailed in detail in Section 4. These
sequences were borrowed from the well-known benchmark of an
aero-propulsion system data set (Berghout et al., 2023). The
robustness and sensitivity characteristics of the proposed schemes
are also investigated.

5.1. Nominal performance analysis

In Figures 4, 5, 6 and 7, the normalised errors for the estimations
of the RUL indicator are shown, when the data sets 1, 2, 3 and 4 from
the test engine unit are considered, with reference to the final recorded
time sequences. These test modules are labelled by starting from the
small ones and then taking the large units, thus improving the analysis
and the estimation results. In particular, Figures 4, 5, 6, 7 and 8 report
the values of the normalised prediction error (NPE) indicator, as
defined by the relation of Equation (5):

NPEi ¼
RULi � RÛLi

RULi
(5)

where the index i refers to the ith sample of the sequence.

It is worth noting that the prediction errors of the RUL indicator
provided by the developed scheme and that are related to the NRMSE
of Equation (3) are very small. In particular, the prediction
effectiveness results to be more accurate when the RUL indicator
assumes small values. This result is motivated by the fact that if
the engine device does not work properly, the suggested approach

Table 2
List of hyperparameter configurations

Hyperparameter Value

CC kernel size k 5
Dilated rate d 2
Window size 512
Dropout size 0.5
Step size 0.001 � 0.0001
1st FC neuron # 100
2nd FC neuron # 64

Figure 4
Diagram of the inception module structure

Figure 5
NPEi values for the testing data set 1

Figure 6
NPEi values for the testing data set 2

Figure 7
NPEi values for the testing data set 3
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enables the extraction of the fault features, thus enhancing the
prediction efficacy.

In addition, the estimation effectiveness is higher for the data
sets 1 and 3, with respect to the one achievable with the sets 2
and 4. This behaviour can be explained by observing that the
engines exhibit very complicated working situations described by
the sequences from the sets 2 and 3. Therefore, the estimation of
their RUL indicators is more difficult. In general, the proposed
strategy seems to provide very good results when the RUL
estimation is related to mechanical systems.

The C-MAPSS data sets considered in this work represent a
very common test bed used in research studies that investigate the
RUL estimation problem; in fact, as highlighted at the beginning
of this paper, a significant number of contributions has analysed
this topic recently. Moreover, in order to highlight the
effectiveness of the scheme developed in this study, RUL
prediction experiments are performed for the data sets 1, 2, 3 and
4. Moreover, they are also analysed by taking into account the
achievements addressed in some recent paper. To this end,
Tables 2 and 3 summarise these works.

Therefore, Tables 3 and 4 highlight how this work, by means of
the solution addressed here, is able to obtain optimal results in terms
of NRMSE metrics compared to other strategies. With reference to
the data set 3, all metrics computed for the solution developed here
reach the optimum. In addition, the strategy developed by this study
leads to significantly better performance than other methodologies
when the most complicated and difficult sequences are

represented by the data sets 2 and set 4. Thus, the proposed
method is promising for the RUL prediction tasks.

With reference to the methods reported in Tables 3 and 4, Li
et al. (2018) considered a data-driven strategy for health
management relying on DCNN, while Liu et al. (2021) developed
another CNN that with adaptive Gabor (AGCNN) structure and
receptive fields. On the other hand, Song et al. (2021) developed
a solution aimed at resolving the limits shown by common state-
of-the-art approaches unable to extract relations between historical
series, which decrease the efficacy of RUL reconstruction. To this
end, a CNN structure with an attention module and a bidirectional
LSTM (CNN-BiLSTM) block was developed. On the other hand,
Kim and Sohn (2021) considered a CNN model with multi-task
(MT-CNN) features implementing a training algorithm able to
extract the relationships between the RUL prediction and the
diagnostics task. Moreover, Zeng et al. (2021) discovered that the
prediction performance may extremely depend on the working
conditions of the process under investigation. These further
limitations were managed by developing a new DARNN.

On the other hand, by considering the features of the signals used
for RUL estimation, the authors in Fan et al. (2022) proposed a new
Fully CNN architecture including a trend attention module that
enhanced the estimation capabilities. However, it can be difficult to
fix the parameters of the designed architecture and improve the
efficacy of the RUL estimation. Therefore, to solve this issue, the
RUL estimation strategy was enhanced by a genetic algorithm,
which integrated a TCN, as described in Chen et al. (2022b) and
denoted as GA-TCN. Finally, different from the previous approaches,
Zhu et al. (2023) designed a new framework integrating a feature
fusion method and an end-to-end scheme oriented to RUL
estimation, thus combining spatial and temporal operations and the
extraction of raw characteristics (end-to-end).

Note that the causal operation module and the multiple scale
block for the identification of the relevant features represent key
aspects of the overall architecture. To highlight how this affects
the efficacy of the proposed solution, an ablation analysis is
carried out in the following.

To highlight the benefits of causal convolution and multiscale
feature extraction modules, four different architectures have been
also proposed to estimate the RUL indicator. These models are
defined as NN-1, NN-2 and NN-3. These three prototypes have
the following structures:

1. NN-1 does not include the causal convolution and the multiple
scale training algorithm, and uses a single-path conventional
convolutional network;

Figure 8
NPEi values for the testing data set 4

Table 3
Performance analysis for the data sets 1 and 2

Set 1 Set 2

Method NRMSE Score NRMSE Score

DCNN (Li et al., 2018) 0.0261 256 0.0326 7865
AGCNN (Liu et al., 2021) 0.0241 267 0.0498 2345
CNN-BiLSTM (Song et al.,
2021)

0.0231 214 0.0501 2104

MT-CNN (Kim & Sohn,
2021)

0.0284 218 0.0497 2345

DARNN (Zeng et al., 2021) 0.0265 216 0.0392 1012
TaFCN (Fan et al., 2022) 0.0343 301 0.0234 2012
GA-TCN (Chen et al., 2022b) 0.0218 298 0.0432 1675
End-to-end (Zhu et al., 2023) 0.0231 287 0.0476 1768
PSN (this paper) 0.0117 198 0.0148 998

Table 4
Performance analysis for the data sets 3 and 4

Set 3 Set 4

Method NRMSE Score NRMSE Score

DCNN (Li et al., 2018) 0.0364 301 0.2336 9876
AGCNN (Liu et al., 2021) 0.0339 345 0.0234 3567
CNN-BiLSTM (Song et al.,
2021)

0.0496 301 0.0567 1978

MT-CNN (Kim & Sohn,
2021)

0.0299 401 0.0567 2134

DARNN (Zeng et al., 2021) 0.0345 365 0.0672 2678
TaFCN (Fan et al., 2022) 0.0378 267 0.0456 3897
GA-TCN (Chen et al., 2022b) 0.0401 389 0.0345 1956
End-to-end (Zhu et al., 2023) 0.0298 302 0.0378 2867
PSN (this paper) 0.0187 199 0.0169 1674
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2. NN-2 implements just the causal operation module;
3. NN-3 contains just the multiscale feature extraction module.

In addition, the other parameters are kept constant. To demonstrate
the efficacy of the solution developed in this work, the behaviour of
each part on the four different subsets is shown. The achievements
applied to the real data are listed in Tables 5, 6, and 7.

Tables 5 and 6 show that the fused method (index ‘sum’)
summarised in Table 7 performs better in most subsets compared
to the two separate modules, and although the two submodules
perform better with the data from the set 2, it differs less, and the
fused model demonstrates significant advantages in both the
NRMSE and the score when comparing the sum of the evaluated
metrics. Therefore, these results are sufficient to demonstrate the
efficacy and superiority of the PSN architecture developed in this
work with respect to the considered and different strategies
available in the recent and related literature.

5.2. Robustness and sensitivity features

The evaluation of the performances of the considered
architecture is based again on the computation of the NRMSE
index of Equation (3).

A proper Monte Carlo analysis has been performed to compute
these indices and to test the robustness of the considered scheme.
Indeed, the Monte Carlo tool is useful at this stage, as the efficacy
of the proposed solutions depends on both the model
approximation capabilities and the measurements errors. The same
tool was exploited by the authors for testing the reliability features
of fault diagnosis schemes, as described in Patton et al. (2008, 2010).

In particular, a set of 1000 Monte Carlo runs has been
performed, during which realistic uncertainties have been
considered by modelling some meaningful variables of the time
series from the C-MAPSS data sets as Gaussian stochastic
processes around their nominal values and with standard
deviations corresponding to the realistic minimal and maximal
error values computed by the relation of Equation (2).

Therefore, also in this case, Table 8 shows that, by means of the
strategy proposed here, allows to obtain very good results in terms of
NRMSE and score metrics compared to the other methodologies.
Again, with reference to the data set 3, all metrics computed for
the structure proposed here lead to the best results, also in the
presence of uncertainty. Moreover, the solution developed by this
paper leads to significantly better performance than other schemes
available in the related literature, when disturbance affects the
sequences represented by the data sets 2 and set 4. Thus, the
achieved results demonstrate that the proposed method is
promising for the RUL prediction tasks under uncertain and
disturbance effects.

6. Conclusion

The most important aspect of predictive condition monitoring is
determining the remaining usable life. This kind of monitoring may
help to cut operating and maintenance costs while also lowering the
risk of major incidents happening. The parallel multiscale feature
fusion network for industrial equipment considered in this work
incorporates the benefits of various network structures, considers
both global and local feature information, selects two different
network structures as two paths for the input data, and finally fuses
the results, which has the potential to significantly improve the
remaining useful life prediction accuracy. The goal of this effort was
to advance the area of parallel multiscale feature fusion networks for
industrial equipment. Significant improvements were gained when
the proposed methods were compared to other benchmark
approaches and applied to a well-established data set. Furthermore,
when this comparison was performed, the supplied solutions
produced the best outcomes. This was done to establish whether or
not the responses offered represented an improvement. However,
when real-world production processes are considered, the number of
pieces of equipment might be limited. Furthermore, unscheduled
equipment downtime is an incident that is unlikely to occur. As a
result, there will be a restricted number of possible sequences that
may be retrieved for diagnostic purposes. As a result, building
machine learning models or techniques of model pre-training that are
suited for small sample data sets will be another important research
path to pursue when considering component lifetime estimates. This

Table 5
Ablation results for the data sets 1 and 2

Set 1 Set 2

Model NRMSE Score NRMSE Score

NN-1 0.02139 267 0.0252 2134
NN-2 0.02337 245 0.0244 1987
NN-3 0.02156 213 0.0214 1135
PSN 0.0117 169 0.0136 667

Table 6
Ablation results for the data sets 3 and 4

Set 3 Set 4

Model NRMSE Score NRMSE Score

NN-1 12.33 501 0.0385 2768
NN-2 12.07 342 0.0276 2567
NN-3 12.04 302 0.0257 2167
PSN 10.07 155 0.0121 1577

Table 7
Comparison results of the index sum

Sum

Architecture NRMSE Score

NN-1 0.0727 5321
NN-2 0.0719 4123
NN-3 0.0659 3456
PSN 0.0520 3135

Table 8
Sensitivity analysis results for the data sets 2, 3 and 4 in terms of

NRMSE index

Method Set 2 Set 3 Set 4

DCNN (Li et al., 2018) 0.0822 0.0864 0.07931
AGCNN (Liu et al., 2021) 0.0943 0.0733 0.0599
CNN-BiLSTM (Song et al., 2021) 0.0601 0.0696 0.0618
MT-CNN (Kim & Sohn, 2021) 0.0597 0.0451 0.0765
DARNN (Zeng et al., 2021) 0.0592 0.0618 0.0782
TaFCN (Fan et al., 2022) 0.0716 0.0601 0.0797
GA-TCN (Chen et al., 2022b) 0.0677 0.0701 0.0962
End-to-end (Zhu et al., 2023) 0.0360 0.0323 0.0398
PSN (this paper) 0.0284 0.0207 0.0268
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is due to the fact that these approaches are best suited for data sets with a
small number of observations.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

Data available on request from the corresponding author upon
reasonable request.

References

Al-Dulaimi, A., Zabihi, S., Asif, A., & Mohammadi, A. (2019).
A multimodal and hybrid deep neural network model for
remaining useful life estimation. Computers in Industry, 108,
186–196. https://doi.org/10.1016/j.compind.2019.02.004.

Berghout, T., Mouss, M. D., Mouss, L. H., & Benbouzid, M. (2023).
Prognet: A transferable deep network for aircraft engine damage
propagation prognosis under real flight conditions. Aerospace,
10(1). https://doi.org/10.3390/aerospace10010010.

Chen, J., Chen, D., & Liu, G. (2021). Using temporal convolution
network for remaining useful lifetime prediction. Engineering
Reports, 3(3), e12305. https://doi.org/10.1002/eng2.12305.

Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H.
(2018). Encoder-decoder with atrous separable convolution
for semantic image segmentation. In Proceedings of the
European Conference on Computer Vision, pp. 801–818.

Chen, Y., Zhang, D., & Zhang, W. (2022a). MSWR-LRCN: A new
deep learning approach to remaining useful life estimation of
bearings. Control Engineering Practice, 118, 104969.
https://doi.org/10.1016/j.conengprac.2021.104969.

Chen, Z., Chen, B., & Chen, X. (2022b). Remaining useful
life prediction of turbofan engine based on temporal
convolutional networks optimized by genetic algorithm.
Journal of Physics: Conference Series, 2181, 012001.
https://doi.org/10.1088/1742-6596/2181/1/012001.

Duan, F., &Wang, G. (2022). Bayesian analysis for the transformed
exponential dispersion process with random effects. Reliability
Engineering & System Safety, 217, 108104. https://doi.org/
10.1016/j.ress.2021.108104.

Fan, L., Chai, Y., & Chen, X. (2022). Trend attention fully
convolutional network for remaining useful life estimation.
Reliability Engineering & System Safety, 225, 108590.
https://doi.org/10.1016/j.ress.2022.108590.

Feng, X., Feng, Z., Zhao, W., Qin, B., & Liu, T. (2020). Enhanced
neural machine translation by joint decoding with word and
POS-tagging sequences. Mobile Networks and Applications
25(5), 1722–1728. https://doi.org/10.1007/s11036-020-01582-8.

Huang, G., Liu, Z., Van DerMaaten, L., &Weinberger, K. Q. (2017).
Densely connected convolutional networks. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition,
2261–2269. https://doi.org/10.1109/CVPR.2017.243.

Khosravi, P., Kazemi, E., Imielinski, M., Elemento, O., &
Hajirasouliha, I. (2018). Deep convolutional neural networks
enable discrimination of heterogeneous digital pathology

images. EBioMedicine, 27, 317–328. https://doi.org/10.1016/
j.ebiom.2017.12.026.

Kim, T. S., & Sohn, S. Y. (2021). Multitask learning for health
condition identification and remaining useful life prediction:
deep convolutional neural network approach. Journal of
Intelligent Manufacturing, 32(8), 2169–2179. https://doi.org/
10.1007/s10845-020-01630-w.

Lea, C., Flynn, M. D., Vidal, R., Reiter, A., & Hager, G. D. (2017).
Temporal convolutional networks for action segmentation and
detection. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, 1003–1012. https://doi.org/10.1109/
CVPR.2017.113.

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery
health prognostics: A systematic review from data acquisition to
RUL prediction. Mechanical Systems and Signal Processing,
104, 799–834. https://doi.org/10.1016/j.ymssp.2017.11.016.

Li, H., Zhao, W., Zhang, Y., & Zio, E. (2020). Remaining useful life
prediction using multi-scale deep convolutional neural
network. Applied Soft Computing, 89, 106113. https://doi.
org/10.1016/j.asoc.2020.106113.

Li, J., Li, X., & He, D. (2019a). A directed acyclic graph network
combined with CNN and LSTM for remaining useful life
prediction. IEEE Access, 7, 75464–75475. https://doi.org/10.
1109/ACCESS.2019.2919566.

Li, X., Ding, Q., & Sun, J. Q. (2018). Remaining useful life
estimation in prognostics using deep convolution neural
networks. Reliability Engineering & System Safety, 172,
1–11. https://doi.org/10.1016/j.ress.2017.11.021.

Li, X., Zhang, W., & Ding, Q. (2019b). Deep learning-based
remaining useful life estimation of bearings using multi-scale
feature extraction. Reliability Engineering & System Safety,
182, 208–218. https://doi.org/10.1016/j.ress.2018.11.011.

Liu, H., Liu, Z., Jia, W., & Lin, X. (2021). Remaining useful life
prediction using a novel feature-attention-based end-to-end
approach. IEEE Transactions on Industrial Informatics, 17(2),
1197–1207. https://doi.org/10.1109/TII.2020.2983760.

Ma, M., Sun, C., & Chen, X. (2017). Discriminative deep belief
networks with ant colony optimization for health status
assessment of machine. IEEE Transactions on
Instrumentation and Measurement, 66(12), 3115–3125.
https://doi.org/10.1109/TIM.2017.2735661.

Mao, W., He, J., & Zuo, M. J. (2020). Predicting remaining useful
life of rolling bearings based on deep feature representation and
transfer learning. IEEE Transactions on Instrumentation and
Measurement, 69(4), 1594–1608. https://doi.org/10.1109/
TIM.2019.2917735.

Muneer, A., Taib, S. M., Fati, S. M., & Alhussian, H. (2021).
Deep-learning based prognosis approach for remaining
useful life prediction of turbofan engine. Symmetry, 13(10).
https://doi.org/10.3390/sym13101861.

Pan, Z., Meng, Z., Chen, Z., Gao, W., & Shi, Y. (2020). A two-stage
method based on extreme learning machine for predicting the
remaining useful life of rolling-element bearings. Mechanical
Systems and Signal Processing, 144, 106899. https://doi.org/
10.1016/j.ymssp.2020.106899.

Patton, R. J., Uppal, F. J., Simani, S., & Polle, B. (2008). Reliable
fault diagnosis scheme for a spacecraft attitude control
system. Journal of Risk and Reliability, 222(2), 139–152.
https://doi.org/10.1243/1748006XJRR98.

Patton, R. J., Uppal, F. J., Simani, S., & Polle, B. (2010). Robust FDI
applied to thruster faults of a satellite system. Control
Engineering Practice, 18(9), 1093–1109. https://doi.org/10.
1016/j.conengprac.2009.04.011.

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023

11

https://doi.org/10.1016/j.compind.2019.02.004
https://doi.org/10.3390/aerospace10010010
https://doi.org/10.1002/eng2.12305
https://doi.org/10.1016/j.conengprac.2021.104969
https://doi.org/10.1088/1742-6596/2181/1/012001
https://doi.org/10.1016/j.ress.2021.108104
https://doi.org/10.1016/j.ress.2021.108104
https://doi.org/10.1016/j.ress.2022.108590
https://doi.org/10.1007/s11036-020-01582-8
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1016/j.ebiom.2017.12.026
https://doi.org/10.1016/j.ebiom.2017.12.026
https://doi.org/10.1007/s10845-020-01630-w
https://doi.org/10.1007/s10845-020-01630-w
https://doi.org/10.1109/CVPR.2017.113
https://doi.org/10.1109/CVPR.2017.113
https://doi.org/10.1016/j.ymssp.2017.11.016
https://doi.org/10.1016/j.asoc.2020.106113
https://doi.org/10.1016/j.asoc.2020.106113
https://doi.org/10.1109/ACCESS.2019.2919566
https://doi.org/10.1109/ACCESS.2019.2919566
https://doi.org/10.1016/j.ress.2017.11.021
https://doi.org/10.1016/j.ress.2018.11.011
https://doi.org/10.1109/TII.2020.2983760
https://doi.org/10.1109/TIM.2017.2735661
https://doi.org/10.1109/TIM.2019.2917735
https://doi.org/10.1109/TIM.2019.2917735
https://doi.org/10.3390/sym13101861
https://doi.org/10.1016/j.ymssp.2020.106899
https://doi.org/10.1016/j.ymssp.2020.106899
https://doi.org/10.1243/1748006XJRR98
https://doi.org/10.1016/j.conengprac.2009.04.011
https://doi.org/10.1016/j.conengprac.2009.04.011


Poojary, R., & Pai, A. (2019). Comparative study of model
optimization techniques in fine-tuned CNN models. In 2019
International Conference on Electrical and Computing
Technologies and Applications, 1–4. https://doi.org/10.1109/
ICECTA48151.2019.8959681.

Ramasso, E. (2014). Investigating computational geometry for
failure prognostics in presence of imprecise health indicator:
Results and comparisons on C-MAPSS datasets. In PHM
Society European Conference, 2(1). https://doi.org/10.36001/
phme.2014.v2i1.1460.

Ronneberger, O., Fischer, P.,&Brox, T. (2015).U-Net: Convolutional
networks for biomedical image segmentation. In N. Navab, J.
Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical
image computing and computer-assisted intervention –

MICCAI 2015 (pp. 234–241). Springer International Publishing.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,

Ma, S., : : : , & Bernstein, M. (2015). Imagenet large scale
visual recognition challenge. International Journal of Computer
Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-
0816-y.

Song, J. W., Park, Y. I., Hong, J. J., Kim, S. G., & Kang, S. J. (2021).
Attention-based bidirectional LSTM-CNN model for
remaining useful life estimation. In 2021 IEEE International
Symposium on Circuits and Systems, 1–5. https://doi.org/10.
1109/ISCAS51556.2021.9401572.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., : : : , & Rabinovich, A. (2015). Going deeper
with convolutions. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition, 1–9. https://doi.org/10.
1109/CVPR.2015.7298594.

Takacs, B., Vincze, Z., Fassold, H., Karakottas, A., Zioulis, N., Zarpalas,
D., & Daras, P. (2019). Hyper 360 - Towards a unified tool set
supporting next generation VR film and TV productions.
Journal of Software Engineering and Applications, 12(5),
127–148. https://doi.org/10.4236/jsea.2019.125009.

Tang, J. (2018). Intelligent mobile projects with TensorFlow: Build
10+ artificial intelligence apps using TensorFlow mobile and
lite for iOS, Android, and Raspberry Pi. Packt Publishing Ltd.

Thakkar, U., & Chaoui, H. (2022). Remaining useful life prediction
of an aircraft turbofan engine using deep layer recurrent neural
networks. Actuators, 11(3). https://doi.org/10.3390/
act11030067.

Tseng, S. H., & Tran, K. D. (2023). Predicting maintenance through
an attention long short-term memory projected model. Journal
of Intelligent Manufacturing. https://doi.org/10.1007/s10845-
023-02077-5.

Wang, B., Lei, Y., Li, N., & Li, N. (2020). A hybrid prognostics
approach for estimating remaining useful life of rolling
element bearings. IEEE Transactions on Reliability, 69(1),
401–412. https://doi.org/10.1109/TR.2018.2882682.

Wang, B., Lei, Y., Li, N., & Wang, W. (2021a). Multiscale
convolutional attention network for predicting remaining
useful life of machinery. IEEE Transactions on Industrial
Electronics, 68(8), 7496–7504. https://doi.org/10.1109/TIE.
2020.3003649.

Wang, Q., Zheng, S., Farahat, A., Serita, S., & Gupta, C. (2019a).
Remaining useful life estimation using functional data
analysis. In 2019 IEEE International Conference on
Prognostics and Health Management, 1–8.

Wang, R., Shi, R., Hu, X., & Shen, C. (2021b). Remaining useful life
prediction of rolling bearings based on multiscale convolutional
neural network with integrated dilated convolution blocks.
Shock and Vibration, 2021, 6616861. https://doi.org/10.1155/
2021/6616861.

Wang, T., Huan, J., & Zhu, M. (2019b). Instance-based deep transfer
learning. In 2019 IEEE Winter Conference on Applications of
Computer Vision, 367–375. https://doi.org/10.1109/WACV.
2019.00045.

Xia,M., Li, T., Shu, T.,Wan, J., De Silva, C.W., &Wang, Z. (2019).
A two-stage approach for the remaining useful life prediction of
bearings using deep neural networks. IEEE Transactions on
Industrial Informatics, 15(6), 3703–3711. https://doi.org/10.
1109/TII.2018.2868687.

Yu, W., Shao, Y., Xu, J., & Mechefske, C. (2022). An adaptive and
generalized wiener process model with a recursive filtering
algorithm for remaining useful life estimation. Reliability
Engineering & System Safety, 217, 108099. https://doi.org/
10.1016/j.ress.2021.108099.

Zeng, F., Li, Y., Jiang, Y., & Song, G. (2021). A deep attention
residual neural network-based remaining useful life
prediction of machinery. Measurement, 181, 109642. https://
doi.org/10.1016/j.measurement.2021.109642.

Zhang, G., Liang, W., She, B., & Tian, F. (2021). Rotating
machinery remaining useful life prediction scheme using
deep-learning-based health indicator and a new RVM. Shock
and Vibration, 2021, 8815241. https://doi.org/10.1155/2021/
8815241.

Zhang, R., Chen, J., Feng, L., Li, S., Yang, W., & Guo, D. (2022). A
refined pyramid scene parsing network for polarimetric SAR
image semantic segmentation in agricultural areas. IEEE
Geoscience and Remote Sensing Letters, 19, 1–5. https://doi.
org/10.1109/LGRS.2021.3086117.

Zhou,W., Lin, X., Lei, J., Yu, L., & Hwang, J. N. (2022). MFFENet:
Multiscale feature fusion and enhancement network for
RGB-thermal urban road scene parsing. IEEE Transactions
on Multimedia, 24, 2526–2538. https://doi.org/10.1109/
TMM.2021.3086618.

Zhu, J., Chen, N., & Peng, W. (2019). Estimation of bearing
remaining useful life based on multiscale convolutional
neural network. IEEE Transactions on Industrial Electronics,
66(4), 3208–3216. https://doi.org/10.1109/TIE.2018.2844856.

Zhu, Q., Xiong, Q., Yang, Z., & Yu, Y. (2023). A novel feature-
fusion-based end-to-end approach for remaining useful life
prediction. Journal of Intelligent Manufacturing, 34(8),
3495–3505. https://doi.org/10.1007/s10845-022-02015-x.

How to Cite: Simani, S., Ping Lam, Y., Farsoni, S., & Castaldi, P. (2023). Dynamic
Neural Network Architecture Design for Predicting Remaining Useful Life of
Dynamic Processes. Journal of Data Science and Intelligent Systems. https://
doi.org/10.47852/bonviewJDSIS3202967

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023

12

https://doi.org/10.1109/ICECTA48151.2019.8959681
https://doi.org/10.1109/ICECTA48151.2019.8959681
https://doi.org/10.36001/phme.2014.v2i1.1460
https://doi.org/10.36001/phme.2014.v2i1.1460
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/ISCAS51556.2021.9401572
https://doi.org/10.1109/ISCAS51556.2021.9401572
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.4236/jsea.2019.125009
https://doi.org/10.3390/act11030067
https://doi.org/10.3390/act11030067
https://doi.org/10.1007/s10845-023-02077-5
https://doi.org/10.1007/s10845-023-02077-5
https://doi.org/10.1109/TR.2018.2882682
https://doi.org/10.1109/TIE.2020.3003649
https://doi.org/10.1109/TIE.2020.3003649
https://doi.org/10.1155/2021/6616861
https://doi.org/10.1155/2021/6616861
https://doi.org/10.1109/WACV.2019.00045
https://doi.org/10.1109/WACV.2019.00045
https://doi.org/10.1109/TII.2018.2868687
https://doi.org/10.1109/TII.2018.2868687
https://doi.org/10.1016/j.ress.2021.108099
https://doi.org/10.1016/j.ress.2021.108099
https://doi.org/10.1016/j.measurement.2021.109642
https://doi.org/10.1016/j.measurement.2021.109642
https://doi.org/10.1155/2021/8815241
https://doi.org/10.1155/2021/8815241
https://doi.org/10.1109/LGRS.2021.3086117
https://doi.org/10.1109/LGRS.2021.3086117
https://doi.org/10.1109/TMM.2021.3086618
https://doi.org/10.1109/TMM.2021.3086618
https://doi.org/10.1109/TIE.2018.2844856
https://doi.org/10.1007/s10845-022-02015-x
https://doi.org/10.47852/bonviewJDSIS3202967
https://doi.org/10.47852/bonviewJDSIS3202967

	Dynamic Neural Network Architecture Design for Predicting Remaining Useful Life of Dynamic Processes
	1. Introduction
	2. RUL Estimation with Deep Learning Architectures
	2.1. RUL prediction methods
	2.2. Deep learning architectures

	3. Parallel Structured Neural Network Prototypes
	3.1. Causal convolution module
	3.2. Average pooling module
	3.3. Multiple scale feature extraction module
	3.4. Attention module block

	4. Experimental Setup
	5. Achievements and Comparisons
	5.1. Nominal performance analysis
	5.2. Robustness and sensitivity features

	6. Conclusion
	References


