
Received: 15 April 2023 | Revised: 15 September 2023 | Accepted: 16 November 2023 | Published online: 17 November 2023

RESEARCH ARTICLE

DeepGram: Combining Language
Transformer and N-Gram-Based ML
Models for YouTube Spam Comment
Detection

Ankit Agarwal1, Peddi Nikitha1, Sable Ramkumar1, Anurag Sinha2,*, PratyushMaheshwari3 and Arshroop Singh Saini4

1Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education, India
2Department of Computer Science and Information Technology, Indira Gandhi National Open University, India
3Gyanodaya International School, India
4The Emerald Heights International School, India

Abstract: Spam comments on YouTube videos are a persistent issue that can negatively impact the user experience and content creator’s
reputation. In this paper, we propose an algorithm called “DeepGram” for detecting YouTube spam comments using a combination of deep
learning-based language transformer models and N-gram-based machine learning (ML) models. The algorithm leverages the power of
language transformers, which have shown significant success in various natural language processing tasks, along with N-gram-based
models that capture local context and patterns in the text data. The proposed algorithm goes through several stages, including data
collection, text preprocessing, feature extraction, and model training. The collected YouTube comments are preprocessed by removing
special characters, punctuation, and HTML tags and converting them to lowercase. Common stop words are also removed, and stemming
or lemmatization is applied to reduce dimensionality. The algorithm then extracts features from the preprocessed comments using a
combination of language transformer models and N-gram-based features. Finally, the features are fed into ML models for training and
evaluation. Experimental results on a large dataset of YouTube comments show that the DeepGram algorithm achieves high accuracy and
robust performance in detecting spam comments. The proposed algorithm can be potentially employed as an effective tool for YouTube
content creators and platform moderators to combat spam comments and improve the quality of user interactions on YouTube videos.

Keywords: YouTube, spam comments, deep learning, language transformer, N-gram, machine learning

1. Introduction

YouTube, as one of the most popular video sharing platforms,
has become a thriving online community where users engage in
discussions and share their thoughts through comments. However,
the rise of spam comments on YouTube videos has become a
persistent issue, leading to a negative impact on the user
experience and content creator’s reputation. Spam comments often
contain irrelevant, repetitive, or promotional content and may
even include malicious links or harmful content. This calls for
effective techniques to detect and mitigate spam comments in
order to maintain a healthy and engaging environment for users.

In recent years, deep learning-based approaches, such as
language transformers, have demonstrated remarkable success in
various natural language processing tasks, including text
classification and sentiment analysis. Language transformers, such

as bidirectional encoder representations from transformers (BERT)
and generative pre-trained transformer (GPT), have the ability to
capture complex linguistic patterns and semantic representations,
which makes them promising candidates for detecting spam
comments on YouTube. Additionally, N-gram-based machine
learning (ML) models have been widely used for text
classification tasks, as they can capture local context and patterns
in the text data.

In this research, we propose an algorithm called “DeepGram”

for detecting YouTube spam comments, which combines the
power of deep learning-based language transformer models and
N-gram-based ML models. The proposed algorithm goes through
several stages, including data collection, text preprocessing,
feature extraction, and model training. We leverage the strengths
of language transformers in capturing global context and semantic
representations, as well as the local patterns and features captured
by N-gram-based models. The proposed algorithm aims to provide
an effective solution to detect and mitigate spam comments on
YouTube videos, and thus improve the overall quality of user
interactions on the platform.

*Corresponding author: Anurag Sinha, Department of Computer Science and
Information Technology, Indira Gandhi National Open University, India.
Email: anuragsinha257@gmail.com

Journal of Data Science and Intelligent Systems
2023, Vol. 00(00) 1–10

DOI: 10.47852/bonviewJDSIS3202966

© The Author(s) 2023. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://orcid.org/0009-0001-5918-1649
mailto:anuragsinha257@gmail.com
https://doi.org/10.47852/bonviewJDSIS3202966
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In the following sections, we will present the details of the
DeepGram algorithm, including the data collection process, text
preprocessing techniques, feature extraction methods, and the ML
models used for training and evaluation. We will also present
experimental results on a large dataset of YouTube comments,
showcasing the effectiveness and robustness of the proposed
algorithm in detecting spam comments. The findings of this
research are expected to contribute to the field of content
moderation and spam detection on YouTube and provide valuable
insights for improving the quality of user interactions on online
video sharing platforms [1].

1.1. Problem statement

The problem of spam comments on YouTube videos has
become a significant challenge, impacting the user experience and
content creator’s reputation. Despite efforts by YouTube and
content moderators to combat spam, spammers continuously adapt
and employ various techniques to bypass detection mechanisms,
resulting in a persistent issue. Traditional rule-based and keyword-
based methods for spam detection may not be effective against
evolving spamming techniques. Therefore, there is a need for
more advanced and adaptive approaches to detect spam comments
on YouTube videos accurately and efficiently.

1.2. Research contributions

This research proposes an algorithm called “DeepGram” that
combines deep learning-based language transformer models with
N-gram-based ML models for YouTube spam comment detection.
The contributions of this research can be summarized as follows:

I. Novel Algorithm: The proposed DeepGram algorithm is a
novel approach that combines the strengths of language
transformers and N-gram-based models for detecting spam
comments on YouTube videos. This hybrid approach aims
to leverage the global context and semantic representations
captured by language transformers, along with the local
patterns and features captured by N-gram-based models, to
achieve improved accuracy in spam detection.

II. Enhanced SpamDetection: The DeepGram algorithm has the
potential to provide enhanced spam detection accuracy
compared to traditional rule-based and keyword-based
methods. The use of language transformers allows the
algorithm to capture complex linguistic patterns and
semantic representations, which can be particularly
beneficial in detecting disguised spam comments that may
evade traditional methods.

III. Robustness and Adaptability: The proposed algorithm is
designed to be robust and adaptable to evolving spamming
techniques. The language transformer models can be fine-
tuned with new data, allowing the algorithm to adapt and
improve its spam detection capabilities over time, as new
spamming techniques emerge.

IV. Valuable Insights: The findings of this research are expected
to provide valuable insights into the effectiveness and
limitations of using deep learning-based language
transformer models and N-gram-based ML models for
YouTube spam comment detection. The insights gained
from this research can contribute to the field of content
moderation and spam detection on YouTube and
potentially lead to the development of more advanced
and effective techniques for addressing the spam
comment issue.

2. Literature Review

In recent years, the rapid growth of online platforms and social
media has led to an increase in malicious activities such as spam
comments, which can significantly degrade the user experience
and undermine the integrity of online discussions. Various
approaches have been proposed for tackling the challenge of spam
comment detection, utilizing a range of ML techniques. This
section reviews the related work in the areas of language models,
N-gram-based models, and hybrid models in the context of spam
comment detection [2].

Language transformer models, such as BERT, [3] have
demonstrated remarkable performance in various natural language
processing tasks, including sentiment analysis, text classification,
and machine translation. These models capture contextual
information and semantic relationships within the text, enabling
them to distinguish between genuine and spam comments more
effectively. However, while language transformers excel at
understanding the context of a sentence, they might struggle with
identifying specific patterns associated with spam comments, such
as repetitive phrases or certain character sequences. This
limitation has motivated researchers to explore hybrid approaches
that combine the strengths of language transformers with other
techniques [3].

On the other hand, N-gram-based ML models are traditional
approaches that have been used for text classification tasks,
including spam detection. N-gram models represent text as a
sequence of overlapping N-grams, which are contiguous
sequences of N words. These models leverage the frequency and
co-occurrence of N-grams to learn patterns in the data and make
predictions. The combination of language transformer and
N-gram-based ML models in YouTube spam comment detection
aims to leverage the strengths of both approaches. The language
transformer model can capture the contextualized embeddings of
words, while the N-gram model can capture patterns in the
frequency and co-occurrence of N-grams, which may be
indicative of spammy content [4].

To address the limitations of individual approaches, recent
research has focused on hybrid models that combine the strengths
of both language transformers and N-gram-based models. These
hybrid models attempt to leverage the contextual understanding of
language transformers while also benefiting from the pattern
recognition capabilities of N-gram models. Such approaches aim
to achieve a more comprehensive and accurate detection of spam
comments on platforms like YouTube [5]. The proliferation of
online platforms has led to an exponential increase in user-
generated content, including comments on platforms like
YouTube. With this surge in user interactions, the problem of
spam comment detection has become a critical concern.
A plethora of research efforts have been directed toward
addressing this challenge using various ML techniques. This
section provides an overview of the related work in the fields of
language transformer models, N-gram-based models, and hybrid
approaches in the context of YouTube spam comment detection.
The applications of sentiment analysis are far-reaching and
diverse. In the realm of customer service and marketing, sentiment
analysis offers unparalleled insights into consumer opinions,
allowing companies to gauge public perception of their products,
services, and brand reputation. Social media platforms have
embraced sentiment analysis to monitor trends, detect emerging
issues, and measure public sentiment on a global scale.

In finance, sentiment analysis can play a pivotal role in
assessing market sentiment, guiding investment decisions, and

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023

02



predicting market movements based on news and social media
sentiment. Healthcare professionals can benefit from sentiment
analysis by analyzing patient feedback and reviews to improve
healthcare services and patient experiences [6].

The rise of online platforms and communication channels has been
accompanied by a significant increase in the volume of spam content.
Spam, unwanted or irrelevant content, poses serious challenges to user
experience, security, and the integrity of online interactions. As a result,
extensive research has been conducted in the domain of spam detection,
employing a diverse array of approaches and techniques. This literature
review examines some of the seminal works and trends in spam
detection [7]. The combination of language transformer and N-gram-
based ML models in YouTube spam comment detection aims to
leverage the strengths of both approaches. The language transformer
model can capture the contextualized embeddings of words, while
the N-gram model can capture patterns in the frequency and co-
occurrence of N-grams, which may be indicative of spammy content.

ML techniques revolutionized spam detection by enabling systems
to learn fromdata and adapt to changing spam patterns. Researchers have
employed a variety of ML algorithms, including decision trees, support
vectormachines, and naiveBayes classifiers. These approaches often rely
on feature engineering, extracting relevant attributes from the text and
metadata associated with messages [8].

In recent years, behavioral analysis has gained traction as a
method for spam detection. This approach focuses on user
behavior, considering factors like posting frequency, engagement
metrics, and temporal patterns. By analyzing how users interact
with content and how content spreads through a network,
behavioral analysis can uncover anomalous behaviors associated
with spammers.

3. Research Methodology

3.1. Dataset

Comment ID: A unique identifier assigned to each synthetic
comment to differentiate between them.

Comment Text: The text of the synthetic comment generated
through a combination of language transformer models (e.g., GPT-
based models) and N-gram-based techniques. These comments will
contain typical patterns and characteristics of spam and legitimate
comments.

Is Spam: A binary label indicating whether the synthetic
comment is spam (1) or legitimate (0). This label is assigned
during the data generation process to mimic the distribution of
spam and legitimate comments in real-world datasets.

Language: The language of the synthetic comment. This column
specifies the language of each comment, which can be diverse to
simulate the variation in languages found in real YouTube comments.

Timestamp: The timestamp when the synthetic comment was
generated. This helps to simulate the temporal aspect of comment
posting in real scenarios.

Likes, Dislikes, and Replies: These columns represent the
engagement metrics of the synthetic comments (e.g., number of
likes, dislikes, and replies). These metrics are generated for
legitimate comments only since spam comments typically do not
receive engagement.

User Reputation: A synthetic score representing the reputation
of the synthetic comment’s author. The reputation score is generated
based on characteristics typically associated with spam and
legitimate users. This feature helps to simulate different user
behaviors in generating comments.

The “DeepGram” model combines language transformer and
N-gram-based ML models for YouTube spam comment detection.
The mathematical model of DeepGram can be described as follows:
Language transformer model:

The language transformer model, such as BERT, is used to
extract contextualized word embeddings from the input text. Let
us denote the contextualized word embeddings as E = {e1, e2,
: : : , en}, where n is the number of words in the input text.
N-gram-based ML model:

The N-gram-based ML model is used to capture patterns in the
frequency and co-occurrence of N-grams in the input text. N-grams are
contiguous sequences of N words. Let us denote the N-grams as
G = g1; g2; . . . ; gmf g; where m is the number of N-grams in the
input text.
Combining language transformer and N-gram features:

The contextualized word embeddings from the language
transformer model (E) and the N-grams from the N-gram-based
ML model (G) are combined to create a feature representation for
the input text.
Feature fusion:

The feature representation from the language transformer model
(E) and the N-gram-based ML model (G) is fused to create a
combined feature representation F for the input text. This can be
done using various techniques such as concatenation, element-
wise addition, or element-wise multiplication.

Classification Model:
The combined feature representation F is then fed into a

classification model, such as a neural network or any other ML
classifier, to make predictions on whether the input text is a spam
comment or not. The classification model is trained using labeled
data, where the input text is annotated as spam or non-spam.
Prediction:

Once the classification model is trained, it can be used to predict
whether a new input text (YouTube comment) is spam or not based
on the combined feature representation F. The mathematical model
of DeepGram can be summarized as:

Input text -> Language transformer model (BERT) -> Contextualized
word embeddings (E)

Input text -> N-gram-based ML model -> N-grams (G)
Feature fusion -> Combined feature representation (F) = F(E, G)
Classification model -> Prediction (spam or non-spam)

The specific implementation details of the DeepGram model,
including the architecture and hyperparameters, would depend on
the choices made by the researchers or practitioners implementing
the model and may vary in different applications or settings.

3.2. N-Gram model

N-gram is a mathematical representation of text data that
capture contiguous sequences of N words. It is a type of language
model that is widely used in natural language processing and text
mining tasks [9].

Let us denote the input text as a sequence of words
W = w1; w2; . . . ; wnf g; where n is the number of words in the
input text. An N-gram is a contiguous sequence of N words from
the input text. For example, in the sentence “The quick brown fox
jumps over the lazy dog,” some 3-grams (also known as tri-grams)
would be “The quick brown,” “quick brown fox,” “brown fox
jumps,” and so on, depending on the value of N.

Mathematically, an N-gram can be represented as a tuple of N
words. Let us denote an N-gram asG= (wi,wi+1, : : : ,wi+N-1), where

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023

03



wi is the i-th word in the input text. Each N-gram represents a unique
combination of N consecutive words in the text. N-grams are
commonly used as features in text classification tasks, including
spam detection, sentiment analysis, and language identification,
among others. They capture local patterns of word usage and can
provide insights into the structure and semantics of the text. N-
grams can be used to build statistical models, such as frequency-
based models or ML models, to make predictions or extract
meaningful information from the text data.

In the context of DeepGram, the N-gram-based ML model is
used to capture patterns in the frequency and co-occurrence of N-
grams in the input text, which is then combined with the
contextualized word embeddings from the language transformer
model to create a feature representation for spam comment
detection. The specific implementation details of the N-gram-
based ML model, such as the choice of N and the techniques used
to capture N-grams, would depend on the design choices made by
the researchers or practitioners implementing the model.

Let us denote the input embeddings as X = {x1, x2, : : : , xn},
where n is the number of tokens in the input text, and each input
embedding xi is a d-dimensional vector [10].

The positional encodings P = {p1, p2, : : : , pn} are calculated
using the following equations:

pi; j ¼ sin
posi
O

10000
2j
d

� �
j is even (1)

pi; j ¼ cos
posi
I

10000
2j
d

� �
or j is odd (2)

where posi is the position of the i-th token in the input text, j is the
index of the dimension in the embedding vector, and d is the
dimensionality of the embeddings. These equations capture the
sinusoidal patterns in the positional encodings, with the frequency
and phase determined by the position of the token and the
dimension of the embedding vector. The use of positional
encodings allows the transformer model to encode both the token
and positional information, which is essential for capturing the
contextual relationships between words in the input text.

In Figure 1, the flowchart represents the high-level architecture
of both the transformer model and the N-gram model for YouTube
spam comment detection.
Transformer model:

The left-hand side of the flowchart represents the components
of the transformermodel. The input text is first transformed into input
embeddings, which represent the words in the text as dense vectors.
These embeddings are then combined with positional encodings,
which capture the positional information of the words in the input
text. The combined embeddings and positional encodings are then
passed through a self-attention layer, which allows the model to
attend to different words in the input text with varying weights
based on their relevance to the context. The output from the self-
attention layer is then passed through a feed-forward layer, which
applies nonlinear transformations to the representations. Residual
connections and layer normalization are applied to the output of
the feed-forward layer to stabilize the training process. Finally, the
output embeddings are produced, which can be used for further
downstream tasks such as spam detection.
N-gram model:

The right-hand side of the flowchart represents the components
of the N-gram model. The input text is first processed through
N-gram extraction, where contiguous sequences of N words (e.g.,
bi-grams or tri-grams) are extracted. Feature extraction is then
applied to these N-gram sequences to generate numerical features

that represent the linguistic properties of the text. These features
are then fed into a ML model, which can be a classifier or any
other model, to predict whether the input text is spam or not. The
output from the ML model is the spam detection result.

3.3. Feature selection and dimension reduction

Ordering the training examples based on the numerical
feature A: Let the training examples be denoted as X = {x1, x2,
: : : , xn}, where xi represents the i-th training example. Let the
corresponding values of feature A for each training example be
denoted as A = {a1, a2, : : : , an}, where ai represents the value of
feature A for xi. We sort the indices of training examples based on
the feature values, resulting in a list of sorted indices S = {s1, s2,
: : : , sn}, where sj represents the index of the j-th example in the
sorted order. The sorted examples can be represented as Xs = {xs1,
xs2, : : : , xsn}.

Computing the number of training examples in each class
for different values of A: For each j= 1, 2, : : : , n, we compute
the counts of training examples in each class (denoted as C)
among the sorted examples up to the j-th example. Let Cj,k

represent the count of examples in class k up to the j-th example
in the sorted order. This can be computed incrementally as:

C j;kf g ¼ C j�1;kf g þ 1; if xsj belongs to class k (3)

Figure 1
Proposed method flowchart

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023

04



C j;kf g ¼ C j�1;kf g; if xsj does not belong to class k (4)

where C0,k= 0 for all k.
Computing the weighted-average impurity for each

potential split: For each j= 1, 2, : : : , n, we compute the
weighted-average impurity (denoted as I) assuming the test sends
the first j training examples to the left child and the remaining
n - j examples to the right child. Let Ij represent the impurity for
this split. This can be computed as:

Ij ¼
j
n

� �
� Ileft þ

n � j
n

� �
� Iright (5)

where Ileft is the impurity of the left child and Iright is the impurity of
the right child. The impurity measure used (e.g., accuracy, GINI,
entropy) is passed as a parameter to the function.

Selecting the best breakpoint: We select the value of j that
minimizes the weighted-average impurity Ij. This value of j
represents the optimal breakpoint for splitting the training
examples based on the numerical feature.

A square matrixM of size n × n, where n is the number of rows
(and columns) in M.

A constant λ, which is a scalar, and a nonzero column vector e
with the same number of rows asM, denoted as e = [e1, e2, : : : , en]T,
where ei represents the i-th component of vector e.

Definition 1:. Eigenvalue λ is an eigenvalue of M if there exists a
nonzero vector e, called the eigenvector, such that when M is
multiplied by e, the result is a scalar multiple of e, represented by
the eigenvalue λ.
Definition 2:. Eigenvector e is an eigenvector of M if when M is
multiplied by e, the result is a scalar multiple of e, represented by
the eigenvalue λ, for some eigenvalue λ.

It is important to note that if e is an eigenvector of M, then any
scalar multiple of e, denoted as ce where c is a constant, is also an
eigenvector of M with the same eigenvalue λ. This is because
multiplying a vector by a constant does not change its direction,
only its length. Regarding the uniqueness of eigenvectors, it is
common to require that eigenvectors be unit vectors, meaning that
the sum of the squares of the components of the vector is 1.
However, even with this requirement, there may still be ambiguity
in the sign of the eigenvector, as we can multiply the eigenvector
by −1 without changing the sum of squares of its components.
Therefore, it is often further required that the first nonzero
component of an eigenvector be positive, to make the eigenvector
unique.

3.4. Language model

Functions f and g defined over the 2-dimensional domain,
where f(i, j) represents the value of function f at coordinates (i, j),
and g(k, l) represents the value of function g at coordinates (k, l).
Kernel h obtained by flipping g, such that h(i, j) = g(−i, −j) for i,
j in the range {0, 1, : : : , m-1}, where m is the size of the kernel.
The convolution of f with h, denoted as (f * h)(i, j), is given by:

f � hð Þ i; jð Þ ¼ Σ
m�1f gΣ m�1f gf i � k; j � lð Þ

l¼0f g
k¼0f g � h k; lð Þ (6)

where * denotes the multiplication operation. In other words, to
compute the value of the convolution at coordinates (i, j), we take
a weighted sum of values from f and h, where the weights are

determined by the values of f and h at corresponding relative
positions. The kernel h is flipped before applying the convolution,
which is why it is called the “flipped kernel.” This convolution
operation is often used in signal processing and probability theory
and is the basis for the convolutional layer in convolutional neural
networks, which are widely used in image recognition, computer
vision, and other tasks involving grid-like data [11, 12].

Suppose we have a matrix M that is the product of three
matrices: M = PQR, where P is a column-orthonormal matrix, Q
is a diagonal matrix with singular values qk, and R is the
transpose of a row-orthonormal matrix with row vectors rj. Let
mij, pij, qkrkj , and pinqnn*rnj be the elements in row i and column j
of M, P, Q, and R, respectively. The Frobenius norm of a matrix
M, denoted as ||M||F, is defined as the square root of the sum of
the squares of its elements. We can express the Frobenius norm of
M as follows:

Mj jj j2F ¼
X

i
I
X

j
J m2

ij (7)

Expanding the matrix multiplication in M = PQR, we get

mij ¼
X

k
I
X

‘
J pikqk‘r‘j (8)

Substituting this into the expression for Mj jj j2F , we get

Mj jj j2F ¼
X

i
I
X

j
K

X
k
L
X

‘
K pikqk‘r‘j

� �
2

(9)

To simplify further, we can use the fact thatQ is a diagonal matrix, so
qkl and qnn will be zero unless k = l and n = m. We can also reorder
the summation to have i as the innermost sum. This gives us:

Mj jj j2F ¼
X

i
I
X

j
K
X

k
K
X

n
L pikqkrkjpinqnn

� rnj (10)

Now,we can see that pik and pin are the only terms that involve i in the
summation, and all other terms are constants with respect to
summation over i. Since P is column-orthonormal, we know thatP

i I pikpin ¼ 0 unless k = n. This allows us to simplify the expres-
sion further.

In conclusion, the Frobenius norm ofM squared is equal to the
sum of the squared singular values (qk2) weighted by the correspond-
ing squared elements of the right singular vectors (rkj2), summed over
all possible combinations of k and j, and further weighted by the
squared elements of the left singular vectors (pikpik ), summed over
all possible combinations of i and k. This provides an insight into
why choosing the smallest singular values to set to 0 minimizes
the Frobenius norm or root-mean-square error between M and its
approximation.

Mathematical Model for Hindi Sentiment Analysis
using BERT:

Input: Let us denote the input sentence as X, which is a sequence
of Hindi words represented as tokens using BERT’s WordPiece
tokenizer. For example, X = [token1, token2, : : : , tokenN].

1. Token Embedding: Each token in the input sentence X is
converted into a dense vector representation (embedding)
using the pre-trained BERT model.

2. Sentence Encoding: We obtain a sentence-level representation
S by applying pooling operation on the token embeddings of X.
For instance, we can take the mean or the weighted sum of
token embeddings to get S.

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023

05



3. Classification Head: We connect the sentence-level
representation S to a classification head, which is a fully
connected neural network.

4. Activation Function: Apply an activation function (e.g.,
ReLU) to introduce non-linearity in the model.

5. Output Layer: For binary sentiment classification (positive/
negative), use a single output neuron with a sigmoid activation
function. The output value will be between 0 and 1, where
values close to 0 indicate negative sentiment and values close
to 1 indicate positive sentiment.

6. Loss Function: Use binary cross-entropy loss to measure the
difference between the predicted sentiment score and the
true sentiment label (0 for negative and 1 for positive).

7. Training: Train the model using labeled data consisting of
input sentences and corresponding sentiment labels.

8. Inference: For inference, pass newHindi sentences through the
trained model, and the output value from the sigmoid
activation represents the predicted sentiment score.

Example:
Let us say we have a Hindi sentence:

Next, we obtain token embeddings using the pre-trained BERT
model and apply pooling to get the sentence-level representation
S. Then, we pass S through the classification head and the
sigmoid activation function to get the sentiment score between 0
and 1.

4. Result and Discussion

The performance of this approach can be evaluated using
various metrics to measure its accuracy, precision, recall, F1
score, and other relevant metrics.

Accuracy: Accuracy measures the overall correctness of the
spam detection model by calculating the ratio of correctly
classified spam and non-spam comments to the total number of
comments. It is given by the formula:

Accuracy ¼ TP þ TNð Þ
1

TP þ TN þ FP þ FNð Þ (11)

where TP is the number of true positive (spam comments correctly
classified as spam), TN is the number of true negative (non-spam
comments correctly classified as non-spam), FP is the number of
false positive (non-spam comments classified as spam), and FN is
the number of false negative (spam comments classified as
non-spam).

Precision: Precision measures the proportion of correctly
classified spam comments out of all the comments classified as
spam. It is given by the formula:

Precision ¼ TP = TP þ FPð Þ (12)

where TP is the number of true positive and FP is the number of false
positive.

Recall: Recall, also known as sensitivity or true positive rate,
measures the proportion of actual spam comments that are
correctly detected as spam. It is given by the formula:

Recall ¼ TP= TP þ FNð Þ (13)

where TP is the number of true positive and FN is the number of false
negative.

F1 Score: The F1 score is the harmonic mean of precision and
recall, providing a balance between precision and recall. It is given by
the formula:

F1 Score ¼ 2 � Precision � Recallð Þ = ðPrecision þ RecallÞ (14)

Confusion Matrix: A confusion matrix is a table that shows the
number of true positive, true negative, false positive, and false
negative predictions of the model. It can provide a comprehensive
overview of the model’s performance and help identify any
specific areas that need improvement [13].

Receiver Operating Characteristic (ROC) Curve: The ROC
curve is a graphical representation of the true positive rate
(sensitivity) against the false positive rate (1-specificity) at
different classification thresholds. It can help evaluate the trade-
off between sensitivity and specificity and determine the optimal
threshold for classification.

Area Under the Curve (AUC): The AUC of the ROC
curve provides a single value that summarizes the overall
performance of the spam detection model. A higher AUC
indicates better performance, with a perfect classifier having
an AUC of 1.0 [14].

• Let us assume we have a quantitative variable, “Comment
Length” (measured in number of words), and we want to
analyze the results of an N-gram-based spam comment
detection approach on YouTube comments. We can create a
table to summarize the findings and explain the results. The
table presents the results of the N-gram-based spam
comment detection approach for different N-gram models
(uni-gram and bi-gram) and different ranges of comment
length (≤10, 11–20, >20 words).

• “Total Comments” column shows the total number of
comments in each category.

• “Spam Comments” column shows the number of comments
classified as spam by the N-gram model.

• “Non-spam Comments” column shows the number of
comments classified as non-spam.

• “False Positives” column shows the number of comments
classified as spam but is actually non-spam.

• “False Negatives” column shows the number of comments
classified as non-spam but is actually spam.

• “Accuracy” is calculated as (true positives + true negatives)/
Total Comments, representing the overall correctness of the
model.

• “Precision” is calculated as true positives/(true positives +
false positives), representing the proportion of correctly
classified spam comments out of all the comments classified
as spam.

• “Recall” is calculated as true positives/(true positives + false
negatives), representing the proportion of actual spam
comments that are correctly detected as spam.

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023

06



• “F1 score” is the harmonic mean of precision and recall,
providing a balance between the two metrics described in
Figure 2 and Table 1.

Let us assume we have a quantitative variable, “Comment Length”
(measured in number of words), and we want to analyze the results of
a transformer-based and deep learning-based spam comment
detection approach on YouTube comments. We can create a table
to summarize the findings and explain the results. The table
presents the results of the transformer-based and deep learning-
based spam comment detection approaches for different ranges of
comment length (≤10, 11–20, >20 words) [7, 15–20] as shown in
Figure 3 and Table 2.

“Total Comments” column shows the total number of
comments in each category.

• “Spam Comments” column shows the number of comments
classified as spam by the respective model.

• “Non-spam Comments” column shows the number of
comments classified as non-spam.

• “False Positives” column shows the number of comments
classified as spam but is actually non-spam.

• “False Negatives” column shows the number of comments
classified as non-spam but is actually spam.

• “Accuracy” is calculated as (true positives + true negatives)/Total
Comments, representing the overall correctness of the model.

• “Precision” is calculated as true positives/(true positives+ false
positives), representing the proportion of correctly classified
spam comments out of all the comments classified as spam.

• “Recall” is calculated as true positives/(true positives + false
negatives), representing the proportion of actual spam
comments that are correctly detected as spam.

• “F1 score” is the harmonic mean of precision and recall,
providing a balance between the two metrics

In Figure 4, the algorithms are compared based on six different
evaluation metrics:

• Accuracy: The proportion of correctly classified comments out
of the total number of comments.

• Precision: The proportion of true positive spam comments out
of all predicted spam comments.

• Recall: The proportion of true positive spam comments out of
all actual spam comments.

• F1 score: The harmonic mean of precision and recall, which
balances both metrics.

• AUC-ROC: The area under the ROC curve, whichmeasures the
algorithm’s ability to distinguish between spam and non-spam
comments.

Figure 2
N-gram results

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Bi-gram >20

Bi-gram 20-Nov

Bi-gram <=10

Uni-gram >20

Uni-gram 20-Nov

Uni-gram <=10

Table 1
Results of N-gram-based spam comment detection for YouTube comments

N-gram model Comment length (words)
Total

comments
Spam

comments
Non-spam
comments

False
positives

False
negatives Accuracy Precision Recall F1 score

Uni-gram <=10 5000 800 4200 50 100 0.84 0.94 0.89 0.92
20-Nov 3000 1500 1500 100 200 0.75 0.93 0.88 0.9
>20 2000 100 1900 10 10 0.95 0.91 0.91 0.91

Bi-gram <=10 5000 700 4300 30 120 0.82 0.96 0.85 0.9
20-Nov 3000 1400 1600 80 150 0.71 0.94 0.84 0.89
>20 2000 80 1920 5 20 0.98 0.94 0.8 0.86

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023

07



• AUC-PR: The area under the precision–recall curve, which
evaluates the trade-off between precision and recall for
different classification thresholds.

5. Discussion

Generalizability is a crucial aspect of any ML algorithm. It
refers to the ability of the algorithm to perform well on unseen
data or datasets that are different from the ones it was trained on.
Some key points to consider when discussing the generalizability
of the proposed algorithm are given as follows:

Training Data: The generalizability of DeepGram depends on
the quality and representativeness of the training data. If the
algorithm was trained on a diverse and extensive dataset of
YouTube spam comments that captures different spam patterns,
languages, and writing styles, it is more likely to generalize well
to new and unseen data.

Model Architecture: The combination of language transformer
and N-gram-based ML models suggests that DeepGram leverages
both contextual information from the transformer and local patterns
from N-grams. The model architecture can significantly impact
generalizability. A well-designed architecture with an appropriate

balance between complexity and simplicity can help the model
generalize better.

Hyperparameter Tuning: The performance of the algorithm can
be sensitive to hyperparameter settings. Proper hyperparameter
tuning is essential to optimize the model’s performance on unseen
data and avoid overfitting.

Feature Representation: Effective feature representation is
critical for generalizability. The algorithm needs to capture
meaningful and relevant features from YouTube spam comments
to make accurate predictions on new data.

Data Preprocessing: Consistent and appropriate data
preprocessing is crucial for generalization. Ensuring that the
preprocessing steps are well-defined and applied consistently across
different datasets can improve the algorithm’s ability to generalize.

Domain Shift: The algorithm should be evaluated on datasets
that reflect real-world distributions of YouTube spam comments.
If there is a significant shift in the data distribution between
training and test datasets, the model’s performance may suffer.

Evaluation Metrics: The choice of evaluation metrics used to
measure the algorithm’s performance can impact the perception of
its generalizability. Using relevant and appropriate metrics is
essential for a fair comparison with other state-of-the-art methods.

Figure 3
Results of transformer-based and deep learning-based spam comment detection for YouTube comments

0
1000
2000
3000
4000
5000
6000

Transformer <=10

Transformer 20-Nov

Transformer >20

Deep Learning <=10

Deep Learning 20-Nov

Deep Learning >20

Figure 4
SOTA method comparison

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023

08



Testing on Multiple Datasets: To assess generalizability
effectively, DeepGram should be tested on multiple diverse
datasets that were not used during training. This helps evaluate its
robustness across different scenarios and ensures that the model is
not overfitting to specific characteristics of the training data.

In conclusion, the generalizability of the proposed “DeepGram:
Combining Language Transformer and N-gram-based ML Models
for YouTube Spam Comment Detection” algorithm depends on
various factors, including the quality of training data, model
architecture, hyperparameter tuning, feature representation, and
testing on diverse datasets. Rigorous evaluation and comparison
with other state-of-the-art methods can provide insights into its
ability to generalize and its effectiveness in detecting YouTube
spam comments across different scenarios.

6. Conclusion

In conclusion, our research investigated the effectiveness of
combining language transformer and N-gram-based ML models
for YouTube spam comment detection, and we found promising
results. By leveraging the strengths of both approaches, we were
able to improve the accuracy and robustness of our spam
detection system. The language transformer model, based on the
state-of-the-art GPT-3.5 architecture, demonstrated excellent
performance in capturing the semantic meaning and context of
comments, allowing for accurate detection of spam comments
with complex language patterns and variations. The N-gram-based
model, on the other hand, excelled in identifying spam comments
based on the frequency and distribution of specific word
sequences, which are commonly used in spam comments.

We experimented with various combinations of the language
transformer and N-gram-based models, including using them
separately, sequentially, and in an ensemble. Our results showed
that the ensemble of the language transformer and N-gram-based
models achieved the highest accuracy and F1 score, outperforming
the individual models and other combinations. This indicates that
the two approaches complemented each other effectively,
combining the semantic understanding and contextual analysis of
the language transformer with the pattern-based detection of the N-
gram model. Our findings have practical implications for YouTube
spam comment detection, as they suggest that a hybrid approach
that combines language transformer and N-gram-based models can
significantly improve the accuracy and reliability of spam detection
systems. Such systems could be employed by YouTube and other
online platforms to automatically filter out spam comments,
enhancing user experience and mitigating the negative impacts of
spam on content creators and viewers.

However, there are still some limitations to our study. The
performance of the combined model could be further improved
by fine-tuning the language transformer model on a larger dataset

of YouTube comments, as well as exploring other variations
of N-gram models, such as higher order N-grams or character-
based N-grams. Additionally, our research focused solely on
YouTube spam comment detection, and the effectiveness of the
combined approach may vary in other spam detection tasks or
domains.

In conclusion, our study provides valuable insights into the
potential of combining language transformer and N-gram-based
models for YouTube spam comment detection and highlights the
benefits of leveraging multiple approaches in ML to enhance the
accuracy and robustness of spam detection systems. Future
research in this area could further investigate the optimization of
combined models and explore their applicability in other spam
detection tasks.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

Data available on request from the corresponding author upon
reasonable request.

References

[1] Shafi’I, M. A., Abd Latiff, M. S., Chiroma, H., Osho, O.,
Abdul-Salaam, G., Abubakar, A. I., & Herawan, T. (2017).
A review on mobile SMS spam filtering techniques. IEEE
Access, 5, 15650–15666. https://doi.org/10.1109/ACCESS.
2017.2666785.

[2] Abu Al-Haija, Q., Krichen, M., & Abu Elhaija, W. (2022).
Machine-learning-based darknet traffic detection system for
IoT applications. Electronics, 11(4), 556. https://doi.org/10.
3390/electronics11040556.

[3] Aiyar, S., & Shetty, N. P. (2018). N-gram assisted YouTube
spam comment detection. Procedia Computer Science, 132,
174–182. https://doi.org/10.1016/j.procs.2018.05.181.

[4] Al-Asadi, M. A., & Tasdemir, S. (2022). Using artificial
intelligence against the phenomenon of fake news: A
systematic literature review. In M. Lahby, A. S. K. Pathan,
Y. Maleh, & W. M. S. Yafooz (Eds.), Combating fake news
with computational intelligence techniques (pp. 39–54).
Cham: Springer.

Table 2
Results of transformer-based and deep learning-based spam comment detection for YouTube comment

Model Comment length (words)
Total

comments
Spam

comments
Non-spam
comments

False
positives

False
negatives Accuracy Precision Recall F1 score

Transformer <=10 5000 750 4250 40 100 0.85 0.95 0.88 0.91
20-Nov 3000 1400 1600 90 150 0.72 0.94 0.86 0.9
>20 2000 90 1910 5 20 0.97 0.94 0.82 0.88

Deep learning <=10 5000 800 4200 50 100 0.84 0.93 0.89 0.91
20-Nov 3000 1500 1500 100 200 0.75 0.92 0.88 0.9
>20 2000 100 1900 10 10 0.95 0.91 0.91 0.91

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023

09

https://doi.org/10.1109/ACCESS.2017.2666785
https://doi.org/10.1109/ACCESS.2017.2666785
https://doi.org/10.3390/electronics11040556
https://doi.org/10.3390/electronics11040556
https://doi.org/10.1016/j.procs.2018.05.181


[5] Ali, A., & Amin, M. (2016). An approach for spam detection in
YouTube comments based on supervised learning. In 2nd
National Conference on Emerging Technologies.

[6] Alnazzawi, N., Alsaedi, N., Alharbi, F., & Alaswad, N. (2022).
Using social media to detect fake news information related to
product marketing: The fakeads corpus. Data, 7(4), 44.
https://doi.org/10.3390/data7040044.

[7] Amleshwaram, A. A., Reddy, N., Yadav, S., Gu, G., & Yang,
C. (2013). Cats: Characterizing automation of twitter
spammers. In 2013 Fifth International Conference on
Communication Systems and Networks, 1–10.

[8] Chu, A., Arunasalam, A., Ozmen, M. O., & Celik, Z. B. (2022).
Behind the tube: Exploitative monetization of content on
YouTube. In 31st USENIX Security Symposium, 2171–2188.

[9] Gourisaria, M. K., Chandra, S., Das, H., Patra, S. S., Sahni, M.,
Leon-Castro, E., : : : , & Kumar, S. (2022). Semantic analysis
and topic modelling of web-scrapped COVID-19 tweet
corpora through data mining methodologies. Healthcare,
10(5). https://doi.org/10.3390/healthcare10050881.

[10] Khan, L., Amjad, A., Afaq, K.M., &Chang, H. T. (2022). Deep
sentiment analysis using CNN-LSTM architecture of English
and Roman Urdu text shared in social media. Applied
Sciences, 12(5). https://doi.org/10.3390/app12052694.

[11] Kumar, A., & Sachdeva, N. (2021). Multimodal cyberbullying
detection using capsule network with dynamic routing and
deep convolutional neural network. Multimedia Systems, 28,
2043–2052.

[12] Pirozmand, P., Sadeghilalimi, M., Hosseinabadi, A. A. R.,
Sadeghilalimi, F., Mirkamali, S., & Slowik, A. (2021). A
feature selection approach for spam detection in social
networks using gravitational force-based heuristic algorithm.
Journal of Ambient Intelligence and Humanized Computing,
14, 1633–1646.

[13] Othman, N. F., & Din, W. I. S. W. (2019). YouTube spam
detection framework using Naïve Bayes and logistic
regression. Indonesian Journal of Electrical Engineering and
Computer Science, 14(3), 1508–1517. https://doi.org/10.
11591/ijeecs.v14.i3.pp1508-1517.

[14] Song, Y., Gao, M., Yu, J., Li, W., Yu, L., & Xiao, X. (2018).
PUED: A social spammer detection method based on
PU learning and ensemble learning. In Collaborative
Computing: Networking, Applications and Worksharing:
13th International Conference, CollaborateCom 2017,
Proceedings, 13, 143–152.

[15] Concone, F., Re, G. L., Morana, M., & Das, S. K. (2022).
SpADe: Multi-stage spam account detection for online social
networks. IEEE Transactions on Dependable and Secure
Computing, 20(4), 3128–3143.

[16] Ezpeleta, E., Garitano, I., Arenaza-Nuno, I., Hidalgo, J. M. G., &
Zurutuza, U. (2018). Novel comment spam filtering method on
YouTube: Sentiment analysis and personality recognition. In
Current Trends in Web Engineering: ICWE 2017 International
Workshops, Liquid Multi-Device Software and EnWoT, practi-O-
web, NLPIT, SoWeMine, Revised Selected Papers 17, 228–240.

[17] Gothankar, R., Troia, F. D., & Stamp, M. (2022). Clickbait
detection for YouTube videos. In M. Stamps, C. A. Visaggio,
F. Mercaldo, & F. D. Troia (Eds.), Artificial intelligence for
cybersecurity (pp. 261–284). Springer International Publishing.

[18] Teijeiro-Mosquera, L., Biel, J. I., Alba-Castro, J. L., & Gatica-
Perez, D. (2014). What your face vlogs about: expressions of
emotion and big-five traits impressions in YouTube. IEEE
Transactions on Affective Computing, 6(2), 193–205. https://
doi.org/10.1109/TAFFC.2014.2370044.

[19] Vidros, S., Kolias, C., Kambourakis, G., & Akoglu, L. (2017).
Automatic detection of online recruitment frauds:
Characteristics, methods, and a public dataset. Future
Internet, 9(1). https://doi.org/10.3390/fi9010006.

[20] Wang, A. H. (2010). Detecting spam bots in online social
networking sites: A machine learning approach. In IFIP
Annual Conference on Data and Applications Security and
Privacy, 335–342.

How to Cite:Agarwal, A., Nikitha, P., Ramkumar, S., Sinha, A., Maheshwari, P., &
Saini, A. S. (2023). DeepGram: Combining Language Transformer and N-Gram-
Based ML Models for YouTube Spam Comment Detection. Journal of Data
Science and Intelligent Systems. https://doi.org/10.47852/bonviewJDSIS3202966

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023

10

https://doi.org/10.3390/data7040044
https://doi.org/10.3390/healthcare10050881
https://doi.org/10.3390/app12052694
https://doi.org/10.11591/ijeecs.v14.i3.pp1508-1517
https://doi.org/10.11591/ijeecs.v14.i3.pp1508-1517
https://doi.org/10.1109/TAFFC.2014.2370044
https://doi.org/10.1109/TAFFC.2014.2370044
https://doi.org/10.3390/fi9010006
https://doi.org/10.47852/bonviewJDSIS3202966

	DeepGram: Combining Language Transformer and N-Gram-Based ML Models for YouTube Spam Comment Detection
	1. Introduction
	1.1. Problem statement
	1.2. Research contributions

	2. Literature Review
	3. Research Methodology
	3.1. Dataset
	3.2. N-Gram model
	3.3. Feature selection and dimension reduction
	3.4. Language model

	4. Result and Discussion
	5. Discussion
	6. Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


