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Advancing Bridge Structural Health
Monitoring: Insights into Knowledge-Driven
and Data-Driven Approaches
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Abstract: Structural health monitoring (SHM) is increasingly being used in the field of bridge engineering, and the technology for monitoring
bridges has undergone a radical change. It has evolved from the initial local monitoring and assessment, which relied mainly on manual work,
to the current all-round and full-time intelligent assessment provided by intelligent monitoring systems. This paper reviews the development of
SHM technology in the civil engineering field and examines two current artificial intelligence (AI) methods in bridge SHM, namely
knowledge-driven and data-driven approaches. The advantages and disadvantages of these two AI methods are analyzed, and future
development trends are also discussed. The overview results reveal that knowledge-driven methods have the advantages of
interpretability and stability. However, their current application is limited, and significant technical bottlenecks remain. On the other
hand, the data-driven approach demonstrates higher efficiency and accuracy. Nevertheless, it is characterized by instability and insecurity
due to its “black-box” nature, which hinders its ability to explain the internal operation mechanism. Given these findings, the hybrid
knowledge-data-driven approach emerges as a potential solution. This approach can effectively integrate the advantages of both
knowledge-driven and data-driven methods while avoiding their respective disadvantages. Consequently, the hybrid approach proves to
be more stable, safe, and efficient in practical applications.
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1. Introduction

Bridgemonitoring technology has undergone a fast transformation
from the initial localmonitoring and assessment, whichmainly relied on
manual work, to the present-day intelligent monitoring systems that
provide all-round and full-time intelligent assessments.

Large bridges are crucial structural projects in the transportation
system, playing a pivotal role in the local traffic conditions. As the
service life of bridges increases, the deterioration of the service
environment gradually reveals structural health problems. These
issues arise from daily operational loads during long-term use, as
well as unpredictable contingencies such as earthquakes, traffic
accidents, and typhoons, which can cause varying degrees of
damage to bridge structures, posing safety hazards [1].
Consequently, bridge structural health monitoring (SHM) has
become a prominent research topic for scholars worldwide,
aiming to prevent health hazards and property damage caused by
bridge structural accidents.

From the moment a bridge is constructed, its SHM becomes
indispensable. Traditional methods for monitoring structural health
mainly involve direct manual observation and manual monitoring
combined with simple instrumentation. However, these approaches
have significant limitations, relying heavily on manual involvement

and suffering from drawbacks like being time-consuming, laborious,
subjective, and difficult to quantify, lacking comprehensiveness and
systematization. The practice of SHM for bridges started in the
1950s when technology and methods were relatively primitive,
resulting in simple and inadequate monitoring approaches with poor
systematization and integrity. In the 1980s, Britain installed the first
automatic bridge data acquisition system and monitoring instruments
for the new bridge Foyle in Northern Ireland. Subsequently, more
countries, including China, began researching SHM systems for large
bridges. During the 1990s, a period marked by significant
infrastructure development in China, the proposal to establish a
structural monitoring system for large bridges was put forth.
Although manual monitoring is still prevalent for most large bridges
in China, equipping each of them with a suitable structural
monitoring system is becoming an evident future trend.

Artificial intelligence (AI) was first introduced in 1956 and has
since garnered considerable attention from experts and scholars
globally across various fields. AI, integrated into computer systems,
provides new problem-solving approaches in different disciplines,
demonstrating more advanced and efficient capabilities compared to
traditional research methods. Presently, AI methods combined with
bridge structure monitoring systems primarily address two types of
problems: visualization problems based on damage morphology
identification, such as structural damage morphology identification,
and non-visualization problems based on vibration response, such
as bridge structure damage identification and prediction using
vibration monitoring data [2].
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During the period from 1956 to the 1980s, two competing
schools of thought dominated AI: the symbolism school and the
connectionist school. Influenced by these schools, AI approaches
applied to bridge SHM systems can be categorized into two main
groups: knowledge-driven approaches based on knowledge-based
reasoning [3] and data-driven approaches reliant on vast amounts
of labeled data [4]. Both knowledge-driven and data-driven
perspectives have notable limitations, as they only simulate
specific aspects of human thinking, falling short of true human
intelligence [5]. To achieve genuine human intelligence, it is
necessary to overcome these shortcomings and establish a
knowledge–data hybrid-driven research approach. The
knowledge–data hybrid-driven method is built on the foundation
of both approaches, providing a more secure, reliable,
explanatory, and robust AI technique, and it represents a
significant future direction in the development of bridge SHM.

In this paper, the first part provides an introduction to the
definition, origin, and development of SHM, as well as the
monitoring content and the application of AI in SHM system. The
second and third parts present the relevant principles of
knowledge-driven and data-driven approaches, respectively, along
with a summary of research cases focused on knowledge-driven
and data-driven methods for intelligent structural monitoring of
bridges both domestically and internationally. The fourth part
conducts a comparative analysis of the advantages and
disadvantages of the two research methods, leading to the
proposal that a hybrid knowledge–data-driven research method is
necessary to truly approach human intelligence. Furthermore, it
explores potential future applications of this hybrid approach in
bridge SHM. Lastly, the fifth part serves as the conclusion,
outlining the development trend of intelligent health monitoring
technology for bridge structures and emphasizing the importance
of knowledge–data hybrid-driven methods in bridge structure
health monitoring. The conclusion also suggests future research
directions in this field.

2. Structural Health Monitoring

SHM aims to collect extensive monitoring information using
various measurement techniques and algorithms to evaluate the
condition of a structure during its service life. This process is
crucial in maintaining the structure throughout its life cycle [6, 7].
SHM of bridges is a comprehensive and intricate system project

that encompasses multiple fields such as image technology, laser
technology, fiber optic sensing technology, ultrasonic technology,
thermal imaging technology, electromagnetic sensing technology,
and more. It provides a comprehensive assessment of the
structural health condition of bridges.

2.1. Origin and development of SHM of bridges

The SHMof bridges started in the 1980s in the United Kingdom
and the United States. With the development of materials technology
and circuit technology, the United States first proposed the
combination of “intelligent materials and intelligent structural
systems,” which have certain perception and self-regulation
capabilities. In the 1990s, the US Science Foundation promoted
the research of sensor technology and proposed the idea of
combining sensor systems and civil engineering structures, while
at the same time, the UK first attempted to install an automatic
bridge data acquisition system and monitoring instruments on the
new 522 m-long Foyle Bridge in Northern Ireland, mainly to
monitor and study the effects of vehicle loads and wind and
temperature environmental loads on the bridge’s dynamic
response. This was an early prototype of a SHM system for bridges.

Research on SHM in China started in the 1990s, when China
was in a period of rapid progress in infrastructure construction,
with the construction of several representative large-scale bridge
projects such as the Sutong Yangtze River Bridge, the Nansha
Bridge, the Lupu Bridge, and the Hong Kong-Zhuhai-Macau
Bridge. Compared with other countries, China’s bridge
construction is characterized by a large number of bridges and a
large scale. During this period, China successively set up SHM
systems of different scales on large bridges such as Shanghai Xu
Pu Bridge, Jiangyin Yangtze River Bridge, Runyang Yangtze
River Bridge, and Sutong Bridge. Figure 1 illustrates the
evolution of SHM and AI, with nodes showing milestone events.

2.2. Content of SHM of bridges

SHM is a complex and comprehensive system project. In
general, the overall approach is to measure and collect data
characterizing the bridge structure, such as structural deformation,
vibration data, and appearance images, through the use of sensors
and other instrumentation and then analyze the measured data to
assess the structural health of the bridge (flow chart).

Figure 1
Origin and development of structural health monitoring of bridges
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The problems of structural health of bridges mainly include
structural degradation caused by environmental factors (such as
temperature, humidity, acid rain, and freeze-thaw cycles); initial
defects of structures caused by improper design or construction,
structural fatigue damage caused by long-term operation; and
damage to structures caused by unexpected loads such as
earthquakes, impacts, and wind vibration. For SHM of large-span
bridges, the sources of monitoring data are mainly in three major
aspects: environment, load, and structural response, and the specific
monitoring contents and tools used are shown in Figures 2 and 3.

Generally speaking, the damage types of bridge structures
include visualized morphological damage and non-visualized
internal damage. Morphological changes refer to the damage that
can be recognized by machines or the naked eye, such as cracks,
rust, and peeling, which are shown in Figure 4; non-morphological
damage refers to the damage that is hidden inside the structure,
such as the deterioration of parts. This type of damage also
includes morphological changes such as cracks and fractures, but it
is hidden inside the structure and therefore difficult to be
recognized visually [1].

2.3. Application of AI in bridge SHM system

SHM system generally consists of sensor subsystem, data
acquisition and transmission subsystem, data processing and
management subsystem, data analysis system, and structural early
warning and assessment subsystem. These subsystems are closely and
logically related to each other, and each of them plays an irreplaceable
and indispensable important function in the daily monitoring operation.

With the continuous development of information technology,
AI has gradually replaced some traditional research methods due
to its excellent performance effect. In the bridge structure health
monitoring system, AI is mainly applied to the data analysis
system, which demonstrates more efficient and high-precision
prediction effect compared with the traditional research methods.
Especially in image recognition and data analysis, the advantages
of AI over traditional research methods are very obvious.

SinceAIwas first proposed in 1956, there have been two competing
schools of thought, namely symbolism and connectionism. While SHM
also came into prominence in the 1850s, influenced by the two schools of
thought, AI approaches applied to SHM can be further classified into
mechanism-based knowledge-driven approaches and experience-based
data-driven approaches, which coincide with the symbolism and
connectionism in AI. Figure 5 shows the subsystems of the structural
health inspection system and their main functions

3. Knowledge-Driven Structural Health Based
Monitoring

Knowledge-driven is a general term for a class of researchmethods
based on the idea of symbolic AI. In a broad sense, the traditional
manual measurement-based bridge technology monitoring techniques
belong to the knowledge-driven category, because the manual
monitoring methods are ultimately based on various rules and
principles or working experience, from the whole monitoring plan to
each step of the monitoring behavior, which is “justified”. Traditional
SHM methods have the general advantages of knowledge-driven
approaches, i.e., they are interpretable and easy to understand, but
they have obvious shortcomings. Among them are: (1) simple
monitoring techniques, which make it difficult to accurately identify
and detect hidden structural damage or hidden internal hazards.

Figure 2
Two common surface damage on structure

Figure 3
Flow chart for assessing the health of bridge structures

Journal of Data Science and Intelligent Systems Vol. 2 Iss. 3 2024

131



(2) Manual subjectivity is too strong, due to the high degree of human
involvement, the inspection results are often highly dependent on the
experience of technical personnel, with a large error. (3) Poor
wholeness and systematicity, for such large projects as large span
bridges, it is difficult to systematically inspect and rank the global
structural health condition. (4) Low inspection efficiency and traffic
impact, usually when a bridge is surveyed and inspected, the traffic
of that section will receive a large impact. The early bridge structure
health monitoring is very single due to limited technical means,
mainly for the bridge structure structural deformation, settlement
displacement, and other geometric forms for measurement and
monitoring. Its work efficiency is low, the monitoring degree is
superficial, some difficult to find structural damage, or internal
hidden problems are difficult to identify and detect; therefore, the
early SHM is incomplete and superficial, and it is difficult to achieve
effective and all-round assessment of the state of the structure.

With the continuous development of information technology,
the application of AI in SHM of bridges is becomingmore andmore
widespread, which has led to new developments and innovations in

knowledge-driven approaches. According to the symbolist
scholars, “a large part of human thinking is composed of new
operations on words according to rules of reasoning and
conjecture,” they believe that AI should be a “model of
reasoning based on knowledge and experience” that imitates the
human way of thinking.” However, it is impossible for models to
know the relevant knowledge and experience by nature, so it is
necessary for humans to transfer the relevant knowledge and
experience to the models so that they can “understand” and have
some reasoning ability to achieve the ability to solve practical
problems.

3.1. Knowledge-driven AI-based approach

Knowledge-driven approaches based on symbolic AI have many
advantages, in addition to interpretability and comprehensibility, but
have significant shortcomings. The premise of knowledge-driven is
based on a fully informative and structured environment, which can
only solve deterministic problems (toward third generation AI).

Figure 4
Type of bridge structural health monitoring

Figure 5
Subsystems and their main functions in structural health inspection systems
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How to convey the knowledge and experience expressed by
natural language to a model? That is, how to explore a form of
representation that computers can understand is a hot and difficult
research area for scholars of the symbolism school. Some methods of
just representation have been explored such as generative rules [8]
and logic programs [9], but they can only express simple knowledge
and experience, and it is difficult to describe more complex and
uncertain knowledge. Some scholars are currently researching and
exploring complexknowledge representation methods in also, and the
methods thathave been proposed are knowledge mapping [10],
probabilistic reasoning [11], etc.

3.1.1. Generative rules
Generative representation is the most common type of

knowledge representation in AI systems, and the majority of
expert systems [12] use generative rules for their knowledge
representation. The principle of generative rules is very similar to
conditional statements in programming languages, and its basic
form can be summarized as IF P THEN Q, where P is a premise
and condition and Q is some kind of conclusion or behavior. The
meaning of generative rules is that Q is performed when the
precondition P is satisfied, i.e., some conclusion is introduced or
some behavior is performed. In bridge structure monitoring
systems, the function of generative rules is to conditionally
transform the mechanisms, knowledge, expert experience, and
common sense used in the monitoring process so that they can be
imported into the machine model and recognized and understood
by the algorithm.

3.1.2. Expert system
Knowledge mapping is an emerging form of knowledge

representation that extracts valuable information from large-scale
data using inference techniques and builds a framework of
knowledge structures, which has received much attention in
natural language processing (NLP) [13]. In bridge SHM, due to
the many types and complex forms of damage, it is usually
necessary to rely on traditional knowledge for damage
identification, which makes it less efficient and more subjective in
judgment. Therefore, it is necessary to establish a knowledge map
through massive data analysis, thus improving the efficiency and
accuracy of structural monitoring.

3.1.3. Probabilistic reasoning
Machine reading comprehension is a fundamental task in NLP,

which requires a model to understand text and answer a set of
questions based on the text content [14], and probabilistic inference
(logical reasoning) is a processing model that extracts the
corresponding logical relations (e.g., intersection ∧, concatenation ∨,
non¬) of a text through its semantics [15].

3.2. Knowledge-driven SHM research

From the current state of research at home and abroad,
knowledge-driven research cases are obviously much less
compared to data-driven ones, which has a considerable
relationship with the history of AI development. From the birth of
AI in 1956 to the 1980s, symbolism dominated the development
of AI, and only in the 1990s did connectionism gradually emerge,
culminating in the 21st century, and even replacing symbolism
[5]. Second, knowledge-driven research methods currently have
many limitations, as they can only reason and analyze in a fully
structured and informationalized space, and there is still a great

challenge to truly reach human cognitive and analytical reasoning
capabilities. Data-driven approaches, on the other hand, have
unprecedentedly broader and more flexible applications, due to
the fact that data-driven analysis and prediction are based entirely
on data and do not require any knowledge or experience.

Luo et al. [16] constructed a knowledge graph and a complex
question and answer corpus for bridge monitoring and proposed a
naming method of “member name_(center pile number)” to
distinguish the same members of different bridges. Then, given
the unique tree structure of the bridge monitoring knowledge
graph, we creatively propose a three-level relational knowledge
graph construction method and annotate a dataset containing five
complex question and answer types. Finally, we use our corpus to
experiment with mainstream complex question and answer models
and further demonstrate the effectiveness of the domain-specific
knowledge graph construction method.

4. Data-Driven Structural Health-Based
Monitoring

The data-driven approach, as the name implies, is based on a large
amount of experimental data to analyze and assess the health of bridge
structures. Unlike the knowledge-driven approach, the data-driven
approach does not require any a priori knowledge and experience,
but rather allows the “model” to learn knowledge and
experience through the training data on its own, and finally allows
the trained model to predict the new monitoring data to achieve the
prediction purpose. Data-driven is simpler and more convenient than
knowledge-driven, but it has obvious uncertainty and instability,
mainly in two aspects: first, it is not known whether the trained
algorithmic model has really learned the universal laws hidden in the
data, and second, even if the algorithmic model has really mastered
the hidden logic laws in the data, it is not possible to know the laws
through machine learning algorithmic model due to the black-box
nature of the algorithmic model. The black-box nature of the
algorithmic models means that the patterns are not yet known
through the machine learning algorithmic models [17], so the
machine learning algorithms are not interpretable, although they
sometimes have good prediction results. Therefore, how to learn
the hidden logic and patterns in training data from machine
learning algorithms is a hot and difficult area of research in data-
driven methods.

4.1. Data-driven algorithm model

4.1.1. Machine learning
Machine learning is actually a way for machines to imitate

human learning behavior to learn knowledge and experience from
data and to use their learned knowledge and skills to continuously
optimize and improve their own performance. Machine learning
mainly contains three learning modes: supervised learning,
unsupervised learning, and reinforcement learning, and sometimes
it is not so clearly distinguished and is called semi-supervised
learning, which is shown in Figure 6.

In supervised learning, data are labeled with specific tags, and
algorithmic models learn large amounts of labeled data so that they
can make predictions about new data in the future. Supervised
learning addresses both regression and classification problems,
which correspond to continuous and discrete variables,
respectively [1, 18]. Common supervised learning algorithms are
decision trees, random forests, support vector machines, linear
regression, etc.
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4.1.2. Deep learning
Deep learning actually belongs to machine learning, a smaller

branch in the field of AI. The relationship between AI, machine
learning, and deep learning and common algorithms in different
fields are realistic in Figure 7. The reason why deep learning is
separated into a separate section is that the neural network-like
algorithms in deep learning perform better than the traditional
algorithms of machine learning in bridge structure monitoring,
and specific research cases will be elaborated in Section 3.3. The
concept of deep learning originally originated from artificial
neural networks (ANNs), which mimic the structure of the human
nervous system in appearance and mainly contain three parts:
input layer, hidden layer, and output layer, with several neurons in
different layers, and they are connected together by means of
wires, which represent different weights [19].

As related research continues, more and more new models are
proposed. Common neural network models include feedforward
neural networks, convolutional neural networks, generative
adversarial networks, recurrent neural networks, Bayesian neural
networks, fuzzy neural networks, and other deep learning algorithms.

4.2. Data-driven SHM research based on data driven

4.2.1. Visual damage monitoring
Visual SHM is mainly applied to damage identification with

significant morphological changes in bridge engineering, mainly
monitoring cracks, crazing, fractures, wormholes, shedding, corrosion,
etc. The algorithmic models that are good at visual damage
identification are mainly ANNs, convolutional neural networks, and
other deep learning algorithms. Silva and Lucena [20] developed a

Figure 6
Common types of machine learning algorithms

Figure 7
The relationship between artificial intelligence, machine learning, and deep learning
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system for the identification of concrete surface cracks through a
convolutional neural network classification algorithm, which is
also able to simultaneously take into account the smoothness of
the concrete surface, humidity, and objective conditions such as
light, and its best prediction accuracy reached 92.27%. Wei et al.
[21] proposed a Mask R-CNN-based method for instance-level
identification and quantification of concrete surface pores, and the
Mask R-CNN framework was modified, improved, trained, and
validated using 2198 images, and the results indicated that the
average accuracy of bounding box and mask reached 90% and
90.8%, with accuracy of 92.2% and 92.6%, respectively, and
good recognition results were realized. Dung et al. [22] monitored
fatigue cracks in welded joints of steel bridge nodal plates and
developed three monitoring approaches using a combination of
migration learning and convolutional neural network. Xu et al.
[23] investigated a deep fusion convolutional neural network
based on consumer-grade camera images to identify fatigue cracks
on the surface of bridge steel box girders. An improved fused
convolutional neural network structure is proposed with a regular
convolutional neural network as the baseline. More researches
about visual damage monitoring could be found in Table 1. The
results show that the improved fused convolutional neural

network can automatically monitor the cracks in the images, and
its seeking training error is smaller than that of the regular
convolutional neural network.

4.2.2. Non-visual damage monitoring
Non-visualized damage mainly includes a general term for various

types of damage hidden inside the bridge structure, such as hard-to-detect
cracks, stiffness degradation, and component deterioration inside the
bridge. This type of damage is usually identified by vibration
response-oriented methods, and common structural vibration response
measurement characteristics include acceleration, velocity, stress,
strain, and displacement. In addition, in addition to vibration response,
acoustic sensors and electromagnetic devices are commonly used to
measure features. Acoustically oriented features can be used to
monitor mechanical waves in cracks for damage identification.
Electromagnetic response-oriented feature data can be used to measure
corrosion of concrete. Gui et al. [40] used a machine learning
conventional algorithm support vector machine for health monitoring
and damage monitoring of civil engineering structures. And three
optimization methods of grid search, particle swarm optimization, and
genetic algorithm were used to improve the model, and the final
results showed that the optimized model performed better compared

Table 1
Machine learning to solve visualization structure defects

Reference Model Type of structural damage Result

Malekjafarian et al. [24] ANN, Gaussian process Bridge damage detection using
responses measured by passing
vehicles

Better detection results but unstable,
easily affected by the environment

Lydon et al. [25] Pixels conversion, SURF
algorithm

Displacement under changing boundary
conditions

The method is applicable to medium
and large span bridges

Gao and Mosalam [26] DCNN (deep convolutional
neural network)

Cover spalling detection Accuracy is 80%, TPR is 82%, TNR is
77%

Akintunde et al. [27] SVD and independent
component analysis
(ICA)

Crash-induced damage to the concrete
barrier

Robust damage detection is better

Cha et al. [28] CNNs Concrete cracks The algorithm can be used in real crack
detection

Tang et al. [29] U-net Concrete crack Pixel accuracy of 0.995
Atha and Jahanshahi [30] CNNs Corrosion on surface Improves the computational time and

performance
Dung and Anh [31] DCNN (deep convolutional

neural network)
Concrete crack 90% in average precision

Dung and Anh [31] Mask R-CNN Concrete surface bughole The minimum error rates are 0.23%
Wu et al. [32] ANN Concrete crack Improved cracking accuracy and

reduced algorithm time
Montaggioli et al. [33] An algorithm to

automatically detect
damages

Sub-surface defects Can be used for large span structure
crack detection

Ali and Cha [34] Deep inception neural
network (DINN)

Subsurface damage of steel Accuracy of 96%

Hoskere et al. [35] CNNs Post-earthquake structural inspections Be evaluated in terms of pixel accuracy
Jiang et al. [36] Hybrid dilated

convolutional block
(HDCB)

Concrete crack The whole detection process takes only
0.64 s to handle a single image

Tran-Ngoc et al. [37] ANN-CS Damage localization and quantification ANN-CS is accurate and requires a
lower time

Wang et al. [38] A multi-layer genetic
algorithm (GA) approach

Damage localization Efficient and feasible for complicated
truss bridge

Butcher et al. [39] Detecting defects in
reinforced concrete

Extreme learning machines (ELMs) The ELM approach offers a significant
improvement in performance

Journal of Data Science and Intelligent Systems Vol. 2 Iss. 3 2024

135



with the traditional model, and the support vector machine based on
genetic algorithm among the three optimization methods had better
prediction results. Rageh et al. [41] proposed an automatic damage
detection framework. The proposed method relies on appropriate
orthogonal decomposition and ANNs to identify the location and
strength of damage under non-stationary and unknown train loads.
The results indicate that under the uncertainty conditions studied, the
detection accuracy of damage location and damage intensity is
relatively high, while the detection accuracy decreases with the
increase of modeling uncertainty MU. Rafiei and Adeli [42] described
a method to assess the global and local health of a structural system
using structural vibration response data collected by sensors. The
model uses a probability density function for creating a structural
health index. This index can be used to assess the health of the
structure. More researches about visual damage monitoring could be
found in Table 2. To complement this approach and to investigate the
damage mechanisms, acoustic emission due to internal damage was
also analyzed andused to trackmicrocracks in reinforced concrete beams.

Ma et al. [47] carried out fatigue and static load tests on modular
bridge expansion joint (MBEJ). A theoretical evaluation method for
fatigue performance of MBEJs based on nominal stress method and
linear Miner damage accumulation law was introduced. The theoretical
predictions are in good agreement with the experimental observations.

5. Hybrid Knowledge–Data-Driven Approach

Both symbolism and connectionism imitate the human mind
from one side and have their own one-sidedness. A single
knowledge-driven approach or a data-driven approach can hardly
achieve the real human intelligence and show insurmountable
limitations in practical applications. In the future, bridge SHM
needs to integrate the two approaches with each other, i.e., to
establish a hybrid knowledge–data-driven research approach, which
is the only way to create a more comprehensive, safe, and reliable
algorithmic model and to get closer to the real human intelligence.

5.1. Characteristics of knowledge-driven and
data-driven approaches

Knowledge-driven approaches based on symbolism have the
advantages of interpretability and security, but they often fail
when applied to other problems because of the need to solve
problems “on the fly” in an environment where information is
fully conditioned and structured.

Data-driven approaches based on connectionism are mainly
manifested in machine learning algorithms, which depict and

imitate the human mind from the other side. Compared with
knowledge-driven methods, data-driven methods do not require a
tedious process of knowledge and experience collection, and therefore
they do not require any prior knowledge and experience of humans.
The data-driven approach can be understood as a “black box of
information”, people can only change the parameter settings and
appearance of the black box from the outside, but cannot analyze the
internal operation mechanism of the black box, which means that
although the machine learning algorithms can show good prediction
results in many cases, but the deep logic and laws hidden inside are
difficult to be discovered. This means that although machine learning
algorithms can perform well in prediction in many cases, the deep
logic and laws hidden inside are difficult to be discovered.

5.2. Construction of hybrid knowledge–data-driven
material health monitoring approach

Both knowledge-driven and data-driven have their own
advantages and disadvantages, which are the embodiment of human
intelligence, and these disadvantages mainly originate from the one-
sidedness of the two approaches. To truly achieve human
intelligence, AI must consider the integration of the two approaches,
i.e., develop a new research idea of knowledge–data hybrid drive.
Combining the four elements of knowledge, data, algorithms, and
arithmetic power to build a more powerful AI intelligence.

From the current research situation,many experts and scholars have
tried to use interpretable AI methods in SHM of bridges. These methods
have diversity, and knowledge-driven and data-driven methods can be
combined in various forms to improve the interpretability and
predictive performance of algorithm models to varying degrees.

Mariani et al. [48] proposed a causal expansion convolutional
neural network based on ultrasonic signals. This algorithm does not
require operators to perform any feature engineering and can
automatically acquire features with strong correlation, which is
more accurate and stable than traditional neural networks. Flynn
and Todd [49] introduced a new Bayesian-based method for the
optimal placement of SHM sensors. Bayesian algorithm is an
interpretable algorithm model that explains the optimal placement
of sensors from a probabilistic perspective. Yuan et al. [50]
applied the guided wave hidden Markov model initialized by
k-means clustering method to fatigue crack growth assessment and
proposed a new guided wave hidden Markov model based on
uniformly initialized Gaussian mixture model, which provides a
stable and reliable structure for the guidedwave hiddenMarkovmodel.

Figure 8 shows a typical solution of knowledge data
hybrid driving method in bridge SHM. In this scheme, both

Table 2
Machine learning to solve non-visualization structure defects

Reference Model Type of structural damage Result

Tran-Ngoc et al. [37] Cuckoo search Stiffness Improved algorithm accuracy and
reduced algorithm time

Pan et al. [43] Data-intensive machine learning Vibration Enhancing the effectiveness and accuracy
Pathirage et al. [44] ANN Vibration More accurate and effective
Wang and Cha [45] Deep learning Acceleration response Accuracy up to 99%
Wang and Cha [46] CNN Raw acceleration signals Performs very well in damage localization
Tran-Ngoc et al. [37] Multivariate cointegration analysis Inclined cable force The damage intensities that can be detected
Tran-Ngoc et al. [37] Cuckoo search Stiffness Be competent for structural damage detection

under the exposed environment
Pan et al. [43] Data-intensive machine learning Vibration Learn features from the frequency data
Pathirage et al. [44] ANN Vibration Sensor faults or system malfunctions
Pan et al. [43] Data-intensive machine learning Vibration High accuracy
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Figure 8
Process of hybrid knowledge–data-driven approach in structural health monitoring of bridges
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knowledge-driven and data-driven methods are parallel and can
obtain their own prediction results. Finally, the final prediction
result is obtained by integrating the prediction results of the two
methods. Firstly, measurement data are obtained from three
directions: structure, load, and external environment of the
monitored bridge, and then run under the dual knowledge–data drive.

5.2.1. Knowledge-driven processes
1) Knowledge engineering

In bridge SHM, the application of the hybrid knowledge–data-
driven method can realize the complementary advantages and build
a more secure, reliable, and stable monitoring model with more
reliable results. The knowledge-driven approach requires researchers
to first analyze the external characteristics and internal mechanisms
of the research object and summarize various knowledge,
experience, and common sense as comprehensively as possible, so
as to build a rich knowledge base.

2) Inference engine
The reasoning machine is the core part of the knowledge-driven

building block, which is like an expert’s brain, matching the rules of
knowledge and experience in the knowledge base repeatedly against
the known information in the current problem, and then obtaining
multiple possible answers, and finally filtering to obtain the answer
with the highest confidence among all answers as the final decision.

5.2.2. Data-driven processes
1) Data processing

Data-driven is mainly based on various types of algorithms in
machine learning and deep learning. Firstly, the collected data need
to be pre-processed, including the process of filling vacant values,
outliers, error values, etc. Also, the feature data need to be
processed in certain ways according to the requirements of the
algorithms, including type transformation, normalization,
dimensionless transformation, data upsizing, data downsizing, etc.
Next, the data need to be divided. Usually, it is necessary to
divide the feature values and prediction labels, and for supervised
learning, it is also necessary to divide the test set and validation set.

2) Algorithm operation
The processed experimental data are imported into the

algorithmic model run, and different types of algorithmic models
are used selectively for different types of problems. In this
process, the optimization of the algorithm plays a crucial role,
which allows our model to maximize the adaptation to the
experimental data and achieve the best prediction results.

5.2.3. Model fusion
The knowledge-driven approach enhances the overall

interpretability of the dual model, provides theoretical support, a
priori conditions for data-driven, and also allows further
optimization of the algorithm structure. The data-driven approach
is good at handling huge and complex experimental data,
facilitating new knowledge mining, and also optimizing and
improving the intrinsic structure model to verify the correctness of
the results of the knowledge-driven approach.

The knowledge-driven approach eventually builds the
mechanistic model, and the data-driven approach eventually
builds the empirical model. The final prediction result is obtained
by integrating the prediction results of both knowledge-driven and
data-driven methods. This result integrates the advantages of both
forecasting methods and is closer to the real value of the
forecasting result.

6. Conclusion

This paper introduces two commonly used methods in the field
of AI for bridge SHM: knowledge-driven methods and data-driven
methods. It analyzes the advantages and disadvantages of these two
methods through research cases and emphasizes the importance of
developing hybrid knowledge–data-driven methods in bridge
SHM. It argues that the hybrid knowledge–data-driven research
approach can achieve complementary advantages and represents a
necessary path for AI to approach human intelligence, becoming
the future development trend of AI in SHM.

Since the inception of AI, two paradigms of thinking have existed,
namely symbolism and connectionism,which correspond to knowledge-
driven and data-driven research methods, respectively. With the
continuous development of information technology, AI’s application
in bridge SHM is becoming more widespread. It is primarily divided
into knowledge-driven and data-driven approaches, addressing two
main problem categories: visualization problems based on damage
morphology identification, such as bridge appearance damage
identification, and studies of non-morphological change type damage,
such as vibration-oriented structural damage studies.

The knowledge-driven approach has significant advantages,
including interpretability, security, and stability. However, it also
has significant shortcomings, mainly its limited ability to solve
“matter-of-fact” problems and its requirement to operate in a fully
informed environment. On the other hand, data-driven methods are
more straightforward to implement, offering efficiency, high
accuracy, and flexibility without requiring specific domain-related
knowledge or experience. However, data-driven methods are
uninterpretable due to their black-box nature, and in many cases,
even though the algorithmic model performs well, the internal logic
and underlying laws remain unknown. Additionally, data-driven
methods are highly susceptible to attacks that may produce
unexpected and erroneous results, making them less secure.

Both knowledge-driven and data-driven approaches attempt to
mimic aspects of the human brain’s thinking process, yet they are
incapable of fully replicating true human intelligence. To further
approach human intelligence, the two approaches need to be
integrated through a knowledge-data hybrid drive. The hybrid
knowledge–data-driven approach overcomes the limitations of
both methods and achieves complementary advantages in practical
problem-solving. Knowledge-driven methods provide
interpretability, security, and stability, guiding the architectural
design of data-driven models, constraining their a priori
conditions, and offering theoretical support. In return, data-driven
methods enable rapid prediction and validation of knowledge-
driven experiences, thanks to their efficiency and speed, allowing
for the revision and improvement of knowledge experiences, as
well as the discovery of new knowledge.
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