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Abstract: The paper discusses operational aspects and establishes the basics of risk management for autonomous technology applied to the
topside well service pump for offshore installations. In the analysis, a specific machine is investigated, an electrically driven pump with a
power of 725 horsepower equipped with a computer-controlled system. The system enables performing basic tests, control checks, and
maintenance, for example, from the operator’s office onshore. The research is divided into two parts. The first describes machine
learning applications and determines autonomy levels for offshore well service pumps. The computer-controlled system in this paper is
considered the first stage of autonomy. The level of autonomy (LoA) was gradually increased by applying machine learning,
implementing predictive maintenance techniques, and creating the digital twin. The highest autonomy stage enables the machine to make
critical decisions. That feature brings many profits, for instance, reducing the number of people in dangerous places or prevents from
making bad decisions. The risk assessment analysis was performed in the second part of the paper. The risk description for every LoA
was provided, and the hazard events were specified and described providing the causes and solutions. Lastly, the experienced team
assessed the risk, presenting the results in the risk matrix. The analysis shows that the most hazardous events are related to the
connection and environmental conditions with the unit. The research shows that there is a potential for the application of machine
learning in machinery systems for the offshore industry. Therefore, there is a need for more research in that field.
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1. Introduction machines from working to check whether the upgrade is beneficial.
This resolution is called a digital twin. The creation of a digital
Offshore work is one of the most dangerous jobs in the world  twin can reduce the number of people on oil rigs, and the
[1]. All people working on offshore structures are exposed to threats application of machine learning can allow making units brighter.
every day. However, safety has become the most critical factor for
many offshore companies. Therefore, many are trying to limit the
dangerous influence on their employees. Due to safety reasons,
trips to offshore facilities are enabled only for those whose
presence is required. Nevertheless, the number of people working
on the oil platforms can still be reduced.
This problem can be solved by implementing autonomous
technology in machines in offshore facilities. Additionally, this ~ the North Sea. Now, this database is fully open, and everyone

idea is very innovative and follows the trend of Industry 4.0. ~ can use it for their own needs [3].
This example indicates that the digitalization of machines used

in the industry is becoming more common. The analysis presented in
Chatzimparmpas et al. [4] shows that the number of publications
related to machine learning, digital twins, or predictive maintenance
increases yearly. Moreover, big oil and gas companies take this
topic very seriously, so they have started developing and testing
autonomous technology in their products.

On the other hand, most of the available publications related to

*Corresponding author: Pawel Klis, Dynamic Well Solutions, Norway. Email: intelligent systems in the offshore industry refer to autonomous
pawel klis@dynamicds.no ships and subsea operations [5—7]. The study shows that there is a

Companies that provide their services offshore also follow this
trend [2]. For instance, some oil production companies started to
collaborate with data scientists. As a result, they created a
database where they share industrial data. For example, one of
the operating companies has been transmitting data from the
compressor installed on the oil platform in the Val hall field in

Lately, it has been observed that automation and digitalization
have become more popular, and for that reason, engineers are
trying to make machines more intelligent and resistant to human
errors. Also, researchers started building digital versions of the
physical units. And as a result, most of the tests are performed
virtually in real time, and there is no need to stop physical
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lack of publications associated with the application of artificial
intelligence and digitization of offshore machinery equipment. For
that reason, research in this field is needed. This paper provides the
risk analysis of a specific well-service pump and introduces the
operational aspects of autonomous technology applied to the pump
system.

An analysis is carried out on a topside well service pump with a
power of 725 horsepower and is powered by electricity (WSP 725
CCE) (Figure 1). The device is equipped with a computer-controlled
system to operate the pump remotely. The pump is intended to
inject the seawater into the offshore well.

Figure 1
Well-service pump WSP 725 CCE equipped with HMI module

The pump is driven by electricity, bringing several pros compared
to the conventional diesel engine unit. The electric engine is quieter and
more efficient. What is more, it does not produce pollution in the
atmosphere. The downside of it is that it is more expensive [8].

Before the pump is delivered to a customer, Interactive
Customer Acceptance Test (ICAT) is performed. The client does
not have to travel to the supplier’s store to test the unit. All
acceptance checks can be carried out remotely via an HTML-
based link that will grant access to operate the unit. It means the
client can fully control the machine in real time from his office in
a different county, thousand kilometers away. This solution can
also be used oppositely. When the unit is delivered to the client or
installed on the offshore rig, the supplier can perform essential
maintenance such as troubleshooting and software updates or
guide a technician. Additionally, the test can be observed by
multiple people. It allows brainstorming and cooperation with
other engineers and technicians to fix a failure more efficiently.
This solution of performing tests reduces the number of people in
hazardous places and improves safety.

2. Autonomous systems

Around 37% of oil and 28% of gas world production come from
reservoirs located under the seabed. The sea environment makes
production very difficult and extremely dangerous. Oil and gas
production often requires building complex subsea installations
such as Christmas trees or manifolds. With the development of
autonomous technologies, engineers have started using unmanned
underwater vehicles to make work safer. These robots allowed
building and installing structures underwater without human
presence. This example shows that the term “autonomy” or
“autonomous systems” in the offshore industry was primarily
focused on underwater vehicles. Today, scientists are looking for
new autonomy applications in the offshore sector to make it safer.
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The offshore industry requires using many topside machines, such
as pumps, generators, and vacuum units. To operate them safely
and efficiently, the person who operates them must have a lot of
knowledge and experience. Machines can become independent
and resistant to human mistakes by applying autonomous
technology.

Huang [9] defines the autonomous system as a system that is
able to perform the planned tasks without human intervention while
adapting to working and environmental conditions. According to
Radseth and Nordahl [10], a system can be called autonomous if
it has the ability to operate independently of an operator. It can be
possible by installing a whole range of intelligent components,
from automated sensors to a decision-making system created
based on machine learning.

Due to the complexity and various application advancements of
autonomous systems, it seems obvious to create different autonomy
groups. In the available literature, it is possible to find many divisions
of autonomous levels. Redseth [11] and Fukuto [12] propose four
different levels of autonomy (LoA). However, National Research
Council of the National Acedemies [13] divides autonomous
systems into four and ten different stages. On the other hand,
Vagia et al. [14] states that one correct division system does not
exist, and classification depends on a designer.

Table 1 provides a definition of four different levels of autonomy
for the well-service pump system. Level zero (no autonomy) means
the machine lacks an intelligent system. The autonomy level
increases with the gradual addition of smart components like
programmable logic controllers (PLC) and a human—machine
interface (HMI). The application of those parts allows the system to
control it remotely and develop the unit to the second level of
autonomy (LoA). The following two stages (third and fourth)
permit the system to make recommendations and decisions. The
last stage of autonomy (fourth) makes the system completely
independent and eliminates human presence and intervention.

2.1. Human—machine interface

The pump system can be controlled in a more human-friendly
way by installing the HMI in the unit. HMI is a simple screen that is
usually resistant to aggressive environments such as dust or water,
making it ideal for industrial conditions. The interface shows the
status and settings of the unit graphically, so it is easier to
understand and operate the machine for less experienced operators
[15]. Moreover, the HMI can display the unit’s real-time data and
enable operational modifications.

The pump unit described in the introduction is equipped with a
HMI device. Figure 2 presents an example of the interface on the
module’s screen. The view is updated in real time, so the operator
sees the actual and the most updated process state. The panel is fully
interactive so that every parameter can be quickly changed. For
example, if the operator decides to close or open one of the valves in
the system, it is enough to tap the component on the screen and
press the option “close” or “open.” The system is also equipped with
a waming system. If the software detects any error or potential
danger, it immediately informs the operator about the threats. And in
undeniably dangerous situations, the machine will shut down.

The HMI in industrial conditions can have different formats
depending on the application and customer requirements. The
most popular variant is the screen mounted on a metal pedestal
next to the unit. Due to the risk of lousy reception in offshore
conditions, the HMI is connected to the main electrical panel
by the cable to keep the connection stable. On the other hand,
it is possible to use the HMI panel small or portable device. It is
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Table 1
Levels of autonomy in offshore machines for well service
Level of
autonomy Description

0. No autonomy  The system is fully controlled by humans and
cannot give any advice or make any
decisions related to the operation. The
system can only notify about basic required
actions, such as low fuel or a battery
needing to be charged.

The system can perform the mission by
following the algorithm created by the
operator; however, it cannot give
recommendations or make any independent
decisions. This stage of autonomy enables
control of the system remotely by
application of programmable logic
controllers (PLC) and human—machine
interface (HMI).

The system performs the mission by
following an uploaded algorithm and also
gives recommendations related to the
operation. The system’s advice may only
be implemented if the operator approves it.
Some basic tests and measurements may be
automatically carried out if the system has
specific sensors.

1. Human control
system

2. Computer
control system

3. Semi- The system can make decisions if the time is
autonomous too short for the operator to react. The
system operator can change the mission

parameters in case of errors. Data and
reports are continuously sent to the
operator to inform him about the task’s
progress. Machine learning is applied to
the system and, based on collected data,
can predict when maintenance is needed.

4. Fully The system is fully autonomous and can
autonomous perform the mission automatically and

without help from the operator. Human
presence or assistance is not necessary any
longer. The machine can recognize and
solve threats or problems by changing the
mission’s parameters. The operator is
informed about the progress of the task.

becoming popular to use small and handy industrial tablets.
That solution allows operating the pump unit remotely, for
instance, from the operator’s office or even a hundred kilometers
from the workplace. In that way, the customer or engineers can
remotely follow the production, collect data, or apply changes in
an operation. Nevertheless, it requires keeping a stable connection
that can be difficult due to the natural offshore environment.

2.2. Machine learning

With the development of artificial intelligence technology,
machines that are used in different kinds of the industry have
become more intelligent. All devices are becoming more
independent and can work with limited or without supervision. It
is because people started to “teach” machines how to work and

Figure 2
Visualization of the system displayed by
the human-machine interface (HMI)
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make the right decisions. This development is called machine
learning [16].

The machine is able to learn how to make a correct decision by
analyzing collected data. The data are collected by sensors installed
in the system. All data are analyzed following a specific algorithm
and statistical models. Then, the machine can decide whether the
decision is correct based on the results. Machine learning can be
applied to the device using two basic approaches, (i) supervised
learning and (i) unsupervised learning.

The first approach uses datasets to train the system to classify
data or accurately predict outcomes. With the time system can learn
them and measure their accuracy. The second approach is to analyze
unlabeled datasets. The unsupervised learning algorithm discovers
hidden patterns in data and, what is more, works without human
intervention. It is also possible to use a third approach called
semi-supervised learning, which offers medium possibilities for
supervised and unsupervised learning [17].

The Well Service Pump is equipped with sensors that collect
data related to the working process. Next, these data are sent to
the database and analyzed. The statistical models are created
based on all collected data. And then, the pump system is trained
to make decisions and work without human supervision.

The application of artificial intelligence and machine learning to
the pump unit creates an opportunity to go some steps further, create
a digital twin of the pump, and apply safe predictive maintenance.

2.3. Digital twin

A digital twin is a virtual version of the physical component,
device, machine, or system. The virtual version of the system is
built based on collected historical data from the actual unit. The
studied system is equipped with various sensors that monitor
the components and collect different parameters influencing the
system, such as temperature, pressure, and degradation. Based
on these data, the system performs a simulation on the virtual
version of the model. The results of various simulations show
whether the system is able to increase efficiency. Based on the
results, the operators can decide if the process is efficient
enough if the efficiency should be increased, or if maintenance
is needed [18, 19].
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Figure 3
Principle of digital twin applied to the pump system
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Figure 3 presents the working principle of a digital twin applied to
the WSP 725-horsepower electric pump. The sensors are installed in the
unit to monitor the critical components and parameters, such as
bearings, filters, pump pressure, temperature, or flow. Then the
real-time data are transferred and applied to the digital twin of the
unit. Based on the data, the system carries out FEA and CFD
simulations. Next, the improvement is accepted or rejected. If the
unit is fully autonomous (4th level), the system decides whether the
improvement is beneficial. This decision depends on the operator if
the system is on the 0-3 level.

2.4, Predictive maintenance concept

All machines in the world will finally break down. However, it
is possible to extend their life by performing conservations, updating
software, or changing parts. These actions are called maintenance.
There are many scenarios of how to carry out maintenance of
machines. The most popular are reactive and preventive
maintenance [20]. In reactive maintenance, a component, a device,
or a system is used until it breaks down, and then, it is replaced.
The most significant advantage of this solution is that a part is
used until the end of its lifetime. On the other hand, it is
impossible to predict when a component will break down. In
preventive maintenance, a component, a device, or a system is
changed after a fixed period, e.g., after one year. By applying this
solution, the maintenance is planned, so there is no unexpected
failure, but the potential of a component is not fully used.

With the development of machine learning, the new maintenance
scenario started to become popular in the machinery industry. In this
scenario, the system can predict when maintenance is needed. This
solution is called predictive maintenance. Predictive maintenance is
a technique to predict behavior patterns, trends, and correlation by
statistical or machine learning models based on historical data,
domain knowledge, and available models. Applying predictive
maintenance to the physical model makes it possible to predict the
failure before it happens [21, 22]. Very often, if the system is
extensive and complex, it is difficult or sometimes impossible to
predict which part will fail. However, this technique will indicate
the exact component that will break, no matter how big the
system is.

3. Risk management

It is challenging to define risk in one general way. The standard
ISO 3100 (International Standard ISO 31000:2018(E) [23] defines
risk as “the effect of uncertainty on objectives.” The standard
NORSOK Z-013 [24] provides another definition of risk, which is
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a “combination of the probability of occurrence of harm and the
severity of that harm.” However, the most common definition of
risk is the formula:

Risk = Probability - Consequences (1)

In this formula, the probability is related to the likelihood that the event can
happen, and the consequences impact the situation when an event occurs.
The more precise definition of the risk is described by equation (2).
The probability for two events might be the same, but the assessor’s
knowledge about these two events can be different. That means that
the likelihood that an event can happen will be completely different.
This formula includes the strength of knowledge of a risk assessor.
Risk = (A, C,Q,K) ©)
In equation (2), A is a hazardous event, C is consequences related to
event A, Q is a probability measure, and K is the assessor’s knowledge
to estimate the risk. This equation provides a good definition of risk
because it consists of knowledge, probability, and black swans.

Clearly defining what event can be called a black swan is very
difficult. Risk scientists still discuss this term. According to Taleb
[25], a black swan is an unexpected event with large magnitude and
extreme consequences. According to Aven [26], the black swan is “a
surprising, extreme event relative to the present knowledge/beliefs.”
Also, Aven [27] categorizes black swans’ events as (i) events
unknown to experts and unknown to others (e.g., new discovery); (i)
unknown circumstances for experts but generally known phenomena,
and (7ii) events known but not believed to occur.

Risk management is dealing with the conflicts inherent in exploring
occasions and avoiding accidents, losses, and failures [24]. Risk
management is fundamental in the process of making decisions,
essential to achieve the safe and cost-efficient design and operation of
a complex system. Risk management is established by risk assessment,
monitoring, and decision-making.

Table 2 presents a description of risk for every LoA defined in
Table 1. It is impossible to eliminate the threats. However, with
increased system independence, the risk of hazards is lower.
Furthermore, Table 2 indicates the most significant probability of a
hazardous event to level zero (no autonomy). With the increase of
system independence, human error is considered less likely to occur. If
the system is fully autonomous (fourth level), there is no risk of human
error since their intervention is uninvolved. The only risk considered in
that stage is an occurrence of an unknown situation or black swans.

This paper provides the risk assessment of an autonomous well
service pump using the formal aafety assessment (FSA) method. This
method was presented in Hamann & Cichowicz [28] by International
Maritime Organization. This method was created to evaluate new
regulations for marine safety and the protection of the marine
environment. In this study, the FSA methods have been chosen
due to its wide application in the marine and offshore industry.
The FSA methods consist of five steps: (i) identification of
hazards, (i7) risk analysis, (iii) risk-control options, (iv) cost—
benefit assessment, and (v) recommendation for decision-making.

3.1. Identification of hazards

Establishing the list of hazards is the first step of the FSA
method (Figure 4). This step aims to identify hazardous events
that might occur during the operation. Chang et al. [29] proposed
category list of hazards for offshore autonomous vehicles. This
list is adjusted for offshore pump installation and placed in
Table 3. Each category contains a short description.



0. No Autonomy

1. Human control

system

2. Computer
control system

Special training and certification of the
operator are strictly required. Creating
procedures is essential. Also, the operator
should be experienced and know how to
work with the unit.

The risk is dependent on the operator. The
operator must complete the training and be
certified to use the unit. Creating
procedures is essential.

The risk is still dependent on the operator’s
decision. However, the system’s
recommendation can help reduce the risk
of danger. The safety since the system
follows the given algorithm.

3. Semi- The risk is dependent on the situation. The
autonomous autonomy of the unit highly decreases
system human error. However, the system still

requires remote supervision. Notification
about maintenance increases the robustness
of the unit.

4. Fully The risk is entirely dependent on the
autonomous efficiency and resistance of the system.

Risk will be increased if an unknown
situation for the system occurs.

Figure 4
Formal Safety Assessment (FSA) methodology [28]
Step 1 Step 2 Step 5
Hazard —> Risk > Decision-making
identification assessment recommendations
3 [
Step 3

Risk Control Options

i

Step 4
Cost-Benefit Assessment

3.1.1. Equipment failure

The equipment failure contains all failures related to hardware
or tools. For instance, engine failure or worn-out bearings belong to
this category. Equipment failure is serious damage because it can
lead to many catastrophes, such as human death, fire in offshore
facilities, loss of machine control, and long-term cessation of oil
and gas production.

3.1.2. System failure

The system failure contains all failures related to software and
algorithm design. This system is responsible for the correct execution
of hydrocarbon production. For example, software failure and loss of
control belong to this category. This kind of damage may lead to

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2023
Table 2 Table 3
Brief risk description for each autonomous level Hazard categories
Level of Category Description
autonomy Brief risk description Equipment failure ~ Strongly this failure might bring severe

consequences and harm people. This
malfunction can cause loss of control,
fire, or sensor failure. The failure of a
single component of the system can also
decrease production efficiency.

This failure causes a lack of
communication with the machine. The
system is equipped with an HMI, and the
unit cannot operate in case of failure. It
can create severe consequences if the
device is used remotely, and it is
impossible to turn it off from the
operator’s office onshore.

This failure is dependent on weather
conditions. The unit is powered by
electricity, and water in undesirable
places can create a current short circuit
and cause severe damage. Bad weather
might also lead to a loss of connection
with the machine.

Even though the system is autonomous,
there is still a probability that human
error might occur. The system is
programmed and designed by a human.
So, mistakes, for example, can be present
in a code.

This failure is dependent on connection
security. The unit is connected to the
computer in an operator’s office wireless.
That means cyberattacks are a serious
threat. A cyberattack can lead to system
and equipment failure.

System failure

Interaction with the
environment

Human error

Cyberattacks

enormous consequences, such as loss of control of the machine,
loss of communication with the unit, lack of internet connection,
and an incorrect decision made by the autonomous system.

3.1.3. Environmental interaction

The interaction between the pump unit and the environment may
be dangerous. The probability that this type of threat will occur is low,
but it still has to be considered a hazardous event. The presence of this
kind of failure is entirely dependent on weather conditions and the
resistance of the equipment. To this kind of failure belong a current
short circuit, equipment flooding, and thunder strikes.

3.1.4. Human error

Although the unit is fully autonomous, there is still room for
human error. Ahvenjérvi [30] claims that this factor can never be
entirely eliminated because human is always involved in design and
remote-control operation. Human error can occur, e.g., during
structural or software designing, coding, planning the mission, and
maintenance operations.

Planning a mission is a very critical point of the production
operation. Mistakes at this stage will affect the rest parts of the
process. The only way to decrease the risk of this hazard is to use
an experienced team and check multiple times if all conditions
and factors were chosen correctly.
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Table 4
Risk assessment for different hazard scenarios
Hazard Hazardous event Probable causes Consequences Prob. Cons. Risk
Equipment Sensor failure Vibration; dust; wear out Loss of control; stop data collection 3 3 9
failure Bearing failure Wear out; neglect in The operation stoppage 2 5 10
maintenance
Shaft failure Corrosion, abrasion, cracks The operation stoppage 1 5 5
System failure ~ Loss of communication Jamming or spoofing Operation failure 4 5 20
during an operation
Wrong interpretation of data  Not enough storage data Poor decisions made by an autonomous 1 4 4
by the system system
Temporary loss of electricity ~Blackout Temporary stoppage; use of a spare 2 2 4
generator
Environment PLC component failure Too low temperature Temporary operation stoppage 2 5 10
interaction Poor internet connection Bad weather conditions Temporary operation stoppage 4 4 16
Human error Errors in a code The vast complexity of the = Poorly/wrongly working operating 3 5 15
programming software
Error in a physical contact Poor experience More frequent maintenance is needed; 2 4 8
maintenance temporary stoppage
Error in remote control Weak knowledge of the An operation performed incorrectly; 2 5 10
operation unit failure
Cyberattack Communication breakdown  Poor cybersecurity Production/operation failure 2 5 10
Operation system failure Poor cybersecurity Production/operation failure 2 5 10
Loss of data Poor cybersecurity Lack of historical data used for 2 4 6

machine learning

The system uses a predictive maintenance technique. That
means that the role of the human is limited to physical installation
work. However, this operation must be done without mistakes and
according to the standards and procedures. If the replacement of
parts is not performed correctly, it will lead to severe damages or
catastrophes.

3.1.5. Cyberattacks

Due to the pump system is autonomous and controlled
remotely, the probability of occurrence of a cyberattack is
considered very high. It has been observed that cyberattacks
have been reported more frequently lately [31]. This type of
failure can lead to serious damage to the equipment or system.
A way to avoid this event is to improve cybersecurity systems.

3.2. Preliminary hazards analysis

Risk assessment is a process to establish sources of risk,
hazards, and opportunities. Risk assessment also deals with
understanding how risk sources can occur or cause events and
what consequences they can bring. In order to assess the risk in
the most professional way, the best available knowledge data or
information should be used [32].

There are many ways of assessing the risk. The most used
methods are failure mode event analysis, hazard operability
analysis, fault tree analysis, risk matrix, and Bayesian networks.
The risk assessment provided in this study was performed using
preliminary hazard analysis, risk matrix, and ALARP techniques.

The preliminary hazard analysis (PHA) was performed by a team
with rich working experience in the machinery and automation

Figure S
Risk assessment for different hazard scenarios
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industry. The hazards that are chosen for this analysis are the most
common threats in well-service units and autonomous systems.

The analysis started with hazard identification. For each hazard
category, three hazardous events were chosen. For every event, the
probable causes and consequences were obtained. Next, the
probability and consequences were assessed. And the risk was
calculated according to Equation (1). The results are presented in Table 4.

Once the risk was assessed using the PHA technique, the results
were presented in the risk matrix. The risk matrix is displayed in
Figure 5. Each point in the matrix displays the risk ratings, and the
number corresponds to the amount of cases. Risk assessment is
qualitative and represents a general understanding of presented hazards.

The performed studies consist of 14 hazard scenarios belonging to
five categories. Carried out risk analysis shows that most of the results
(eight cases) lie in the medium-high-risk area. These events are
considered as ones that can bring critical or very critical consequences.
However, they also belong to events with a lower likelihood of occurring.

3.3. ALAR principle

The ALARP (As Low As Reasonably) principle says that risk-
reducing measures should be applied unless the burdens are grossly
disproportionate to gains [33].

Figure 6 presents the scheme of the ALARP principle. The top red
part of the triangle is where the risk measure is unacceptable and should
be reduced (except for extraordinary situations). The middle yellow part
of the figure consists of tolerable risk measures that cannot be reduced
due to the cost of risk reduction that excites the benefit gained. The last
green part of the triangle consists of acceptable events. It is essential to
maintain the events’ risk on that level.

Figure 6
Scheme of ALARP Principle [34]
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4. Conclusion

The paper presents the operational aspects of the autonomous topside
well service pump with 725 horsepower (WSP 725 CCE) for offshore
installation. Moreover, the study provides the foundation for risk
management of the pump system. The first part of the analysis describes
how the autonomous system applied to the unit works and its
possibilities and limitations. Furthermore, the research introduces the
cooperation between machines and humans via HMI module. Next, a
detailed description of possibilities that give the application of machine
learing to the pump is presented. Finally, the authors of the paper divide
the autonomous system into four levels of autonomy (LoA) and provide
a description as well as advantages and disadvantages for each stage.

The risk assessment analysis was performed in the second part of
the paper. The FSA method was used in the risk study. First, the
foundation of risk was introduced. Second, the risk description for
every LoA was provided. Next, the hazard events were specified and

described providing the causes and solutions. Finally, the experienced
team assessed the risk, and the results were presented in the risk matrix.

The risk assessment in this paper was performed using the FSA
method. In the beginning, the list of hazards has been identified. The
primary and most significant hazard categories for autonomous
systems are equipment failure, system failure, environment
interaction, human error and cyberattacks. A hazardous event and
probable causes and consequences have been identified for each
category. The risk of event occurrence has been assessed based on
the available sources and experts’ knowledge. All results we
placed in the risk matrix. Performed analysis shows that the most
probable and critical event is operation failure due to loss of
communication during an operation caused by jamming or
spoofing. The second highest risk rate has been assigned to
temporary operation stoppage caused by bad weather conditions
and poor internet connection. Moreover the results show that the
most hazardous events belong to the group of probable events.

Overall the most probable events with critical risk are related
not to the mechanical components but to the connection and
environmental conditions with the unit. For that reason, the
connection technology must be improved to decrease the risk of
operation failure. Moreover, if this technology is improved, it will
be possible to apply a higher LoA to the units and decrease the
number of people working offshore. This will ensure safety in the
dangerous workplace. The paper shows that there is significant
potential for the application of machine learning in machinery
systems for the offshore industry. Therefore, there is a need for
more research in that field.
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