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Abstract: In this work, two globally supported and positive definite radial kernels, generalized inverse multiquadric and linear
Laguerre–Gaussian radial kernels, were used to construct symmetric kernel-based interpolating scheme using Hermite-based symmetric
approach for the solution problems involving Hermite’s scattered data. Furthermore, two examples on elliptic partial differential
equations to illustrate the viability of the symmetric formulation were effectively solved with comparable performance. Results were
displayed in form of tables and graphs which present interesting sights for discussions and inference.
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1. Introduction

Often time, science and engineering problems are modeled in
the form of elliptic partial differential equations. In several
physical situations, these problems occur as a result of nature.
Fasshauer and McCourt (2016) mentioned some areas such as
steady state distribution of heat in the body, harmonic analysis,
geometry and more, and they also stated that problems such as
acoustic waves can also be managed using the Helmholtz
equation. A couple of methods and approaches has been
developed by some researchers such as Aziz and Ahmad (2015)
to handle these problems using different approaches of the
meshless methods based on radial kernels. Fang et al., (2019)
used this method in solving integral equations.

The radial kernel method is another alternative numerical
approach for higher-dimensional problems of its kind, since it has
much many properties which are helpful especially for high order
in terms of accuracy and fitting quality (Hastie et al., 2009;
Larsson & Fomberg, 2003). The main idea of radial kernels’
approach is to approximate the solution as a sum of infinitely
many differentiable radial kernels ϕ whose summand is an appropri-
ate vector times of an appropriate scalar (linear combination). This
ϕ is a function that depends only on the distance from a fix point
called the center point x (Fasshauer, 2007). The systemmatrix in this
method denoted A εð Þ is known to be solvable if the matrix A εð Þ is
nonsingular (Micchelli, 1984). The radial kernel interpolation meth-
ods can also be used for the solution of problems involving elliptic
PDE. These methods allow for the interpolation of highly unstruc-
tured data. There are few computational setbacks associated with
radial kernel methods, which are the structural formulation of the

interpolant and the succeeding evaluation of the interpolant
function. Given N fixed points to construct an interpolant required
inverting the system matrix where the number of rows is O Nð Þ
(Wendland, 2002). For globally supported and strictly positive
definite radial kernels like the Gaussians, the interpolation matrix
is dense according to Yensiri & Skulkhu (2017). According to
Fasshauer and McCourt (2016), solving an interpolant for a larger
set of centers requires inverting a large, dense, and ill-conditioned
system matrix. Thus, the cost of evaluation or computing this
interpolant on M data points is of order O MNð Þ.

The aim of this manuscript is to utilize the symmetric kernel-
based Hermite interpolation approach proposed by Fasshauer and
McCourt (2016) for the numerical solution of elliptic PDEs. The
numerical studies’ results are obtained by using two different
globally supported and strictly positive definite radial kernels,
the linear Laguerre–Gaussian (LLG) and the generalized
inverse multiquadric (GIMQ) on two computational domains, the
uniformly spaced data points and the scattered data points.

2. Preliminaries

In this segment, some definitions and fundamental results
relating to the notion of symmetric kernel-based interpolation and
elliptic partial differential equation are presented.

2.1. Interpolation problem

Given a set data xi; fif gNi¼1 with xi 2 Rd; fi 2 R, it is required
for one to generate a continuous function s in a way that
s xið Þ ¼ fi; i ¼ 1; 2; . . . ;N is a fundamental mathematics problem
(Pazouki, 2012).

A convenient way or method to determine the interpolant s is to
look at s as linear combination of certain radial basis kernels
Bi; i ¼ 1; . . . ;N. That is,
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s xð Þ ¼
XN
i¼1

ciBi xð Þ; x 2 Rd (1)

where B ¼ K �; x1ð Þ; . . . ;K �; xNð Þf g. Solving this problem of
interpolation using this assumption as linear combination of the basic
functions Bi xð Þ and the scalars ci produced a system of linear
equations of the form:

Bc ¼ f

where these entries for the interpolation matrix B are given as
Bij ¼ Bi xj

� �
, i; j ¼ 1; . . . ;N , c ¼ c1 . . . cNð ÞT , and f ¼ f1; . . . ; fNð ÞT .

The systemmatrix assembled from the problemwill be solvable
if the matrix B is nonsingular. For d ¼ 1 implies that one could inter-
polate an arbitrary data at N distinct set of data points using a poly-
nomial of degree N � 1 (Macedo et al., 2009).

Definition 1. Elliptic differential operator: According
to Volpert (2011) and Zhao (2016), a linear operator
L : C2 Ωð Þ ! C Ωð Þ as written in the equation below is called an
elliptic differential operator of second order:

Lu xð Þ ¼
Xd
i;j¼1

aij xð Þ @2

@xi@xj
u xð Þ þ

Xd
i¼1

bi xð Þ @

@xi
u xð Þ

þ b0 xð Þu xð Þ;

where the coefficient of the system’s matrix aij xð Þ� � 2 Rd�d satisfies

9α > 0;
Xd
i;j¼1

aij xð Þcicj > αjjcjj22 for all x 2 Ω and c 2 Rd:

2.2. Interpolation by radial kernels

Radial kernel interpolation is a method in approximation theory
for the construction of higher-order accurate interpolants for
scattered data up to higher-dimensional spaces. According to
Esmaeilbeigi et al. (2018), the interpolation takes the form of a
weighted sum of radial kernels. The kernel method is meshless,
which means that the data centers must not necessarily lie on a
defined grid and does not require the formation of a grid or mesh.
It is spectrally accurate for a large numbers of data nodes even in
higher dimensions (Fasshauer & McCourt, 2016).

Given a set of data f ¼ f x1ð Þ; f x2ð Þ; � � � ; f xNð Þð ÞT 2 RN of
function’s values obtained from some function say f : Rd ! R at
finite set of data points Ξ ¼ x1; x2; � � � ; xNf g � Rd; d � 1; is also
given (Marchi & Perracchione, 2018), scattered data interpolation
seeks to finds an interpolant function say s : Rd ! R that satisfies

s xið Þ ¼ f xið Þ; for i ¼ 1; 2; � � � ;N:

The radial kernel interpolation scheme works with kernel functions
ϕ : Rþ

0 ! R, and their interpolant takes the form:

s xð Þ ¼
XN
j¼0

ciϕ εjjx � xjjj
� �

where �k k is the Cartesian space norm and ε is the shape parameter.
This gives an N � N linear system:

XN
j¼0

cjϕ εjjxi � xjjj
� � ¼ f xið Þ; for i ¼ 1; 2; � � � ;N

this can be rewritten in a vectorial matrix notation as:

Ac ¼ f

where A ¼ ϕ εjjxi � xjjj
� �

is an N � N matrix and
c ¼ c1; c2; � � � ; cNð ÞT . ThematrixA is the interpolationmatrix.We note
that ϕ εjjxi � xjjj

� � ¼ ϕ εjjxj � xijj
� �

so that A ¼ AT : The interpolant
is unique if and only if the matrixA is nonsingular. The existence of the
interpolant has been shown in Fasshauer & McCourt (2016).

2.3. Framework

The Haar systems is very fundamental in the formulation of the
approximation theory and interpolation. The existence of such
system give us the possibility that a unique interpolant (solution)
exists from the system. That gives us the first step toward
guaranteeing a well-posed problem formulation.

Definition 3: According to Hangelbroek et al. (2014), if a finite-
dimensional linear function space B � C Ωð Þ has a basis
B1; . . . ;BNf g, then B is a Haar space on the domain if

det B 6¼ 0

for arbitrary set of data x1; . . . ; xN in the domain, where B is the sys-
tem matrix having the entries Bð Þij ¼ Bi xj

� �
. The set B1; . . . ;BNf g is

refer to as the Haar system.

Theorem 1: The set B1; . . . ;BNf g of continuous functions on a; b½ �
are said to be a Haar space if and only if any nontrivial linear
combination of B1; . . . ;BN has at most N � 1 zeroes in a; bð Þ
(Fasshauer & McCourt, 2016).

Note that if Ω � Rd, d > 1, one can no longer guarantee a
solution to the system if one chooses the basis different from the data
sites. A fact is implied by the Mairhuber–Curtis theorem.

Theorem 2: IfΩ � Rd , d � 2, contains an interior point, then there
exist no Haar spaces of continuous functions except for trivial ones,
that is spaces spanned by a single function (Wendland, 2005).

The above theorem harbors two aspects of dimensionality: first of
which is the dimensiond for the systemspace onwhich the data points lie,
and second is the dimension N of the space functions B. Consequently,
this theorem assures that one cannot manage the basis consisting of more
thanN ¼ 1 functions.There is no surety that the interpolation in the space
at N arbitrary points xi 2 Rd, d � 2, has a unique solution (Hon et al.,
2003). Though, if a basis is selected after the data sites are given, and, the
conditions given by the theorem are met. This triggers the use of
kernel-based methods in higher space dimensions, because they allowed
selecting the set B ¼ K �; x1ð Þ; . . . ;K �; xNð Þf g as a basis that is naturally
adaptable for the points χ ¼ x1; . . . ; xNf g so that (1) becomes

s xð Þ ¼
XN
i¼1

ciK x; xið Þ ¼ k xð ÞTc; x 2 Rd (2)

and the coefficient ci are obtained by solving the linear system;

Kc ¼ f
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After obtaining the coefficients as c ¼ K�1f , one can then
evaluate the radial kernel interpolant (2) as:

s xð Þ ¼ k xð ÞTK�1f ;

where the vector k xð ÞT ¼ K x; x1ð Þ . . .K x; xNð Þð Þ. The kernel-based
approach can be supported with a good theoretical background. It is
an advantage in using positive definite kernels so that the matrix K
is positive definite and thus invertible (Hastie et al., 2009).

2.4. Symmetric kernel-based expansion approach

Let us consider the interpolation problem in Section 2.1. And
also, at some of the nodes xDk ; k ¼ 1; . . . ;ND, the values of the
derivatives of the interpolating function, essentially given by
Dkfð Þ xkð Þ ¼ Dfk; where Dk is the differential operator impose on
the function at kth node are known (Wendland, 2002). To estimate
an approximate value of the function at other locations in the domain
apart from the given nodes, the radial Kernels method is presented in
the following form:

u xð Þ ¼
XN
j¼1

αjϕ jjx � ξjjð Þ��
ξ¼xIj

þ
XNd

j¼1

βj D
ξ
j ϕ jjx � ξjjð Þ

h i
ξ¼xDj

(3)

where ϕ jjx � ξjjð Þ denotes the kernel function, whose value depends
on the distance from an interpolation point x to a fixed point ξ, refers

to as the center andDξ
j , the differential operator acting on the function

at xdj nodes. In that sense, the differential operator is seen as a func-

tion of ξ variable. To determine the interpolation coefficients, the fol-
lowing interpolation conditions were enforced for the function as
follows (Krowiak & Podgórski, 2019):

XN
j¼1

αjϕ jjxi � ξjjð Þ��
ξ¼xj

þ
XNd

j¼1

βj D
ξ
j ϕ jjxi � ξjjð Þ

h i
ξ¼xDj

¼ fi; i ¼ 1; . . . ;N

(4)

as well as for its derivatives:

XN
j¼1

αj D
x
j ϕ jjx � ξjjð Þ

h i
ξ ¼ xj
x ¼ xDi

þ
XNd

j¼1

βj Dx
j Dξ

j ϕ jjx � ξjjð Þ
h i

ξ¼xDj

� �
x¼xDi

¼ Dfi (5)

i ¼ 1; . . . ;ND

In equation (5), Dx
j represents the differential operator same as

Dξ
j , but now operating on the kernel is considered as a function of the

data x variable. This causes the system matrix of coefficient in equa-
tions (4) and (5) to be a symmetric matrix, which can be put together
as described in the following matrix notation:

A ADξ

ADx ADxDξ

� �
� α

β

� �
¼ f

Df

� �
(6)

where:

Ai;j ¼ ϕ jjxi � ξjjð Þjξ¼xj ; i; j ¼ 1; . . . ;N

ADξð Þi;j ¼ Dξϕ jjxi � ξjjð Þ½ �ξ¼xDj
; i ¼ 1; . . . ;N; j ¼ 1; . . . ;ND

ADxð Þi;j ¼ Dxϕ jjx � ξjjð Þ½ � ξ ¼ xj
x ¼ xDi

; i ¼ 1; . . . ;ND; j ¼ 1; . . . ;N

ADxDξð Þi;j ¼ Dx Dξϕ jjx � ξjjð Þ½ �ξ¼xDj

h i
x¼xDi

; i; j ¼ 1; . . . ;ND

α; β are vectors representing the interpolation coefficients, while
f ; Df are function values and their corresponding derivative values.
In order to obtain the interpolation coefficients for the system, the
system in equation (6) has to be solved yielding:

α

β

� �
¼ A ADξ

ADx ADxDξ

� ��1
� f
Df

� �

The problem of existence of the solution of the system depends on the
type of kernel used (Krowiak & Podgórski, 2019; Speckbacher &
Balazs, 2019).

2.5. Shape parameter

In this work, the brute force method was used to compute a
suitable estimate for the shape parameter ε. The brute force method
consists of performing various interpolation experiments using dif-
ferent values of the shape parameter ε (Fasshauer, 2007). The best
value of the shape parameter is the one that best minimizes the inter-
polation error. This is achieved by plotting the interpolation error
against the shape parameter. The minimum point on the curve gives
the optimal value of the shape parameter ε. The graphs of both
RMS-error and Max-error against different values of the shape
parameter shall be plotted, and the value at the minimum point is
an estimate use for the experiment (Galichi et al., 2022).

3. Numerical Studies

Problem 1. Consider the following elliptic PDE:

r2uþ xux þ yuy ¼ 4x2 þ y2ð Þ ¼ f x; yð Þ

where f x; yð Þ and the boundary conditions are obtained
from the same solution of the following equation
u x; yð Þ ¼ exp � x2 þ 0:5y2ð Þð Þ.

The numerical results displayed in terms of RMS-error, Max-
error, and the reciprocal of the condition number. The
implementation is done with N ¼ 1089 on three types of data point
locations using linear Matern and linear Laguerre–Gaussians.

Problem 2. Consider the following elliptic PDE:

r2uþ Rux ¼ f x; yð Þ

where f x; yð Þ and the Dirichlet boundary condition are
computed from the same solution as shown in
u x; yð Þ ¼ exp �0:5Rxð Þ sin 0:5Ryð Þ

The numerical results are displayed in terms of RMS-error,
Max-error, and the reciprocal of the condition number. The
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implementation is done with N ¼ 1089 on three types of data point
locations using linear Matern and linear Laguerre–Gaussians.

4. Discussion

The method was implemented using N ¼ 1089 nodal points.
The RMS-error and Max-error norms were observed using same
value of N with ε ranging from 2 to 6 for problem 1 as shown in
Table 1. The computations were carried out using linear Matern
and linear Laguerre–Gaussian kernels on a domain containing
Chebyshev’s and uniformly types of data set each. For problem 2,
the implementation was executed using the two kernels on scattered
data site. The optimal value of shape parameter was found to be 6 for
linear Matern and 4 for linear Laguerre Gaussian for problem 1 on

each of the data type. And the optimal shape parameter was found
to be 1 for linearMatern and 5 for linear Laguerre–Gaussian for prob-
lem 2 on uniformly spaced data type, as shown in Table 2. It was seen
that a good approximate solution is obtained by applying this method
as the root mean square error is as minimal as o 10�10ð Þ using the Lin-
ear Matern on Chebyshev’s data points at shape parameter value of 6
in problem 1 and in problem 2, and the best approximate solution is
obtained using linear Laguerre–Gaussian at the shape parameter
value of 5 as shown in Tables 1 and 2. It was interesting to note
in the course of the experiments that this method has advantage over
the other conventional methods, this is because, at the ill-conditioned
state of it system matrix as seen in Tables 1 and 2, the method still
performed favorable on both regular and irregular domains. Figures 1
and 2 showed that the method perform well with minimum region of

Table 1
Error norms and reciprocal of condition for problem

Mesh RBF ε RMS_Error Max_Error RCOND

Solution on a domain containing Chebyshev’s type of data points
1089 Linear Matern 2 �10�7 5.124650 �10�6 1.959598 �10�22 5.476490
1089 Linear Matern 3 �10�8 1.844909 �10�8 6.908423 �10�21 1.819013
1089 Linear Matern 4 �10�8 3.370381 �10�8 9.947352 �10�22 5.679957
1089 Linear Matern 5 �10�7 2.465424 �10�7 7.233035 �10�23 9.198231
1089 Linear Matern 6 �10�10 2.683164 �10�9 3.194507 �10�19 1.766803
Solution on a domain containing Chebyshev’s type of data points
1089 LL Gaussians 2 �10�6 2.551212 �10�5 1.621135 �10�22 2.225880
1089 LL Gaussians 3 �10�8 3.059825 �10�7 3.324615 �10�22 9.400252
1089 LL Gaussians 4 �10�8 8.815699 �10�6 2.291940 �10�22 7.015095
1089 LL Gaussians 5 �10�7 5.962984 �10�5 2.030384 �10�22 3.175404
1089 LL Gaussians 6 �10�6 1.598992 �10�5 6.308704 �10�21 1.535246
Solution on a domain containing uniformly spaced data points
1089 Linear Matern 2 �10�5 1.530104 �10�5 5.809703 �10�23 4.202345
1089 Linear Matern 3 �10�8 2.271218 �10�8 9.542311 �10�21 1.069985
1089 Linear Matern 4 �10�8 1.531907 �10�8 5.061285 �10�21 1.443477
1089 Linear Matern 5 �10�9 7.692016 �10�8 1.783898 �10�22 4.377331
1089 Linear Matern 6 �10�9 6.858826 �10�8 2.558163 �10�22 5.264407
Solution on a domain containing uniformly spaced data points
1089 LL Gaussians 2 �10�6 2.551212 �10�5 1.621135 �10�22 2.225880
1089 LL Gaussians 3 �10�8 3.059825 �10�7 3.324615 �10�22 9.400252
1089 LL Gaussians 4 �10�8 8.815699 �10�6 2.291940 �10�22 7.015095
1089 LL Gaussians 5 �10�7 5.962984 �10�5 2.030384 �10�22 3.175404
1089 LL Gaussians 6 �10�6 1.598992 �10�5 6.308704 �10�21 1.535246

Table 2
Error norms and reciprocal of condition for problem

N ε RBF RMS_Error Max_Error

Numerical solution using linear Matern on scattered data points
1089 1 Linear Matern �10�7 6.936248 �10�6 4.996954
1089 0.75 Linear Matern �10�6 1.993316 �10�6 7.197521
1089 0.5 Linear Matern �10�6 4.438264 �10�5 1.681790
1089 0.25 Linear Matern �10�6 2.287123 �10�6 8.336800
1089 0.1 Linear Matern �10�6 2.287123 �10�6 8.336800
Numerical solution using linear Laguerre–Gaussians on scattered data points
1089 25 Laguerre–Gaussians �10�7 1.179371 �10�7 7.840436
1089 20 Laguerre–Gaussians �10�8 8.314964 �10�7 5.449712
1089 15 Laguerre–Gaussians �10�8 3.250818 �10�7 2.122126
1089 10 Laguerre–Gaussians �10�9 4.132460 �10�8 3.576482
1089 5 Laguerre–Gaussians �10�9 4.132460 �10�8 3.576482
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errors. Figures 1(a) and 2(a) are the numerical approximations for
problem 1 and 2, while Figures 1(b) and 2(b) are the error norms
showing regions of errors with false colors for problem 1 and 2,
respectively. It was also noticed that all the three set of data types
used the uniformly spaced data points, the scattered data points
and the Chebyshev’s type of data point gave a fair approximation
but the Chebyshev’s data-type boasts of superiority for both the
linear Matern and the linear Laguerre–Gaussian.

5. Conclusion

In this article, the symmetric kernel-based interpolation
approach for functions values located at unstructured nodes is

illustrated. Consequently, the approach has been shown to be
capable of solving problems modeled in the form of elliptic partial
differential equation. Attention was given to the appropriate value
of the scaled parameter called the shape parameter included in the
kernels. One can see that the best approximate solution can be
obtained by testing different values of the shape parameter and
also finding the suitable combination of the kernel to use and the
type of data site. It was concluded that Hermite interpolation with
Matern kernel and the linear Laguerre–Gaussians kernel using
symmetric formulation present a strong alternative for modeling
solutions to problems involving elliptic partial differential equation.

The fact that elliptic partial differential equation arises in nature
in several real-life situations, such as found in the behavior of sound,

Figure 1
(a) Numerical approximation and (b) error norm for problem 1 for N= 1089

Figure 2
(a) Numerical approximation and (b) error norm for problem 2 for N= 289
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heat, electrostatics, fluid flow, and elasticity, the symmetric kernel-
based interpolationmethodwill help create a model that will give full
description of their behavior using an available data.

Recommendations

The results obtained in this work show that the Hermite
Scattered Data Interpolation Method using Matern and linear
Laguerre–Gaussian kernels can be used in solving elliptic partial
differential equations. It is also recommended that the optimal
estimate for the shape parameter should be obtained when using
kernels that contain such parameters.

The following are recommended for further research work:
i. Other radial kernels and more suitable error indicators can be used

for formulation of Hermite symmetric interpolation approach.
ii. The article was able to use only a rectangular computational

domain with three sets of data points. This can be extended to
other computational domains especially the irregular domains
in order to check behavior of the solution.

iii. This research applied Hermite interpolation to two-dimensional
problems, but this method can be modified for higher-
dimensional problems and time-dependent problems.
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