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Abstract: Histopathological image classification has become one of the most challenging tasks for researchers, due to the varied categories
and detailed differences within diseases. In this study, we investigate the critical role of network depth in histopathological image
classification, utilizing deep residual convolutional neural networks (ResNet). We evaluate the efficacy of two transfer learning strategies
using ResNet with varying layers (18, 34, 50, 152) pretrained on ImageNet. Specifically, we analyze whether a deeper network or the
fine-tuning of all layers in pre-trained ResNets enhances performance compared to freezing most layers and training only the last layer.
Conducted on Kaggle’s dataset of 220,025 labeled histopathology patches, our findings reveal that increasing the depth of ResNet does
not guarantee better accuracy (ResNet-34 AUC: 0.992 vs. ResNet-152 AUC: 0.989). Instead, dataset-specific semantic features and the
cost of training should guide model selection. Furthermore, deep ResNet outperforms traditional logistic regression (ResNet AUC: up to
0.992 vs. logistic regression AUC: 0.775), showcasing superior generalization and robustness. Notably, the strategy of freezing most
layers doesn’t improve the accuracy and efficiency of transfer learning and the performance of both transfer strategies depends largely
on the types of data. Overall, both methods produce satisfactory results in comparison to models trained from scratch or conventional
machine learning models.
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1. Introduction

In comparison with other medical images, histopathology in
which a positive biopsy is taken from the tumor is the golden
standard for diagnosis. Pathological diagnosis is made by
human pathologists who observed stained specimens on glass
slides with a microscope. They carry phenotypic information
and rich structures that are significant for the diagnostics and
medicament of cancer disorders. However, it takes decades to
cultivate a senior pathologist and pathological diagnosis by
different pathologists is often inefficient and inconsistent. In
recent years, capturing the tissue characteristics in digital
formats which are also called whole-scan imaging (WSI) opens
new horizons for diagnosis in the medical field and various
convolutional neural networks (CNNs) assist WSI to diagnose
diseases. This will be a relief for the huge workload of

pathologists and many hospitals with limited space. Finally,
there is no doubt that computer-aided diagnosis of pathology is
the ultimate frontier in vision-based disease diagnosis [1, 2].
However, any technology is a double-edged sword, digital
pathology is no exception and comes with its challenges [3, 4];
WSI typically generates billion-pixel files, which also require
(digital) storage and are not easily analyzed by computer
algorithms. In recent years, artificial intelligence is dramatically
affecting the medical field.

2. Literature Review

With the accumulation of a large amount of WSI data, to make
more efficient use of these data, methods based on traditional
machine learning algorithms to analyze and diagnose histopathology
images have been proposed [5, 6], and a series of CNNs [7, 8] such as
GoogLeNet, VGG, AlexNet, which have been used to analyze WSI
digital pathological images [9] and to assist doctors in their work,
improve the working efficiency of doctors and reduce the
occurrence of misdiagnoses and missed diagnoses. However,
traditional machine learning only relies on mathematical formulas
and does not study the features of data [10]. When training
feature-rich datasets, network performance is significantly
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degraded. Unlike traditional machine learning, deep learning
consists of multiple layers of neurons to form a deep neural
network structure, which is based on the data and learns the
characteristics of the data.

A CNN is a neural network structure that has a significant
impact on medical image analysis. The deeper the convolutional
layers, the more features are extracted [11], but the more the
layers, the more unstable the network weight update, followed
by gradient disappearance and gradient explosion, which will
result in the degradation of network performance. Nowadays, the
most popular deep residual network (ResNet) [12], which also
belongs to CNNs, can solve these problems by adding residual
skip connections to plain CNNs. This operation can even stack
the network to more than 1000 layers, while still having good
performance.

Nevertheless, training a deep ResNet from scratch is hard. First,
it requires vast labeled training data that are difficult to meet in the
medical field, because it requires professional pathologists to spend a
lot of time and effort to label, even though there are few disease types
in the current public datasets [8]. Second, it is often complicated by
overfitting and convergence issues. The resolution frequently
requires constant adjustments in the architecture or learning
parameters of the network to ensure that all layers are learning
with comparable speed, which requires a lot of expertise from
algorithm engineers to ensure proper convergence. Therefore,
using pre-trained ResNet networks and conducting transfer
learning to accomplish various tasks of pathological are necessary
and helpful [13–15].

Different from other natural images, medical pathological
images have privacy, difficult to obtain. Different pathologists
make specimens by using different staining methods. And even
though the same patient is in the same part of the section, due
to the influence of external factors, the WSI images quality will
be different. So, all experiments in this paper are done on
Kaggle’s publicly available datasets, Histopathological Cancer
Detection (HCD). Since human eyes are poor at observing
millimeter-level features in tissue cells, junior, intermediate,
and senior pathologists may draw different conclusions, and
this misjudgment often makes patients miss the best treatment
time. However, residual neural networks can extract subtle
features in tissue cells by stacking very deep network
structures. Of course, it can also make mistakes, but it makes
mistakes different from human pathologists, which will benefit
the pathologists’ judgment.

2.1. Theoretical framework

Based on these phenomena as mentioned above, in this paper,
we propose transfer learning based on ResNet with 18, 34, 50, and
152 layers pre-trained on the ImageNet database which consists
of more than 1.2 million categorized images of 1000+ classes
[16, 17]. As shown in Figure 1(c) [12], there are four ResNet
network structures and residual block structures. We take two
training strategies (Figure 1(a)): (1) fine-tuning all layers and (2)
freezing most layers, which are used as feature extractors,
training only the last fully connected layer. Then, we explore the
influence of different fine-tuning methods ([18], Fine-Tuning
Convolutional Neural Networks for Biomedical Image Analysis,
n.d.) on the accuracy and answer the question of whether the
deeper the ResNet network layers, the better the model
performance.

3. Research Methodology

This section discusses topics related to this research, including
dataset and image preprocessing which use the color threshold
algorithm and augmentation operations.

3.1. Dataset description

All the experiments in this paper were conducted on the Kaggle
HCDpublic dataset, andKaggle provides non-duplicate pathological
images, whose size specifications are 96 pixels, 96 pixels, and
3-channel color images. A positive label indicates that the center 32
× 32 pixels region of a patch contains at least one pixel of tumor
tissue. Tumor tissue in the outer region of the patch does not
influence the label. Because Kaggle does not provide test labels,
only 220,025 images with labels in the training set are used in this
paper. As shown in Figure 2(b), the proportion of cancer samples
and no cancer samples in the training set’s images are close to 1:1,
which can be regarded as balanced to assess the classification
performance of each category more fairly. Figure 1(c) [12] presents
the histopathologic scans of lymph node sections in the datasets.

3.2. Image preprocessing

As shown in Figure 2(a), this is our image preprocessing process,
because there are over-bright and over-dark images in the dataset,
which is useless information and will affect the judgment of the
models. We used the color threshold algorithm to treat values below
10 pixels as over-dark and values above 245 pixels as over-bright.
A total of 7 images that met the condition were removed. I divided
220,018 pictures with labels in train in a ratio of about 8:1:1, including
176,232 training sets, 21,783 validation sets, and 22,003 testing sets.

Due to the small number of pathological images, I processed the
data with augmentation [19, 20]. Augmentation operations include
randomly cutting to the specified 90 × 90 size, random horizontal
vertical flip, the three-channel regularization, and standardization
of the data. Through data augmentation, the training set accuracy
decreases because of the diversity of data features, which is more
difficult to train, but the generalization ability of the model will
improve.

3.3. Research design

Each experiment was run using GPU RTX 3060, CUDA v11.2
(12 GB of video memory), and the architecture on the PyTorch’s
official website. Utilizing ResNet pre-trained networks, we then
analyze the performance of traditional machine learning
classification, the effectiveness of the network when using it just
as a feature extractor [21, 22], and when fine-tuning training all
layers to the medical imaging domain.

3.4. Traditional machine learning methods

Machine learning techniques ([23], Medical Imaging Using
Machine Learning and Deep Learning Algorithms, n.d.) usually
are divided into supervised learning and unsupervised learning.
The goal of supervised learning is to conclude a function that can
map the input images to their proper labels (e.g. cancer cell
images correspond to the cancer labels) well using training data.
Labels are related to a WSI or an object in WSIs [24, 25]. The
algorithms for supervised learning contain support vector machines
[26] and CNNs. However, the goal of unsupervised learning is to
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conclude a function that can represent hidden structures fromunlabeled
images. The algorithms for unsupervised learning include k-means
[27], principal component analysis, and so on. Since the HCD dataset
only has two categories and provides the labels, I chose linear
regression in a supervised learning algorithm for the classification [28].

Assuming the probability of the sample x belonging to cancer is
p(x), apparently, the probability is 1−p(x) when the sample belongs
to no cancer. The idea of logistic regression [29] is to use exponential
Equation (1) to model cancer:

cancer ¼ p xið Þ
1� p xið Þ ¼ eθ

T �x̄i ¼ ezi (1)

The given Equation (1) is characterized by continuity and
differentiability across the real number domain, and it always
produces positive values. These conditions are necessary for the
classification model, as they facilitate the creation of a sigmoid
Equation (2), which is obtained by taking the logarithm of the
aforementioned function. The sigmoid function is a real-valued
function that falls between 0 and 1, and it satisfies the previously
mentioned expression.

p xið Þ ¼ σ xið Þ ¼ 1

1þ e�Zi
(2)

Finally, as shown in Figure A1, the Receiver operating characteristic
curve (ROC) obtained using logistic regression is as follows in the
figure: It can be seen that because the linear regression of
dichotomy is learned by finding a curve as the dividing line
between the positive and negative samples and the data, so the
value of area under curve (AUC) is low.

3.5. Fine-tuning the training of all the layers

Considering the limited availability of plenty of weight
parameters and of label data in the ResNet, the pre-trained models
came from the ImageNet large natural image dataset. Training the
ResNet from a set of pre-trained weights is called fine-tuning and
has been successfully used in several domains [30–32].

Fine-tuning beginswithmigrating theweights from the pre-trained
network to the network which we are going to train. The final fully
connected layer cannot be migrated firsthand, because its number of
nodes depends on the number of categories in the dataset. In our

Figure 1
Graphical representation of the workflow and ResNet structures. (a) Workflow of the experiment. (b) Two ResNet structures:

BasicBlock is used in ResNet18 and ResNet34, but ResNet50 and ResNet152 use bottleneck. (c) Architectures for ImageNet. Building
blocks are shown in brackets, with the numbers of blocks stacked. Down-sampling is performed by conv3_1, conv4_1, and conv5_1

with a stride of 2
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Figure 2
Dataset and image preprocessing. (a) Flow chart of preprocessing. (b) Fan chart of the ratio of cancer to non-cancer. (c) A selection of
patches from each histopathologic scans of lymph sections within the Kaggle dataset. The patches are 96 × 96 pixels in size. The first

row is the cancer sample, which we call the positive sample, and the second row is the negative sample

Figure 3
The result of fine-tuning the training of all the ResNet layers. (a) The binary-class confusion matrix on classification of lymphatic
pathological tissue by four different ResNet models and the same train methods of fine-tuning training all layers (1 stands for a
positive sample, 0 stands for a negative sample). (b) The accuracy of the trainedmodel on the validation set. The abscissa is the number
of iterations, and the ordinate is the corresponding accuracy value. For ease of writing, ResNet models for fine-tuning training of all
layers are replaced by ResNet18all, ResNet34all, ResNet50all, and ResNet152all in the following paragraphs. (c) AUC curves of the

four models on the test set
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study,wemanage the 2-classification task. Therefore,we replace the last
fully connected layer of the pre-trained ResNet with a fully connected
layer with only two nodes, initialize the weight parameters of the last
layer, and then fine-tune the training of all the layers. We selected
four network structures: ResNet18, ResNet34, ResNet50, and
ResNet152 to fine-tune all layer training and analyze the results. The
fully connected layers perform dimensionality reduction in the
ultimately extracted feature maps and the SoftMax layer provides the
resultant classification probabilities for every class.

As can be seen in Figure 3(a) of the confusion matrix, the
ResNet152 has judged the no cancer samples as the worst of all
the models, and the performance is much worse compared with
the other models, although ResNet152 predicted the positive
sample as the best of all models, only slightly higher than the
other models. In Figure 3(c), from the ROC plots of the four
models, ResNet152 was the least effective of all the models, with
ResNet34 slightly higher than ResNet18 and ResNet34.

3.6. Only change and train the last layer

Generally, the underlying learning ofResNet is suitable for the low-
level image features of most visual tasks, such as texture and edges.
However, the high-level layer learns high-level semantic features, the
receptive field is larger, and the image is more integrated. Although
different kinds of datasets usually have similar low-level semantic
features, high-level semantic features are different [33–35]. Therefore,
for transfer learning, the fine-tuning of the last few layers usually
achieves good results. Nevertheless, if there is a large gap between
the kind of dataset of the pre-trained model and the dataset we need

to train, a fine-tuning of the underlying layer may also be needed. In
our experiments, we only change the last layer (here also referred to
as the full connection layer) of the four ResNet network structures,
change the 1,000 nodes into two nodes, and then initialize their
weight parameters, while the rest of the network structure and
parameters remains unchanged and acts as feature extractors before
training [36, 37].

As shown in Figure 4(a), the confusion matrix derived from
training only the last layer and predicting on the testing set
shows that although ResNet152 fc has the best prediction effect
for both positive samples and negative samples, ResNet50 fc is
about to catch up with ResNet152. Considering multiple factors,
ResNet152 fc uses several times more computing power and
memory than several other models, so people should be reluctant
to want ResNet152 fc.

4. Result

Our experimental results are summarized in Table A1. The
experimental results show that using pre-trained networks and
parameters as feature extractors, and fine-tuning all the layers of
the pre-trained network, can provide similar results for Kaggle
HCD, compared to training from scratch. Training from scratch
takes a lot of time and cost. Compared with traditional machine
learning algorithms, such as logistic regression, although machine
learning is relatively short, transfer learning training with ResNet
achieves much higher accuracy than machine learning accuracy.

Different experimental results will happen for different
transfer learning and fine-tuning methods [38]. When fine-tuning

Figure 4
The result of fine-tuning the training of the last ResNet layer. (a) The binary-class confusion matrix on classification of lymphatic

pathological tissue by four differentResNetmodels and the same trainmethods of fine-tuning the last layer (1 stands for a positive sample,
0 stands for a negative sample). (b) The accuracy of the trained model on the validation set. The abscissa is the number of iterations, and
the ordinate is the corresponding accuracy value. For ease of writing, ResNet models for fine-tuning the last full connected layer are

replaced by ResNet18 fc, ResNet34 fc, ResNet50 fc, and ResNet152 fc. (c) AUC curves of the four models on the test set
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training all layers, from Figure 3(b), the four models have almost
identical accuracy on the validation set. However, when evaluating
the testing set with the ROC curve in Figure 3(c), the deepest
network of the ResNet152 takes time, and computing power and
memory resources are several times more than the other models, but
incredibly, the ResNet152 all is slightly lower than the other model
AUC. When training only the last layer (FCN), as shown in
Figure 4(c), the AUC of ResNet18fc and ResNet34fc can only be
around 0.88, whereas the AUC of ResNet50fc and ResNet152fc can
reach 0.92. As shown in the graph of Figure 1(c) [12], probably
because BasicBlock was applied to the ResNet18, and ResNet34
models, and BottleNeck to the ResNet50, and ResNet152 models.
The same convolution structure is found for ResNet18 and ResNet34,
as are ResNet50 and ResNet152, while the other pairwise
combinations are different. But overall, trailing only the last layer
yielded lower AUC than fine-tuning all layers.

5. Discussion

Surprisingly, comprehensive fine-tuning using pre-trained
networks (trained on the ImageNet natural image dataset) can
achieve comparable results to training networks from scratch
(reference here refers to the histopathological image dataset),
which spend a considerable amount of time and resources.

Although the four models had similar accuracy on the validation
set, ResNet152 performed poorly on the testing set, indicating that
ResNet152 is most likely because the model is more complicated
and has more parameters, only tuning the parameters make it work
well on the validation set, and it is easy to cause overfitting on the
testing set. When different models have the same performance,
people tend to prefer to choose simple, smaller models. Because the
small model universality is more extensive, it is not easy to occur
over fitting, and the cost of the resources is also less.

In another training method, only the last fully connected layer is
replaced and trained, the remaining other network layers are frozen as
the feature extractor. The ResNet performance is in line with the
logic presented in the other papers that “ResNet performance will
not become at least worse as the network deepens” [12]. However,
the unparalleled precision achieved through comprehensive fine-
tuning of all ResNet layers highlights the stark disparities between
histopathological images and natural images, ultimately impeding
the transfer learning’s capacity to effectively learn the distinctive
characteristics of histopathological images.

If we have a large enough number of samples, that is, millions of
histopathology images, and if we have sufficiently advanced
computational equipment for effective training, then ResNet may
provide better results than transfer learning. While this claim has a
lot of support [9], it remains speculation in sensitive areas such as
medical imaging.

6. Conclusion

Classification of histopathological images is a useful and
challenging task in the analysis of diagnostic pathology. In transfer
learning, training only specific layers and fine-tuning training all
layers can provide good accuracy on the HCD dataset. The reason for
the relatively low former may be the large feature gap between
natural and medical images [39, 40], and the lack of a sufficient
number of medical training images. On the one hand, “the deeper the
ResNet network, the better the performance” cannot be generalized.
There are many factors affecting the network performance, including
various training methods and fine-tuning means. On the other hand,
model selection cannot blindly pursue the accuracy of the model but

also requires comprehensive memory, computational resources, and
cost considerations. Our experiments further confirm the potential of
ResNets for medical imaging applications because both fine-tuning-
specific layer ResNets and fully training all layers ResNets
outperformed the corresponding traditional machine learning. Future
work will continue to use different network structures and different
fine-tuning methods (training bottom layer, training middle layer,
training top-level, or layered training) to compare, get more data
augmentation, and collect more training samples. In short, transfer
learning has great potential for improvement [41, 42].
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Appendix

Figure A1
Logistic regression algorithm in traditional machine learning

was used to test the testing set to get the AUC curve

Table A1
The table compares the different evaluation indexes of the four
models of the two training methods and each training method on

the test set

Precision Recall F1-score Accuracy

ResNet18all 0.95903 0.94009 0.94946 0.94009
ResNet34all 0.95578 0.94570 0.95071 0.94570
ResNet50all 0.96183 0.94413 0.95290 0.94413
ResNet152all 0.96208 0.91373 0.93728 0.91373
ResNet18fc 0.82399 0.67961 0.74487 0.67961
ResNet34fc 0.80807 0.70563 0.75338 0.70563
ResNet50fc 0.86109 0.74826 0.80072 0.74826
ResNet152fc 0.86566 0.75903 0.80885 0.75903

Journal of Data Science and Intelligent Systems Vol. 2 Iss. 4 2024

220


	ResNet for Histopathologic Cancer Detection, the Deeper, the Better?
	1. Introduction
	2. Literature Review
	2.1. Theoretical framework

	3. Research Methodology
	3.1. Dataset description
	3.2. Image preprocessing
	3.3. Research design
	3.4. Traditional machine learning methods
	3.5. Fine-tuning the training of all the layers
	3.6. Only change and train the last layer

	4. Result
	5. Discussion
	6. Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


