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Abstract: Soil temperature is a key determinant of soil health and agricultural productivity, especially in arid regions vulnerable to climate
change. This study investigates the use of advanced machine learning models to predict soil temperature variations in Bustan, Uzbekistan, a
region facing significant climatic stress. Using 16 years of meteorological data, including atmospheric temperature, humidity, and wind speed,
eight machine learning models were evaluated for their ability to predict surface and subsurface (10 cm depth) soil temperatures. Among
the models tested, the bi-directional long short-term memory (Bi-LSTM) algorithm demonstrated superior predictive accuracy with R? values
exceeding 0.94 for subsurface temperatures. The two-step modeling approach utilized Bi-LSTM outputs from surface temperature predictions
to inform subsurface estimates, reflecting a novel methodology for climate-sensitive agriculture. The results provide a practical framework for
improving irrigation planning, crop yield forecasting, and sustainable land management in data-scarce arid environments. By demonstrating high
accuracy and real-world applicability, this Al-driven model offers a scalable solution for enhancing agricultural resilience in Uzbekistan and
similar contexts.
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1. Introduction For plants, the soil serves as a nutrient and water reservoir,
supports root systems, and facilitates gas exchange, a crucial function
for plant respiration [7, 8]. For animals, it provides habitats for nesting
and burrowing and food sources and also contributes to the overall
functioning of terrestrial ecosystems [9]. Microbes, including bacteria,
fungi, and actinomycetes, play an essential role in the decomposition of
organic matter and enrichment of the soil [10, 11], thereby essential for
the existence of both plants and animals. Additionally, soil contributes
significantly to human existence by supporting agriculture and
ecological balance [12, 13].

In addition, soil quality is a crucial factor that directly and
indirectly influences climatic conditions [14, 15]. Conversely, changing
climate patterns, such as irregular rainfall and temperature fluctuations,
have a significant impact on soil conditions [16, 17]. These changes are
— o o often caused due to human activities that disrupt the ecological balance.
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Soil plays an important role in maintaining ecological balance
and sustaining life [1, 2]. It consists of matters in all three states (solid,
liquid, and gas), and has numerous contributions to the natural systems
that make it essential for the functioning of the Earth. The composition
of soil includes all three aggregate states and is chemically enriched with
environmentally friendly elements such as oxygen, silicon, aluminum,
nitrogen, phosphorus, potassium, calcium, magnesium, carbon, and
hydrogen. Soil, therefore, plays a decisive role in stabilizing the
atmosphere, the lithosphere, and the hydrosphere. It supports critical
processes such as nutrient cycling, microbial activity, and ecological
balance [3, 4]. Soil cover is crucial for maintaining the balance of
natural cycles on a global scale (soil and water) [5, 6].
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temperature fluctuations [18-20]. Changes in soil temperature can
influence microbial activity [21], nutrient cycling [22], and plant growth
[23]. Therefore, the changes in soil temperatures can significantly affect
livelihood. The disruption in the ecological system should be taken
seriously when working toward a better future.

Agricultural food production is one of the global issues with
grave impact due to climate change [24-27]. As demand continues to
grow, the damage caused by various adverse climate events presents
a significant challenge to agricultural food production. Consequently,
many countries are struggling to address this issue effectively [28],
mainly due to instant but extreme climatic events. However, a slow but
steady impact on agriculture is observed owing to notable change in soil
temperatures [29-31], which is not only the surface temperatures of the
soil layer but also in the inner soil layers.

The topsoil layer (0—10 cm), which interacts most with the
external environment, is particularly susceptible to the fluctuations
of soil temperatures [32, 33]. To mitigate the impact of changing soil
temperatures, it is crucial to understand and control these fluctuations.
Proper analysis and treatment of the affected soil layers can help restore
natural ecosystems. However, this depends heavily on the quality of
data collection and analysis [34, 35].

Uzbekistan, a Central Asian country, faces significant challenges
related to soil temperature fluctuations. Its geographical location,
characterized by remoteness and distance from large bodies of water,
affects the accumulation of minerals in the soil. Problems such as soil
salinization and water scarcity, which are exacerbated by Uzbekistan’s
dry climate, further complicate the situation [36].

Fluctuations in the soil temperature also have a negative impact on
sustainability, quality of life, and agricultural productivity. Overcoming
these challenges is crucial for the development of Uzbekistan as a
country dependent on agriculture, as these soil problems could lead
to economic crises. Therefore, predicting soil temperatures both on
surface and inner soil layers are highly important.

Several attempts have been made to predict soil temperatures
using meteorological data with the aid of machine learning in many
areas of the world [37-43]. However, only Mampitiya et al. [32]
evaluated the soil temperatures, but only in Nukus, Uzbekistan.

While extensive research has highlighted the critical roles of soil
in ecological balance, plant and microbial life, and climate regulation,
there remains a significant gap in understanding the dynamic interplay
between soil temperature fluctuations and their impact on soil
functionality, particularly in arid and semi-arid regions like Uzbekistan.
Although global studies have examined the effects of climate change
on soil processes, they often generalize findings without accounting
for regional variability in soil structure, depth-specific temperature
sensitivity, and localized climate conditions. Moreover, much of the
existing literature emphasizes surface soil layers, overlooking the
deeper layers that are equally affected by long-term temperature shifts.
The slow yet profound impact of inner soil layer temperature changes
on microbial activity, nutrient cycling, and agricultural productivity is
underexplored. In regions like Uzbekistan, where agriculture is highly
climate-sensitive, and soil degradation is accelerated by salinization
and water scarcity, the lack of precise, high-resolution data on soil
temperature dynamics limits the development of targeted mitigation
strategies. Addressing this knowledge gap is essential for improving
soil management practices, ensuring food security, and enhancing
climate resilience in vulnerable agro-ecological systems. Therefore,
in this study, a predictive analysis of soil temperature in Bustan,
Uzbekistan, was conducted using advanced artificial intelligence
models. The research aims to provide actionable insights to control
and treat soil temperature and help Uzbekistan develop effective action
plans to address these challenges. In this way, this work will contribute
to sustainable agriculture and improved living standards in Uzbekistan.

2. Study Area and Data

2.1. Case study area

Bustan (41.8455° N, 60.9169° E), a city in Uzbekistan, was
selected as the case study area for this application. Bustan is of great
importance due to its geographical location, climatic conditions,
and agricultural importance, making it a valuable case study. Bustan
is the administrative center of Ellikqala district in Karakalpakstan,
Uzbekistan. Its location near bodies of water and its climatic and
agricultural characteristics make it unique in the region. Figure 1
presents the case study area.

Bustan is located in the southern part of Uzbekistan, close to
the national border. The bodies of water such as the Amu Darya River
(within a 50 km radius) and Lake Akhchakol (within a 10 km radius)
enrich the surrounding region. These water resources play a crucial role
in supporting agriculture and maintaining soil moisture in the area [44].
Compared to other parts of Uzbekistan, Bustan is better endowed with
water sources, which increases agricultural productivity.

The region is also located in a non-tropical desert zone with
unique vegetation. The Ustyurt Plateau, the Amu Darya Delta,
the northwestern Kyzylkum Desert, and low mountainous zones
characterize its natural geography. In particular, the Ustyurt Plateau
is characterized by gypsum, salt, and sand deserts with vegetation
consisting of gypsophytes, halophytes, and psammophytes. These
diverse landscapes reflect the complexity of the region’s ecological and
geographical systems [45].

Agriculture is the backbone of Bustan’s economy, with cotton
being the most important crop. Nearby water sources greatly support
the region’s agricultural systems, providing better soil maintenance
and higher nutrient levels than in other parts of Uzbekistan [46]. These
conditions also promote rich microbial activity in the soil, which
is crucial for sustaining crop production. The fertile soil and water
availability make Bustan an agricultural center of the country.

Unique climatic conditions prevail in Bustan. Daytime temperatures
rise significantly, while nighttime temperatures fall relatively little,
resulting in significant temperature fluctuations. Rainfall is unevenly
distributed throughout the year, with months of little or no rainfall followed
by a gradual increase in the middle of the year, which peaks before
decreasing again [47]. Humidity in Bustan varies due to its proximity
to bodies of water and desert areas. For example, from June to August,
the city heavily experiences desert conditions that increase temperature,
which are exacerbated by wind conditions. The interplay of these climatic
factors creates a complex and dynamic environment in Bustan.

The soil in the Bustan region has different characteristics due
to its geography and climate. The Amu Darya delta is dominated by
alluvial meadows, forest soils, and dry lake beds. The Ustyurt Plateau
has barren Shorhok (salty) soils, while grey-brown soils predominate

Figure 1
Geographical location of Bustan, Uzbekistan
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in Kyziljar and Tokmoktog, and sandy desert soils can be found in the
dry soil of the Aral Sea [32, 48]. Soil temperatures in Bustan fluctuate
throughout the year and are influenced by seasonal changes and climatic
conditions. Above and below-ground layers experience alternating
rises and falls in temperature. These fluctuations are closely related
to seasonal shifts and the influence of nearby bodies of water, which
directly affect soil moisture and nutrient levels. Seasonal temperature
fluctuations increase microbial activity and nutrient cycling in warmer
months, but slow them down during colder months. These temperature
fluctuations are mitigated by near bodies of water as they maintain
higher soil moisture, which is essential for agriculture.

2.2. Data collection

Soil temperatures at the surface and 10 cm below the surface,
atmospheric temperatures (minimum, maximum, and mean), relative
humidity (mean value, minimum value), and wind speed (m/s)
were collected from the Meteorological Center of the Republic of
Karakalpakstan, Uzbekistan. Data were collected covering 16 years
from 2008 to 2023. The meteorological center has recorded three
data samples for each month. Therefore, there are 576 data points
in the analysis. Of the parameters influential to the soil temperature,
precipitation was not included in this analysis due to its non-significant
occurrence. The area was not receiving significant rainfall (on average
2-8 mm/month) (rainfall statistics at https://www.weather-atlas.com/
en/uzbekistan/bustan-climate).

3. Machine Learning Model Algorithms Used

In this study, eight machine learning algorithms were used for
predictions. A brief description of each machine learning algorithms
used are given below.

1) XGBoost is a highly efficient algorithm known for its
speed, accuracy, and error minimization using the decision tree-
based ensemble methods. It outperforms traditional algorithms such
as Random Forest, support vector machines (SVMs), and neural
networks and shows exceptional predictive power in various domains.
For example, XGBoost has achieved 98.49% accuracy in bioactivity
prediction [49], 99.9% accuracy in material science applications
[50], and superior performance in urban land use classification [51].
In soil studies, XGBoost has shown high accuracy in predicting soil
salinity [52] and soil organic matter using remote sensing data [53].
Its ensemble learning approach ensures robust predictions while
maintaining interpretability, making it invaluable for geotechnical and
environmental modeling [54].

2) CatBoost specializes in the efficient handling of categorical
data and offers advanced feature selection mechanisms and reduced
computational costs. It is ideally suited for environmental applications
such as soil moisture and precipitation prediction. Studies highlight
CatBoost’s ability to integrate atmospheric and soil parameters,
achieving R? values of up to 0.9935 for soil moisture prediction [55].
It also outperforms algorithms such as XGBoost and ridge regression
in precipitation modeling and achieves high accuracy metrics for daily
and weekly forecasts [56]. This adaptability to complex temporal and
spatial patterns makes CatBoost a reliable tool for agricultural water
management and urban meteorology [57].

3) Long short-term memory (LSTM) networks, a class of
recurrent neural networks (RNNs), are characterized by the recognition
of sequential data patterns and long-term dependencies. They have been
used extensively in hydrology and have outperformed models such as
SAC-SMA and SWAT in predicting precipitation and runoff [58, 59].
Their interpretability is consistent with hydrological principles and
reveals insights into the dynamics of water storage, such as soil moisture

and snow [60]. Despite challenges such as data scarcity and limitations
in predicting low flows, the integration of physical principles such as
mass balance increases their reliability in unconfined catchments [61].

4) Bidirectional LSTM (Bi-LSTM) extends its capabilities by
processing data bidirectionally and capturing both past and future
dependencies. This bidirectional architecture has demonstrated superior
accuracy in hydrology and soil science, particularly in the modelling
of precipitation and runoff. For example, Bi-LSTM models augmented
with Seq2Seq learning have significantly improved Nash-Sutcliffe
efficiency and error metrics [62]. Applications include the downscaling
of satellite soil moisture data and geotechnical engineering, where
Bi-LSTM consistently outperforms traditional models in complex
scenarios [63—65]. The model consists of five stacked Bi-LSTM layers,
with hidden units progressively reduced from 128 to 32 to capture both
high- and low-level temporal features. Each Bi-LSTM layer is followed
by Batch Normalization and Dropout (0.3) to improve generalization
and training stability. The final output is produced through a Dense
layer with a single unit.

5) Artificial neural networks (ANNs) are versatile tools capable of
modeling nonlinear dynamics and noisy data, outperforming traditional
hydrological models such as ARMAX and SAC-SMA [66]. They have
proven successful in precipitation forecasting and soil erosion studies,
where their integration with advanced methods, such as bootstrap
aggregation and genetic algorithms, improves accuracy and spatial
precision [67]. Robust training algorithms, such as the Levenberg-
Marquardt method, further optimize the performance of ANNs [68].

6) Linear regression models with regularization, such as Ridge,
Lasso, and ElasticNet, are effective against multicollinearity and
overfitting. Lasso uses L1 regularization for feature selection, while
Ridge uses L2 regularization to stabilize the coefficient estimates.
ElasticNet combines these strengths, making it more robust for
complex datasets [69]. These models have shown promise in soil
and environmental studies as they balance predictive power and
computational efficiency.

7) Least absolute shrinkage and selection operator (Lasso)
regression represents the fusion of statistical modeling and machine
learning. Consequently, the model can anticipate outcomes and
understand the relationships and patterns seen in the data. Because of the
controllability of the model, predictions can be refined and customized
for a particular scenario. Ridge regression employs the L2 Normalization
strategy, while Lasso uses the L1 Normalization technique.

8) ElasticNet addresses the shortcomings of Ridge regression
and Lasso regression. By using insights from the literature on Lasso
and Ridge regression, ElasticNet enhances the model’s regularization.
Generally, for this study, this state-of-the-art model is more suitable
because of its feature selection, robustness, and higher performance
over a vast number of dataset variables [69].

4. Methodology

The machine learning algorithms stated above were used to
develop prediction models. Surface soil temperature was precited using
three climatic factors: atmospheric temperature, relative humidity, and
wind speed. Figure 2, which was generated using OpenAl, showcases
the prediction schematics of this study.

4.1. Data cleaning

The collected data were subjected to a cleaning process to
minimize the noise of the dataset. Noises in atmospheric data are
common due to various errors in data gathering and data transfer,
among others. Missing values are a significant drawback. Thus, an
expert in the environmental sciences conducted a sensitive analysis, and
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Figure 2
Schematics of soil temperature prediction
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the dataset was prepared with no missing values (removing the missing
data periods). In addition, different mathematical bases such as standard
deviations, median absolute deviations, and z-score tests were carried
out and reduced the noises of the dataset.

4.2. Mathematical model development

Two mathematical formulations as shown in Equation (1) and
Equation (2) were developed using eight machine learning algorithms.
Equation (1) was developed to predict the surface soil temperature,
whereas Equation (2) showcases the mathematical formulation for
the soil temperature at 10 cm level. Equation (2) uses the results from
Equation (1) in modeling.

Tsurface = Mndion(ATMawy ATMin1 ATMean1 RHMin1 RHMeana WS) (1)

where AT stands for atmospheric temperature, RH stands for relative
humidity, and WS is the wind speed.

T@lOcmdepth = -FunCtion(ATMaz’ ATMm7 ATMearu (2)
RHMin» RHMeany WS: Tsurface)

4.3. Machine learning model development

The development and optimization processes are illustrated in
Figure 3(a), showcasing the overall machine learning methodology. To
mitigate issues of overfitting and underfitting, a systematic approach
integrating predictive data evaluation and hyperparameter tuning was
employed. Specifically, grid search and k-fold cross-validation techniques
were implemented to enhance model efficiency and performance.

Hyperparameter tuning was performed through an iterative
process aimed at optimizing model performance. Initially, the
models were trained using default hyperparameter settings, and their
performance was evaluated based on predefined metrics. In cases
of identified errors or suboptimal outcomes, subsequent rounds of
hyperparameter tuning were conducted, involving adjustment and

Figure 3
Model-development pipeline and hyperparameter-tuning
workflow. (a) Overall methodology; (b) flowchart of the tuning
procedure

(a) =

re-evaluation of parameters. This iterative cycle continued until the
models achieved optimal performance, thereby ensuring robust and
accurate predictions. The hyperparameter tuning process is detailed in
Figure 3(b).



Journal of Data Science and Intelligent Systems

Vol. 00

Iss. 00 2025

The best algorithm selected was used to predict the soil
temperature levels at a depth of 10 cm. The prediction was carried out
in two methods as shown below.

1) Measured data were fed into Equation (2) for the prediction.

Figure 4
Correlation matrix among parameters

Air Temp Mean - 1.00 0.95 0.97 0.93 0.90

Air Temp Max - 0.95 1.00 0.92 0.92 0.85
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-0.50
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2) Measured data for atmospheric parameters were fed with predicted
soil surface temperatures into Equation (2).

4.4. Evaluation of prediction models

Widely used evaluation matrices (Regression coefficient (R?),
root mean square error (RMSE), mean absolute error (MAE), and mean
square error (MSE)) were used in evaluating and identifying the best
prediction models. More details of this evaluation matrices can be
found in article by Mampitiya et al. [32].

5. Results and Discussion

Figure 4 presents the correlation matrix obtained for parameters
used in the development of machine learning models. Even though it
is linear, the heat map showcases some interesting correlations among
considered parameters, including positive correlations from air to soil
temperatures. As expected, when atmospheric temperature rises, soil
temperature also rises. However, relative humidity shows a negative
correlation with both air and soil temperatures. Nevertheless, wind
speed has a weak relationship with all other parameters.

Table 1 presents the performance of each machine learning

o @«“@Q v‘«f“ & ¢ ¢S algorithm in predicting soil temperatures at both surface and 10 cm
v ° : depth. The Bi-LSTM algorithm outperformed other algorithms in
Table 1
Performance evaluation matrices

Model R? MSE MAE RMSE

Maximum soil XGBoost 0.7969 46.1784 5.4932 6.7954
temperature CatBoost 0.8023 44.9466 5.5737 6.7042
LSTM 0.7498 56.875 6.5097 7.5415
ANN 0.4764 119.0591 9.0597 109114

Bi-LSTM 0.8497 34.1754 5.0605 5.8459

Ridge 0.7234 62.8953 7.1696 7.9306

Lasso 0.7286 61.7029 7.2562 7.8551

ElasticNet 0.7223 63.1335 7.2212 7.9456

Model R? MSE MAE RMSE

Minimum soil XGBoost 0.9759 3.2626 1.309 1.8062
temperature CatBoost 0.9812 2.5457 1.1624 1.5955
LSTM 0.9629 5.0298 1.6965 2.2427

ANN 0.984 2.1744 1.1679 1.4745

Bi-LSTM 0.9862 1.8679 1.0101 1.3667

Ridge 0.9835 2.2354 1.1532 1.4951

Lasso 0.9809 2.584 1.2748 1.6074

ElasticNet 0.9816 2.4955 1.2469 1.5797

Model R? MSE MAE RMSE

At 10 cm depth XGBoost 0.9263 12.463 2.0772 3.5303
CatBoost 0.9271 12.3308 2.1383 3.5115

LSTM 0.935 10.2657 2.0806 3.204

ANN 0.8821 17.7499 3.0853 4213

Bi-LSTM 0.9427 9.6938 1.9424 3.113

Ridge 0.9047 16.1331 3.0866 4.0166

Lasso 0.9057 15.9594 3.0569 3.9949

ElasticNet 0.9049 16.0862 3.0777 4.0107
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Figure 5
Comparison of soil temperature with real-world data
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predicting soil temperatures for maximum, minimum, and 10 cm depth.
The algorithm showcased the highest coefficient of determination,
with minimum MSE and minimum absolute errors. However, all other
algorithms performed well with high (0.7 or above) R? values with
relatively low MSE and MAE values.

The models were trained and optimized on a computer equipped
with an M2 Neural Engine processor (8 cores) and 16GB RAM. Due
to effective optimization and the low complexity of the dataset, training
times were consistently below 3 minutes, with inference times under
30 seconds on equivalent hardware. As these models are not intended
for deployment on low-power devices and the time differences were
negligible, training and inference times were not considered primary
evaluation criteria.

Therefore, the Bi-LSTM algorithm was used to predict soil
temperature levels at 10 cm depth. Figure 5 presents the comparative
analysis of the soil temperature levels at 10 cm depth with real-world
data (measured). The purple curve serves as the baseline for predictions.
The red curve is the predicted soil temperature at 10 cm depth using the
measured parameters. The marked points in the curves demonstrate the
models’ capability of following the trends of thermal variability.

The actual temperature data were compared with reconstructed
or predicted versions. The curves closely follow the measured soil
temperature curve, but it has some slightly higher temperature peaks.
The red curve (Input of real-world data II) shows the overall shape
of the purple curve. The orange curve (Input of predicted data III)
mimics the overall shape of the purple curve, with slightly sharper
peaks and transitions, indicating that it may be a reconstruction of the
model or prediction based on learned patterns from real-world data.
Nevertheless, the close alignment of the orange curve with the blue
curve suggests that the predicted input (III) is reasonably accurate in
capturing the general pattern and magnitude of temperature variation.
Minor deviations may occur due to the limitations of the predictive
model. Therefore, the prediction models developed based on Bi-LSTM
algorithm can be considered for real world implementation.

6. Conclusion

In this study, climatic factors were directly employed in the
developed models to predict the minimum and maximum temperatures
of the soil surface. Based on climatic data combined with the minimum
and maximum surface temperatures, the soil temperature at 10 cm
depth was predicted using Bi-LSTM. Bi-LSTM was able to precisely
identify the climatic patterns and soil temperature patterns with a
higher R? score above 0.9. Furthermore, to validate the process,

different plots were used to identify whether the models were capable
of functioning well with the real-world data. With the following of
proper techniques on data handling, machine learning model usage,
and validation, this research work concludes that with the existing data,
the soil temperature in Bustan, Uzbekistan, is predictable. Therefore,
this research work can be utilized to increase crop yields, maintain the
irrigation systems properly, and identify the variations that are possible
with climatic variations. This research work successfully illustrates that
the real-world implication of this model can work precisely with real-
time data.

7. Limitations and Future Work

This research offers several advantages that warrant further
exploration. Notably, users are not required to measure soil
temperatures directly with instruments; instead, they can make
predictions utilizing climatic data. However, a significant limitation is
the restricted availability of data necessary to broaden the range of input
parameters, as well as the lack of comprehensive soil type information,
both of which constrain the model’s accuracy and applicability. Future
development of this research includes the potential to create a real-time
soil thermal modeling system integrated with smart sensors. The results
will be accessible through a customer interface (web app). Additionally,
a forecasting model for early warning applications can also be
developed. These advancements will significantly support farmers and
policymakers in making informed decisions, thereby contributing to
long-term sustainability.
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