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Abstract: Soil temperature is a key determinant of soil health and agricultural productivity, especially in arid regions vulnerable to climate 
change. This study investigates the use of advanced machine learning models to predict soil temperature variations in Bustan, Uzbekistan, a 
region facing significant climatic stress. Using 16 years of meteorological data, including atmospheric temperature, humidity, and wind speed, 
eight machine learning models were evaluated for their ability to predict surface and subsurface (10 cm depth) soil temperatures. Among 
the models tested, the bi-directional long short-term memory (Bi-LSTM) algorithm demonstrated superior predictive accuracy with R² values 
exceeding 0.94 for subsurface temperatures. The two-step modeling approach utilized Bi-LSTM outputs from surface temperature predictions 
to inform subsurface estimates, reflecting a novel methodology for climate-sensitive agriculture. The results provide a practical framework for 
improving irrigation planning, crop yield forecasting, and sustainable land management in data-scarce arid environments. By demonstrating high 
accuracy and real-world applicability, this AI-driven model offers a scalable solution for enhancing agricultural resilience in Uzbekistan and 
similar contexts.
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1. Introduction
Soil plays an important role in maintaining ecological balance 

and sustaining life [1, 2]. It consists of matters in all three states (solid, 
liquid, and gas), and has numerous contributions to the natural systems 
that make it essential for the functioning of the Earth. The composition 
of soil includes all three aggregate states and is chemically enriched with 
environmentally friendly elements such as oxygen, silicon, aluminum, 
nitrogen, phosphorus, potassium, calcium, magnesium, carbon, and 
hydrogen. Soil, therefore, plays a decisive role in stabilizing the 
atmosphere, the lithosphere, and the hydrosphere. It supports critical 
processes such as nutrient cycling, microbial activity, and ecological 
balance [3, 4]. Soil cover is crucial for maintaining the balance of 
natural cycles on a global scale (soil and water) [5, 6]. 

For plants, the soil serves as a nutrient and water reservoir, 
supports root systems, and facilitates gas exchange, a crucial function 
for plant respiration [7, 8]. For animals, it provides habitats for nesting 
and burrowing and food sources and also contributes to the overall 
functioning of terrestrial ecosystems [9]. Microbes, including bacteria, 
fungi, and actinomycetes, play an essential role in the decomposition of 
organic matter and enrichment of the soil [10, 11], thereby essential for 
the existence of both plants and animals. Additionally, soil contributes 
significantly to human existence by supporting agriculture and 
ecological balance [12, 13].

In addition, soil quality is a crucial factor that directly and 
indirectly influences climatic conditions [14, 15]. Conversely, changing 
climate patterns, such as irregular rainfall and temperature fluctuations, 
have a significant impact on soil conditions [16, 17]. These changes are 
often caused due to human activities that disrupt the ecological balance.

Soil temperature, a key factor in soil functionality, is influenced 
by climatic conditions such as varying precipitation, air pollution, and 
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temperature fluctuations [18–20]. Changes in soil temperature can 
influence microbial activity [21], nutrient cycling [22], and plant growth 
[23]. Therefore, the changes in soil temperatures can significantly affect 
livelihood. The disruption in the ecological system should be taken 
seriously when working toward a better future.

Agricultural food production is one of the global issues with 
grave impact due to climate change [24–27]. As demand continues to 
grow, the damage caused by various adverse climate events presents 
a significant challenge to agricultural food production. Consequently, 
many countries are struggling to address this issue effectively [28], 
mainly due to instant but extreme climatic events. However, a slow but 
steady impact on agriculture is observed owing to notable change in soil 
temperatures [29–31], which is not only the surface temperatures of the 
soil layer but also in the inner soil layers. 

The topsoil layer (0–10 cm), which interacts most with the 
external environment, is particularly susceptible to the fluctuations 
of soil temperatures [32, 33]. To mitigate the impact of changing soil 
temperatures, it is crucial to understand and control these fluctuations. 
Proper analysis and treatment of the affected soil layers can help restore 
natural ecosystems. However, this depends heavily on the quality of 
data collection and analysis [34, 35].

Uzbekistan, a Central Asian country, faces significant challenges 
related to soil temperature fluctuations. Its geographical location, 
characterized by remoteness and distance from large bodies of water, 
affects the accumulation of minerals in the soil. Problems such as soil 
salinization and water scarcity, which are exacerbated by Uzbekistan’s 
dry climate, further complicate the situation [36]. 

Fluctuations in the soil temperature also have a negative impact on 
sustainability, quality of life, and agricultural productivity. Overcoming 
these challenges is crucial for the development of Uzbekistan as a 
country dependent on agriculture, as these soil problems could lead 
to economic crises. Therefore, predicting soil temperatures both on 
surface and inner soil layers are highly important. 

Several attempts have been made to predict soil temperatures 
using meteorological data with the aid of machine learning in many 
areas of the world [37–43]. However, only Mampitiya et al. [32] 
evaluated the soil temperatures, but only in Nukus, Uzbekistan. 

While extensive research has highlighted the critical roles of soil 
in ecological balance, plant and microbial life, and climate regulation, 
there remains a significant gap in understanding the dynamic interplay 
between soil temperature fluctuations and their impact on soil 
functionality, particularly in arid and semi-arid regions like Uzbekistan. 
Although global studies have examined the effects of climate change 
on soil processes, they often generalize findings without accounting 
for regional variability in soil structure, depth-specific temperature 
sensitivity, and localized climate conditions. Moreover, much of the 
existing literature emphasizes surface soil layers, overlooking the 
deeper layers that are equally affected by long-term temperature shifts. 
The slow yet profound impact of inner soil layer temperature changes 
on microbial activity, nutrient cycling, and agricultural productivity is 
underexplored. In regions like Uzbekistan, where agriculture is highly 
climate-sensitive, and soil degradation is accelerated by salinization 
and water scarcity, the lack of precise, high-resolution data on soil 
temperature dynamics limits the development of targeted mitigation 
strategies. Addressing this knowledge gap is essential for improving 
soil management practices, ensuring food security, and enhancing 
climate resilience in vulnerable agro-ecological systems. Therefore, 
in this study, a predictive analysis of soil temperature in Bustan, 
Uzbekistan, was conducted using advanced artificial intelligence 
models. The research aims to provide actionable insights to control 
and treat soil temperature and help Uzbekistan develop effective action 
plans to address these challenges. In this way, this work will contribute 
to sustainable agriculture and improved living standards in Uzbekistan.

2. Study Area and Data

2.1. Case study area 
Bustan (41.8455° N, 60.9169° E), a city in Uzbekistan, was 

selected as the case study area for this application. Bustan is of great 
importance due to its geographical location, climatic conditions, 
and agricultural importance, making it a valuable case study. Bustan 
is the administrative center of Ellikqala district in Karakalpakstan, 
Uzbekistan. Its location near bodies of water and its climatic and 
agricultural characteristics make it unique in the region. Figure 1 
presents the case study area.

Bustan is located in the southern part of Uzbekistan, close to 
the national border. The bodies of water such as the Amu Darya River 
(within a 50 km radius) and Lake Akhchakol (within a 10 km radius) 
enrich the surrounding region. These water resources play a crucial role 
in supporting agriculture and maintaining soil moisture in the area [44]. 
Compared to other parts of Uzbekistan, Bustan is better endowed with 
water sources, which increases agricultural productivity.

The region is also located in a non-tropical desert zone with 
unique vegetation. The Ustyurt Plateau, the Amu Darya Delta, 
the northwestern Kyzylkum Desert, and low mountainous zones 
characterize its natural geography. In particular, the Ustyurt Plateau 
is characterized by gypsum, salt, and sand deserts with vegetation 
consisting of gypsophytes, halophytes, and psammophytes. These 
diverse landscapes reflect the complexity of the region’s ecological and 
geographical systems [45].

Agriculture is the backbone of Bustan’s economy, with cotton 
being the most important crop. Nearby water sources greatly support 
the region’s agricultural systems, providing better soil maintenance 
and higher nutrient levels than in other parts of Uzbekistan [46]. These 
conditions also promote rich microbial activity in the soil, which 
is crucial for sustaining crop production. The fertile soil and water 
availability make Bustan an agricultural center of the country.

Unique climatic conditions prevail in Bustan. Daytime temperatures 
rise significantly, while nighttime temperatures fall relatively little, 
resulting in significant temperature fluctuations. Rainfall is unevenly 
distributed throughout the year, with months of little or no rainfall followed 
by a gradual increase in the middle of the year, which peaks before 
decreasing again [47]. Humidity in Bustan varies due to its proximity 
to bodies of water and desert areas. For example, from June to August, 
the city heavily experiences desert conditions that increase temperature, 
which are exacerbated by wind conditions. The interplay of these climatic 
factors creates a complex and dynamic environment in Bustan.

The soil in the Bustan region has different characteristics due 
to its geography and climate. The Amu Darya delta is dominated by 
alluvial meadows, forest soils, and dry lake beds. The Ustyurt Plateau 
has barren Shorhok (salty) soils, while grey-brown soils predominate 
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 Figure 1
Geographical location of Bustan, Uzbekistan
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in Kyziljar and Tokmoktog, and sandy desert soils can be found in the 
dry soil of the Aral Sea [32, 48]. Soil temperatures in Bustan fluctuate 
throughout the year and are influenced by seasonal changes and climatic 
conditions. Above and below-ground layers experience alternating 
rises and falls in temperature. These fluctuations are closely related 
to seasonal shifts and the influence of nearby bodies of water, which 
directly affect soil moisture and nutrient levels. Seasonal temperature 
fluctuations increase microbial activity and nutrient cycling in warmer 
months, but slow them down during colder months. These temperature 
fluctuations are mitigated by near bodies of water as they maintain 
higher soil moisture, which is essential for agriculture.

2.2. Data collection
Soil temperatures at the surface and 10 cm below the surface, 

atmospheric temperatures (minimum, maximum, and mean), relative 
humidity (mean value, minimum value), and wind speed (m/s) 
were collected from the Meteorological Center of the Republic of 
Karakalpakstan, Uzbekistan. Data were collected covering 16 years 
from 2008 to 2023. The meteorological center has recorded three 
data samples for each month. Therefore, there are 576 data points 
in the analysis. Of the parameters influential to the soil temperature, 
precipitation was not included in this analysis due to its non-significant 
occurrence. The area was not receiving significant rainfall (on average 
2–8 mm/month) (rainfall statistics at https://www.weather-atlas.com/
en/uzbekistan/bustan-climate).

3. Machine Learning Model Algorithms Used
In this study, eight machine learning algorithms were used for 

predictions. A brief description of each machine learning algorithms 
used are given below.

1) XGBoost is a highly efficient algorithm known for its 
speed, accuracy, and error minimization using the decision tree-
based ensemble methods. It outperforms traditional algorithms such 
as Random Forest, support vector machines (SVMs), and neural 
networks and shows exceptional predictive power in various domains. 
For example, XGBoost has achieved 98.49% accuracy in bioactivity 
prediction [49], 99.9% accuracy in material science applications 
[50], and superior performance in urban land use classification [51]. 
In soil studies, XGBoost has shown high accuracy in predicting soil 
salinity [52] and soil organic matter using remote sensing data [53]. 
Its ensemble learning approach ensures robust predictions while 
maintaining interpretability, making it invaluable for geotechnical and 
environmental modeling [54].

2) CatBoost specializes in the efficient handling of categorical 
data and offers advanced feature selection mechanisms and reduced 
computational costs. It is ideally suited for environmental applications 
such as soil moisture and precipitation prediction. Studies highlight 
CatBoost’s ability to integrate atmospheric and soil parameters, 
achieving R² values of up to 0.9935 for soil moisture prediction [55]. 
It also outperforms algorithms such as XGBoost and ridge regression 
in precipitation modeling and achieves high accuracy metrics for daily 
and weekly forecasts [56]. This adaptability to complex temporal and 
spatial patterns makes CatBoost a reliable tool for agricultural water 
management and urban meteorology [57].

3) Long short-term memory (LSTM) networks, a class of 
recurrent neural networks (RNNs), are characterized by the recognition 
of sequential data patterns and long-term dependencies. They have been 
used extensively in hydrology and have outperformed models such as 
SAC-SMA and SWAT in predicting precipitation and runoff [58, 59]. 
Their interpretability is consistent with hydrological principles and 
reveals insights into the dynamics of water storage, such as soil moisture 

and snow [60]. Despite challenges such as data scarcity and limitations 
in predicting low flows, the integration of physical principles such as 
mass balance increases their reliability in unconfined catchments [61].

4) Bidirectional LSTM (Bi-LSTM) extends its capabilities by 
processing data bidirectionally and capturing both past and future 
dependencies. This bidirectional architecture has demonstrated superior 
accuracy in hydrology and soil science, particularly in the modelling 
of precipitation and runoff. For example, Bi-LSTM models augmented 
with Seq2Seq learning have significantly improved Nash-Sutcliffe 
efficiency and error metrics [62]. Applications include the downscaling 
of satellite soil moisture data and geotechnical engineering, where 
Bi-LSTM consistently outperforms traditional models in complex 
scenarios [63–65]. The model consists of five stacked Bi-LSTM layers, 
with hidden units progressively reduced from 128 to 32 to capture both 
high- and low-level temporal features. Each Bi-LSTM layer is followed 
by Batch Normalization and Dropout (0.3) to improve generalization 
and training stability. The final output is produced through a Dense 
layer with a single unit.

5) Artificial neural networks (ANNs) are versatile tools capable of 
modeling nonlinear dynamics and noisy data, outperforming traditional 
hydrological models such as ARMAX and SAC-SMA [66]. They have 
proven successful in precipitation forecasting and soil erosion studies, 
where their integration with advanced methods, such as bootstrap 
aggregation and genetic algorithms, improves accuracy and spatial 
precision [67]. Robust training algorithms, such as the Levenberg-
Marquardt method, further optimize the performance of ANNs [68].

6) Linear regression models with regularization, such as Ridge, 
Lasso, and ElasticNet, are effective against multicollinearity and 
overfitting. Lasso uses L1 regularization for feature selection, while 
Ridge uses L2 regularization to stabilize the coefficient estimates. 
ElasticNet combines these strengths, making it more robust for 
complex datasets [69]. These models have shown promise in soil 
and environmental studies as they balance predictive power and 
computational efficiency.

7) Least absolute shrinkage and selection operator (Lasso) 
regression represents the fusion of statistical modeling and machine 
learning. Consequently, the model can anticipate outcomes and 
understand the relationships and patterns seen in the data. Because of the 
controllability of the model, predictions can be refined and customized 
for a particular scenario. Ridge regression employs the L2 Normalization 
strategy, while Lasso uses the L1 Normalization technique.

8) ElasticNet addresses the shortcomings of Ridge regression 
and Lasso regression. By using insights from the literature on Lasso 
and Ridge regression, ElasticNet enhances the model’s regularization. 
Generally, for this study, this state-of-the-art model is more suitable 
because of its feature selection, robustness, and higher performance 
over a vast number of dataset variables [69].

4. Methodology
The machine learning algorithms stated above were used to 

develop prediction models. Surface soil temperature was precited using 
three climatic factors: atmospheric temperature, relative humidity, and 
wind speed. Figure 2, which was generated using OpenAI, showcases 
the prediction schematics of this study.

4.1. Data cleaning
The collected data were subjected to a cleaning process to 

minimize the noise of the dataset. Noises in atmospheric data are 
common due to various errors in data gathering and data transfer, 
among others. Missing values are a significant drawback. Thus, an 
expert in the environmental sciences conducted a sensitive analysis, and 
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the dataset was prepared with no missing values (removing the missing 
data periods). In addition, different mathematical bases such as standard 
deviations, median absolute deviations, and z-score tests were carried 
out and reduced the noises of the dataset.

4.2. Mathematical model development
Two mathematical formulations as shown in Equation (1) and 

Equation (2) were developed using eight machine learning algorithms. 
Equation (1) was developed to predict the surface soil temperature, 
whereas Equation (2) showcases the mathematical formulation for 
the soil temperature at 10 cm level. Equation (2) uses the results from 
Equation (1) in modeling.

where AT stands for atmospheric temperature, RH stands for relative 
humidity, and WS is the wind speed.

4.3. Machine learning model development
The development and optimization processes are illustrated in 

Figure 3(a), showcasing the overall machine learning methodology. To 
mitigate issues of overfitting and underfitting, a systematic approach 
integrating predictive data evaluation and hyperparameter tuning was 
employed. Specifically, grid search and k-fold cross-validation techniques 
were implemented to enhance model efficiency and performance.

Hyperparameter tuning was performed through an iterative 
process aimed at optimizing model performance. Initially, the 
models were trained using default hyperparameter settings, and their 
performance was evaluated based on predefined metrics. In cases 
of identified errors or suboptimal outcomes, subsequent rounds of 
hyperparameter tuning were conducted, involving adjustment and 

re-evaluation of parameters. This iterative cycle continued until the 
models achieved optimal performance, thereby ensuring robust and 
accurate predictions. The hyperparameter tuning process is detailed in 
Figure 3(b).

(1)

(2)

4

 Figure 2
Schematics of soil temperature prediction

 Figure 3
Model-development pipeline and hyperparameter-tuning 

workflow. (a) Overall methodology; (b) flowchart of the tuning 
procedure
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The best algorithm selected was used to predict the soil 
temperature levels at a depth of 10 cm. The prediction was carried out 
in two methods as shown below.

1) Measured data were fed into Equation (2) for the prediction. 

2) Measured data for atmospheric parameters were fed with predicted 
soil surface temperatures into Equation (2).

4.4. Evaluation of prediction models
Widely used evaluation matrices (Regression coefficient (R2), 

root mean square error (RMSE), mean absolute error (MAE), and mean 
square error (MSE)) were used in evaluating and identifying the best 
prediction models. More details of this evaluation matrices can be 
found in article by Mampitiya et al. [32].

5. Results and Discussion
Figure 4 presents the correlation matrix obtained for parameters 

used in the development of machine learning models. Even though it 
is linear, the heat map showcases some interesting correlations among 
considered parameters, including positive correlations from air to soil 
temperatures. As expected, when atmospheric temperature rises, soil 
temperature also rises. However, relative humidity shows a negative 
correlation with both air and soil temperatures. Nevertheless, wind 
speed has a weak relationship with all other parameters.

Table 1 presents the performance of each machine learning 
algorithm in predicting soil temperatures at both surface and 10 cm 
depth. The Bi-LSTM algorithm outperformed other algorithms in 
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 Figure 4
Correlation matrix among parameters

Model R2 MSE MAE RMSE
Maximum soil 
temperature

XGBoost 0.7969 46.1784 5.4932 6.7954
CatBoost 0.8023 44.9466 5.5737 6.7042

LSTM 0.7498 56.875 6.5097 7.5415
ANN 0.4764 119.0591 9.0597 10.9114

Bi-LSTM 0.8497 34.1754 5.0605 5.8459
Ridge 0.7234 62.8953 7.1696 7.9306
Lasso 0.7286 61.7029 7.2562 7.8551

ElasticNet 0.7223 63.1335 7.2212 7.9456
Model R2 MSE MAE RMSE

Minimum soil 
temperature

XGBoost 0.9759 3.2626 1.309 1.8062
CatBoost 0.9812 2.5457 1.1624 1.5955

LSTM 0.9629 5.0298 1.6965 2.2427
ANN 0.984 2.1744 1.1679 1.4745

Bi-LSTM 0.9862 1.8679 1.0101 1.3667
Ridge 0.9835 2.2354 1.1532 1.4951
Lasso 0.9809 2.584 1.2748 1.6074

ElasticNet 0.9816 2.4955 1.2469 1.5797
Model R2 MSE MAE RMSE

At 10 cm depth XGBoost 0.9263 12.463 2.0772 3.5303
CatBoost 0.9271 12.3308 2.1383 3.5115

LSTM 0.935 10.2657 2.0806 3.204
ANN 0.8821 17.7499 3.0853 4.213

Bi-LSTM 0.9427 9.6938 1.9424 3.113
Ridge 0.9047 16.1331 3.0866 4.0166
Lasso 0.9057 15.9594 3.0569 3.9949

ElasticNet 0.9049 16.0862 3.0777 4.0107

Table 1
Performance evaluation matrices
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predicting soil temperatures for maximum, minimum, and 10 cm depth. 
The algorithm showcased the highest coefficient of determination, 
with minimum MSE and minimum absolute errors. However, all other 
algorithms performed well with high (0.7 or above) R2 values with 
relatively low MSE and MAE values.

The models were trained and optimized on a computer equipped 
with an M2 Neural Engine processor (8 cores) and 16GB RAM. Due 
to effective optimization and the low complexity of the dataset, training 
times were consistently below 3 minutes, with inference times under 
30 seconds on equivalent hardware. As these models are not intended 
for deployment on low-power devices and the time differences were 
negligible, training and inference times were not considered primary 
evaluation criteria.

Therefore, the Bi-LSTM algorithm was used to predict soil 
temperature levels at 10 cm depth. Figure 5 presents the comparative 
analysis of the soil temperature levels at 10 cm depth with real-world 
data (measured). The purple curve serves as the baseline for predictions. 
The red curve is the predicted soil temperature at 10 cm depth using the 
measured parameters. The marked points in the curves demonstrate the 
models’ capability of following the trends of thermal variability.

The actual temperature data were compared with reconstructed 
or predicted versions. The curves closely follow the measured soil 
temperature curve, but it has some slightly higher temperature peaks. 
The red curve (Input of real-world data II) shows the overall shape 
of the purple curve. The orange curve (Input of predicted data III) 
mimics the overall shape of the purple curve, with slightly sharper 
peaks and transitions, indicating that it may be a reconstruction of the 
model or prediction based on learned patterns from real-world data. 
Nevertheless, the close alignment of the orange curve with the blue 
curve suggests that the predicted input (III) is reasonably accurate in 
capturing the general pattern and magnitude of temperature variation. 
Minor deviations may occur due to the limitations of the predictive 
model. Therefore, the prediction models developed based on Bi-LSTM 
algorithm can be considered for real world implementation.

6. Conclusion
In this study, climatic factors were directly employed in the 

developed models to predict the minimum and maximum temperatures 
of the soil surface. Based on climatic data combined with the minimum 
and maximum surface temperatures, the soil temperature at 10 cm 
depth was predicted using Bi-LSTM. Bi-LSTM was able to precisely 
identify the climatic patterns and soil temperature patterns with a 
higher R2 score above 0.9. Furthermore, to validate the process, 

different plots were used to identify whether the models were capable 
of functioning well with the real-world data. With the following of 
proper techniques on data handling, machine learning model usage, 
and validation, this research work concludes that with the existing data, 
the soil temperature in Bustan, Uzbekistan, is predictable. Therefore, 
this research work can be utilized to increase crop yields, maintain the 
irrigation systems properly, and identify the variations that are possible 
with climatic variations. This research work successfully illustrates that 
the real-world implication of this model can work precisely with real-
time data.

7. Limitations and Future Work
This research offers several advantages that warrant further 

exploration. Notably, users are not required to measure soil 
temperatures directly with instruments; instead, they can make 
predictions utilizing climatic data. However, a significant limitation is 
the restricted availability of data necessary to broaden the range of input 
parameters, as well as the lack of comprehensive soil type information, 
both of which constrain the model’s accuracy and applicability. Future 
development of this research includes the potential to create a real-time 
soil thermal modeling system integrated with smart sensors. The results 
will be accessible through a customer interface (web app). Additionally, 
a forecasting model for early warning applications can also be 
developed. These advancements will significantly support farmers and 
policymakers in making informed decisions, thereby contributing to 
long-term sustainability.
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