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Abstract: Correlation-based template matching (CTM) is widely used for object detection because of its simplicity and effectiveness in scenarios 
where grayscale features are sufficient. However, CTM often underperforms when color is a crucial distinguishing factor. To address this limitation, 
we propose contextual hierarchical composite template matching (CH-CTM), a color-histogram-enhanced CTM algorithm that integrates color 
information into a traditional correlation framework. CH-CTM augments the correlation index with red, green, and blue histogram comparisons 
to improve robustness in color-sensitive contexts. We evaluated CH-CTM using five diverse traffic video datasets that include various lighting 
conditions, vehicle types, sizes, and colors. Twelve experiments were conducted using standard performance metrics. Results demonstrated notable 
improvements over baseline CTM: CH-CTM achieved a peak accuracy of 98.30%, an average accuracy of 92.43%, and average precision of 92%. 
These findings confirm the importance of incorporating color information into template matching, which expands CTM’s applicability in complex 
real-world scenarios, particularly in traffic surveillance and object tracking.
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1. Introduction
Vehicular movement monitoring is a fundamental component of 

modern transportation infrastructure and urban planning that supports 
applications such as traffic flow analysis, congestion management, and 
law enforcement operations. In this domain, vehicle tracking  in traffic 
videos has become a crucial capability. Among the various methodologies 
used for vehicular movement monitoring, template-based approaches 
remain widely used because of their versatility, computational efficiency, 
and practical effectiveness in real-world traffic scenarios.

Template-based vehicle tracking involves constructing a reference 
model—or template—that encapsulates the key visual features of 
target vehicles in video frames [1]. Subsequent frames are analyzed by 
matching against these templates to detect and track vehicles over time. 
Traditional template-matching methods are valued for their relatively 
straightforward implementation, real-time processing capabilities, and 
adaptability to diverse environmental conditions [2].

Recent advancements have significantly enriched template-
based tracking, with research exploring feature-enhanced templates, 
deep-learning-driven template generation, adaptive template update 
strategies, and hybrid approaches that combine template matching 
with techniques such as particle filtering and background subtraction 
[3, 4]. Despite the growth of deep learning in object detection and 
tracking, template-matching methods remain relevant, particularly in 
applications requiring interpretable, low-latency, and infrastructure-
constrained solutions.

In this context, we introduce the contextual hierarchical composite 
template matching (CH-CTM) framework, which enhances traditional 

template-based tracking by incorporating hierarchical contextual 
information and composite template strategies. Unlike conventional 
methods that rely on static or single-scale templates, CH-CTM dynamically 
manages multiple templates across different spatial hierarchies, allowing 
for improved robustness to scale changes, occlusions, and complex 
urban environments. Furthermore, rather than replacing deep-learning-
based detection methods, CH-CTM is positioned as a lightweight, 
complementary solution suited for scenarios where deep learning models 
are impractical because of computational or data constraints.

As shown in Figure 1, CH-CTM operates in a vehicular 
monitoring framework designed for real-time traffic surveillance. 
Templates of target vehicles are registered in a centralized database. 
An operator selects one or more templates, which are then processed 
by the CH-CTM algorithm using live video streams from fixed urban 
landmarks such as traffic lights, bridges, and roundabouts. CH-CTM 
continuously searches for matches in these streams. Once a positive 
match is detected, notifications are sent to registered clients, updating 
their operational maps and enabling the central police command to take 
appropriate actions, such as dispatching a patrol unit to intercept and 
verify the identified vehicle.

2. Literature Review
This section presents a review of several closely related works. 

Vehicle tracking in traffic videos has garnered significant interest due 
to its pivotal role in various applications such as traffic management, 
surveillance, and autonomous driving systems. Among diverse 
approaches, template-based methods have emerged as prominent 
techniques for vehicle tracking. This literature review aims to provide 
an extensive overview of template-based vehicle tracking techniques 
in traffic video analysis, focusing on their methodologies, strengths, 
limitations, and future directions.
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Template matching is a fundamental approach in vehicle tracking, 
wherein a template representing a target object (car) is compared with 
each frame in a video sequence. Rahman et al. [1] demonstrated the 
effectiveness of sum of squared differences (SSD) template matching 
for real-time vehicle tracking in traffic videos. For feature-based 
templates, Dallalzadeh and Guru [2] proposed a feature-based template-
matching method that used color histograms and edge features, leading 
to improved performance in complex traffic scenarios with occlusions 
and illumination changes. In deep-learning-based templates, a deep-
learning-based template learning method was introduced [3], where a 
convolutional neural network extracted informative features from car 
images for precise tracking in traffic videos. In the context of template 
update strategies, some studies proposed a dynamic template update 
mechanism based on online learning that allowed the template to adapt 
gradually to variations in car appearance caused by factors such as 
occlusions and viewpoint changes. Yang et al. [5] presented a multiview 
template fusion technique that integrated information from multiple 
cameras to create a holistic representation of the tracked car, enabling 
robust tracking across different viewpoints. The work of these authors 
represents multiview templates. For template matching in challenging 
conditions, Kawahara et al. [6] introduced a scale-adaptive template-
matching algorithm based on contours that dynamically adjusted the size 
of the template to maintain accurate tracking performance under various 
scales. Real-time implementation may be necessary, as demonstrated 
by Shinde et al. [7], who developed an efficient template-based vehicle 
tracking system using parallel computing techniques. Their approach 
enabled real-time performance even on embedded platforms with limited 
computational resources. Hybrid approaches were reported by Orun 
[8]. The study presented a high-speed tracking method for overlapped 
vehicles using template matching based on contour information. The 
approach emphasized real-time performance and addressed challenges 
such as vehicle overlap, achieving robust vehicle tracking in challenging 
traffic conditions. Velazquez-Pupo et al. [9] presented a template-based 
vehicle tracking method with effective occlusion-handling mechanisms 
that enhanced tracking performance in congested traffic scenarios. Choi 
et al. [10] proposed a robust feature-based template-matching approach 
for vehicle tracking, demonstrating improved performance in scenarios 
with occlusions and various lighting conditions. Han et al. [11] proposed 
a template-based vehicle-tracking method with deep learning feature 

extraction, leveraging the discriminative power of deep neural networks 
for accurate tracking in challenging environments. Qureshi et al. [12] 
proposed a real-time vehicle-tracking system that integrated template 
matching with scale-invariant feature transform (SIFT) features, 
achieving robust tracking performance in traffic videos with occlusions 
and scale variations. The method presented by Patel and Sharma [13] 
used a template-based vehicle-tracking approach that combined optical 
flow with Shi-Tomasi corner detection and tracking, enabling effective 
performance in dynamic traffic scenes without relying on complex deep 
learning models. Sun et al. [14] proposed a data-fusion-based algorithm 
for multitarget tracking in digital videos. The authors primarily used 
histogram-based template matching to correctly resolve the association 
problem when multiple targets are present. This technique was reported 
to be effective in urban environments. Chantara et al. [15] proposed an 
adaptive scale template-matching algorithm for vehicle tracking that 
dynamically adjusted the template size to accommodate variations in 
target scale. Another work presented a template-based vehicle-tracking 
method with adaptive template updates using deep learning techniques, 
enhancing tracking robustness in challenging environments.

Template-based vehicle tracking in traffic video analysis 
is a dynamic and rapidly evolving research area with substantial 
advancements achieved in recent years. The integration of advanced 
features, deep learning models, and adaptive update strategies has 
shown promising results in enhancing tracking performance. However, 
challenges such as occlusions, scale variations, and real-time processing 
requirements persist [16, 17], warranting further research efforts. 
Future endeavors should focus on developing more robust and efficient 
template-based tracking algorithms to address the evolving demands of 
traffic surveillance and intelligent transportation systems.

3. Theoretical Framework
This section presents the technical foundation of the algorithms 

and techniques used.

3.1. Template matching
Correlation-based template matching (CTM)  is a widely used 

technique for finding specific image patches (templates) in a large 
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 Figure 1
Framework of the proposed algorithm
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image. It operates by calculating the similarity between the template and 
subregions of the large image, identifying locations where the similarity 
is highest. This makes it useful for tasks such as object detection, 
visual tracking, and image registration. The following presentation 
of the template-matching algorithm is based on the study reported by 
Gonzalez and Woods and that by Ukil and Aggarwal [18, 19].

The core concept lies in comparing pixel intensities between the 
template and the image patches. The following two primary metrics 
were used by Rababaah [20]:

1) Cross-correlation (CC)
This measures the linear relationship between pixel intensities, as 

shown in Equation (1):

where
 f = input image,
 G = the template,
m,n = pixel coordinates,
dx, dy = delta increments in shift operations.

2) Normalized CC (NCC)
This normalizes CC to be less sensitive to variations in brightness 

and contrast, as shown in Equation (2):

Higher values of both CC and NCC indicate higher similarity 
between the template and the image patch. The location with the highest 
value is considered the best match. The advantages of NCC include 
simplicity, computational efficiency, and invariance to changes in 
brightness and contrast (with NCC). The limitations of NCC include 
sensitivity to geometric transformations (scaling and rotation) and 
a tendency to produce false positives due to similar image features. 
Several techniques aim to address the limitations, including multiscale 
matching that searches for the template at different scales to overcome 
scaling variations. Phase-only correlation uses the phase information of 
Fourier transforms for rotation invariance, and feature-based matching 
extracts distinctive features from the template and image for better 
matching, but it may be computationally expensive. 

3.2. Histogram similarity
Histogram similarity models are essential tools for measuring the 

likeness between histograms, commonly used in various fields such as 
image processing, computer vision, and data mining. Four of the most 
popular histogram similarity models include histogram intersection, 
chi-square distance, the Bhattacharyya coefficient, and Euclidean 
distance.

Histogram intersection measures the similarity between two 
histograms by computing the intersection of their respective histograms. 
Mathematically, histogram intersection similarity is calculated as the 

sum of the minimum values of the corresponding bins between two 
histograms [21], as shown in Equation (3):

The chi-square distance quantifies the difference between 
two histograms by calculating the SSD between corresponding bins, 
normalized by the sum of the bin frequencies [22], as shown in 
Equation (4):

The Bhattacharyya coefficient measures the overlap between two 
histograms. It is computed as the sum of the square root of the product 
of the frequencies in corresponding bins [23], as shown in Equation (5):

Euclidean distance is another histogram similarity model that 
calculates the distance between two histograms in the multidimensional 
space. It is computed as the square root of the SSD between 
corresponding bin values [24], as shown in Equation (6):

These models provide different perspectives on histogram 
similarity, allowing for versatile applications in various domains.

3.3. The proposed algorithm
The schematic of the proposed algorithm is depicted in Figure 2 

and described hereafter. Live video: in this stage, a video signal is fed 
to the system to search for a specific template.  To ensure efficiency, 
each video feed should be assigned one processing machine, which may 
be a computer or an embedded microcontroller. The algorithm handles 
one video frame at a time. Therefore, the video stream is segmented 
into frames, and each individual frame is processed separately. The first 
operation applied on the frame is the grayscale conversion from RGB, 
as shown in Figure 3. The same operation is applied to the template 
image (shown in Figure 4) because CTM requires an input image of 
grayscale space.

For template matching, Equation (2) is used to calculate the 
similarity index of NCC between the current frame and the template 
image. This is shown in Figure 5, where the grayscale version of the 
resulting map appears on the left, and for better visual clarity, a Jit map 
is produced on the right. Furthermore, a 3D version of the same result 
is shown in Figure 6. The 3D version clearly shows the high peaks that 
represent the candidate locations of the target template.

The algorithm requires the correlation matching index (CMI) to 
be calibrated in the interval CMI  [0, 1].  The CMI is the confidence 
threshold for detecting the presence of the template in the current frame. 
In this study, the CMI was set to 0.7.
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For a reliable detection, our algorithm further supports 
the initial detection using the traditional NCC by applying RGB 
histograms to verify the color distribution of the detected template.

4

 Figure 3
RGB to grayscale conversion of the raw input frame

 Figure 4
RGB to grayscale conversion of the raw template image

 Figure 5
Top = grayscale version of the NCC map. Bottom = Jit map ver-

sion of the NCC map

Figure 2
The block diagram of the proposed algorithm
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The RGB histograms of the template and the detected region in the 
current frame are normalized. This operation is shown in Figure 7. As 
shown in the presented sample histograms, we set the number of bins 
to 16, which was effective. Although a higher number of bins would 
produce a higher resolution of color scales, we chose to keep it at a 
manageable size to maintain processing efficiency.

The histogram similarity index (HSI) was then calculated 
between each pair of R, G, and B histograms of the template and the 
current frame using Equation (7).

where
HSI = histogram similarity index,
h1, h2 = the first and second calculated histograms of the template 

and current frame, 
H = the height of the template image (pixels),
W = the width of the template image (pixels).

H*W denotes the size of the template, which is the same as that 
of the detected region. This plays an important role as a normalizing 
factor to map the calculated HSI to the interval [0, 1].

HSI must also be calibrated in the interval HSI  [0, 1]. During 
our experiments, we found that a threshold of 0.025 was an effective 
level to avoid false positives. It is important to note that HSI is a 
distance-based index. Therefore, the lower it is, the better it is between 
two histogram vectors. As for the CMI, it is a correlation-based index. 
Therefore, the higher it is, the better it is between two images.

CH-CTM_Algorithm:

Input:
- Video stream V
- Template image T
- Target color histogram H_T (computed from T)
- Matching threshold τ_match
- Histogram similarity threshold τ_hist

Output:
- List of detected bounding boxes B over frames

Procedure:

1. Initialize:
a. Compute color histogram H_T for the template T.
b. Initialize an empty list B to store detections.

2. For each frame F in video stream V:
a. Slide a window W of size T over F with a predefined stride.
b. For each window W:

i. Extract the image patch P corresponding to W.
ii. Perform template matching:

- Compute matching score S_TM between T and P (e.g., 
using normalized cross-correlation).

iii. If S_TM ≥ τ_match:
- Compute color histogram H_P of patch P.
- Compute histogram similarity score S_HIST between 

H_T and H_P (e.g., using Bhattacharyya distance or histogram 
intersection).

- If S_HIST ≥ τ_hist:
- Add W to list B as a valid detection.

3. Post-processing (optional):
a. Apply Non-Maximum Suppression (NMS) to remove 

overlapping detections.

4. Return B.

4. Experimental Work
This section has four subsections: Data, Experiments, Evaluation 

metrics, and Observations on the results. 

4.1. Data
We used five different datasets to test the proposed algorithm. 

The five datasets were archived videos of publicly available resources 
from studies [25–28]. The five datasets collectively included 4,763 
frames . Figure 8 shows samples from each dataset. The datasets were 
selected to represent various real-world environments. These facts are 
detailed in Table 1.
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 Figure 6
3D version of the Jit map of the result shown in Figure 5

 Figure 7
Left = R, G, and B histograms of the template. Right = R, G, and 

B histograms of the detected region in the frame
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4.2. Experiments
We conducted 15 different experiments and used typical 

performance metrics to evaluate CH-CTM. In each of the experiments and 
for each frame, two indices were calculated to verify positive detection, 
namely, correlation similarity index (CSI) and HSI. Each experiment 
represented a scenario from the videos in the datasets. The two indices 
were plotted on the same chart to compare their levels with the calibrated 
thresholds for positive detection. CSI was plotted without modifications, 
but HSI was amplified for a meaningful visual representation. For 
example, Figure 9 shows a scenario of approximately 400 frames. 
Frames 170–230 showed a positive detection of the target object. The 15 
experiments are shown in Figures 9–23. The analysis of the experimental 
results will be presented and discussed in the following sections.

4.3. Evaluation metrics
Before presenting the testing results, the evaluation metrics are 

introduced first. A confusion matrix (CM) is a typical analysis tool 
used to evaluate the performance of classification models and is a 
square matrix that contains performance results across all classes. CM 
measures the following four basic metrics: true positive (TP), the model 
accurately predicts a positive class; true negative (TN), the model 
accurately predicts a negative class; false positive (FP), the model 
inaccurately predicts a positive class; and false negative (FN), the 
model inaccurately predicts a negative class. On the basis of these four 
basic measures, five more metrics are computed as follows: accuracy 
measures the ratio of the correctly classified (P or N) samples to the 
overall population. Accuracy is calculated using Equation (8).

Precision measures the ratio of the correctly detected positives to 
all detected positive samples, as shown in Equation (9).

Recall (or sensitivity) measures the ratio of the correctly retrieved 
positive samples to the total number of actual positive samples, as 
shown in Equation (10).

Specificity measures the ratio of the correctly retrieved negative 
samples to the total number of actual negative samples, as shown in 
Equation (11).

F1-score measures the harmonic mean of precision and recall, 
which indicates the robustness of the classification model, as shown in 
Equation (12).

6

# Reference
Camera 
situation

Tested 
frames Angle

1 [26] Fixed 404 Bird’s eye
2 [27] Drone 451 Top view
3 [28] Drone 631 Top view
4 [29] Fixed 1,681 Bird’s eye
5 [27] Fixed 1,506 Top view

Table 1
Description of the datasets used

 Figure 8
Samples of all five datasets used to test the proposed algorithm

(8)

(9)

(10)

(11) (12)



 Figure 10
Testing results of Dataset_1 and Template_2
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 Figure 9
Testing results of Dataset_1 and Template_1

 Figure 11
Testing results of Dataset_1 and Template_3

 Figure 12
Testing results of Dataset_2 and Template_1

 Figure 13
Testing results of Dataset_2 and Template_2

 Figure 14
Testing results of Dataset_2 and Template_3
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 Figure 15
Testing results of Dataset_3 and Template_1

 Figure 16
Testing results of Dataset_3 and Template_2

 Figure 17
Testing results of Dataset_3 and Template_3

 Figure 18
Testing results of Dataset_4 and Template_1

 Figure 19
Testing results of Dataset_4 and Template_2

 Figure 20
Testing results of Dataset_4 and Template_3
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To calculate all of these performance metrics, a CM was generated 
for each experiment. Because there were six datasets, we produced six 
CMs, as shown in Figures 24–26. The metrics used in our study can be 
found in the study reported by Rababaah and Wolfer [29].

Tables 2 and 3 summarize the calculated performance metrics of 
all CMs in Figures 24–26. Table 1 presents the first three CMs (CM1–
CM3), and Table 2 presents the remaining three CMs (CM4–CM6).

To highlight the detection and tracking accuracy and precision 
of the proposed algorithm CH-CTM, the results from all experiments 
are aggregated in Figures 27 and 28, respectively. Furthermore, the two 
figures show the following statistical measures of tracking accuracy: 
mean, STD, max, and min values.

 Figure 21
Testing results of Dataset_5 and Template_1

 Figure 22
Testing results of Dataset_5 and Template_2

 Figure 23
Testing results of Dataset_5 and Template_3

 Figure 24
Top: Dataset_1 CM; bottom: Dataset_2 CM
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4.4. Observations on the results
Several important observations regarding the performance and 

limitations of the proposed algorithm CH-CTM were documented 
throughout the experimental evaluation.

The algorithm demonstrated strong tracking reliability, achieving 
an average accuracy of 92.43% across diverse traffic scenarios. High 
precision (average, 92%) and favorable recall, specificity, and F1-score 
metrics further confirmed the consistency of the detection performance. 
However, a critical analysis revealed that although the overall accuracy 
was high, certain scenarios exposed the limitations of the approach.

For example, the lowest recorded accuracy (81.20%) occurred 
in Scenario 9, where the target vehicle’s white color was confounded 

by the presence of multiple similarly colored objects in the scene. 
This illustrates a key weakness of relying on simple color histograms 
(HSI) for verification: in complex or cluttered environments, color 

10

 Figure 26
Left: Dataset_4 CM; right: additional CM

 Figure 25
Left: Dataset_3 CM; right: Dataset_4 CM

Metric CM1 CM2 CM3
Accuracy 0.95 0.95 0.92 0.92 0.91 0.91
Precision 0.93 0.96 0.89 0.94 0.92 0.90
Recall 0.96 0.93 0.94 0.90 0.90 0.92
Specificity 0.93 0.96 0.90 0.94 0.92 0.90
F1-score 0.94 0.95 0.91 0.92 0.91 0.91

Table 2
Performance metrics of the CMs of Dataset_1 to Dataset_3
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alone may be insufficient for robust disambiguation. Although vehicles 
with distinctive colors were more reliably tracked—as shown in 
several datasets—the approach struggled when color uniqueness was 
low, suggesting a need for more discriminative or multimodal feature 
descriptors in future work.

From a computational perspective, the algorithm maintained 
reasonable runtime efficiency across datasets of varying resolutions 
(336 × 256 to 854 × 480). The additional computational cost introduced 
by CH-CTM’s enhancements (approximately 6% overhead) was 
relatively low. However, high-resolution inputs and the need for 
repeated histogram calculations may present challenges for real-time 
deployment, particularly on resource-constrained hardware. Therefore, 
although feasible for many real-time applications, deployment in 
large-scale or high-throughput traffic monitoring systems may require 
optimization or hardware acceleration.

Importantly, the fixed nature of the templates was another 
limitation. As the method relied on preselected target templates, 
it was less adaptable to dynamic changes such as significant 
vehicle appearance alterations, occlusions, or novel vehicle entries. 

Furthermore, performance under partial or full occlusion was not 
systematically evaluated, but qualitative observations suggested that 
tracking robustness degraded when targets were heavily occluded. 
Future work should consider integrating adaptive template update 
mechanisms or occlusion handling strategies.

Regarding generalizability, the current experiments covered 
a moderate range of conditions but primarily involved urban traffic 
environments with moderate vehicle densities. The performance of 
CH-CTM under more extreme conditions, such as heavy congestion, 
nighttime scenes, adverse weather, or nonurban settings, remains 
uncertain. Further testing using more diverse datasets is essential to 
comprehensively evaluate and enhance the model’s generalization 
capabilities.

Finally, although color histograms provide a lightweight second-
level confirmation in CH-CTM, their descriptive power is limited. 
Complex traffic scenes often involve lighting variations, shadows, 
reflections, and subtle color distortions, all of which can compromise 
histogram reliability. Future extensions could benefit from more 
sophisticated color models or the incorporation of texture, edge, or 
deep feature representations to enhance discrimination in challenging 
scenarios.

The results of the proposed algorithm were compared with those 
of the grayscale version of CTM. Table 4 presents the results of all 
six experiments. Figure 29 depicts the performance of grayscale CTM. 
The proposed algorithm outperformed grayscale CTM based on the 
comparison of their mean and STD accuracy. The results showed that 

Metric CM1 CM2 CM3
Accuracy 0.90 0.90 0.89 0.89 0.97 0.97
Precision 0.92 0.88 0.90 0.87 0.96 0.97
Recall 0.88 0.92 0.87 0.90 0.97 0.96
Specificity 0.92 0.88 0.90 0.87 0.96 0.97
F1-score 0.90 0.90 0.89 0.88 0.96 0.97

Table 3
Performance metrics of the CMs of Dataset_4 to Dataset_6

Metric CM1 CM2 CM3
Accuracy 0.95 0.90 0.97 0.78 0.82 0.98
Precision 0.95 0.98 0.70 0.94 0.92 0.90
Recall 0.92 0.85 0.94 0.89 0.81 0.89
Specificity 0.89 0.98 0.79 0.98 0.98 0.83
F1-score 0.97 0.90 0.88 0.89 0.91 0.91

Metric CM4 CM5 CM6
Accuracy 0.80 0.83 0.80 0.78 0.98 0.94
Precision 0.89 0.75 0.79 0.87 0.76 0.97
Recall 0.85 0.96 0.93 0.80 0.88 0.90
Specificity 0.65 0.88 0.83 0.90 0.86 0.97
F1-score 0.96 0.79 0.76 0.95 0.96 0.89

Table 4
Performance metrics of Dataset_1 to Dataset_6 for gray-

scale-based CTM

 Figure 27
Aggregated accuracy results of all 12 experiments

 Figure 28
Aggregated precision results of all 12 experiments

 Figure 29
Aggregated results of all 12 experiments for grayscale-based CTM
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the proposed algorithm achieved a 5% increase [(92.43 – 88)/88 × 
100% = 5%] in accuracy compared with grayscale CTM. For stability, 
represented by STD, the proposed algorithm achieved a remarkable 
59.6% reduction [(7.9 − 4.95)/4.95 × 100% = 59.6%]. 

Overall, although the CH-CTM algorithm demonstrated 
promising results and notable improvements compared with baseline 
template matching, its practical deployment should consider these 
limitations. Future work will aim to address these challenges to better 
align the system with the demands of real-world traffic monitoring 
applications.

5. Conclusion
This study proposed an enhancement to the traditional CTM 

algorithm. The enhanced algorithm, called CH-CTM, integrates color 
information into the standard CTM process, which originally relies solely 
on grayscale images. Specifically, CH-CTM computes color histograms 
for the red, green, and blue channels of both the target template and 
the candidate regions in video frames. These histograms serve as a 
secondary validation layer to reinforce detections initially identified by 
CTM. The proposed algorithm follows a two-stage validation process: 
first, a candidate region must meet a correlation threshold, and second, it 
must pass a histogram similarity threshold to be confirmed as a positive 
detection. To evaluate CH-CTM, five diverse traffic video datasets were 
utilized, and 15 experiments were conducted and analyzed.

The experimental results demonstrated that CH-CTM achieved 
reliable and consistent performance across all evaluated metrics. Notably, 
the method achieved an average accuracy of 92.43% and precision of 
92%. Additional metrics, including specificity, recall, and F1-score, had 
satisfactory results. A recognized limitation of the proposed algorithm 
was its real-time processing capability. The average processing time 
per frame was approximately 0.5 s, tested using MATLAB 2018 on a 
system with Windows 7, an Intel i5 2.67 GHz processor (2 physical 
and 4 logical cores), and 8 GB RAM. This runtime limitation could 
potentially be mitigated by leveraging higher-performance computing 
environments or optimized implementations. Future research directions 
include a comparative analysis of CH-CTM against feature-based 
methods and deep-learning-based tracking approaches to further 
benchmark its strengths and identify areas for improvement. Enhancing 
runtime efficiency and exploring adaptive template update mechanisms 
are also promising avenues for extending this work.
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