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Abstract: With the widespread use of electric vehicles, greenhouse gas emissions can be reduced. Thus, a solution can be proposed to minimize 
the environmental impact of transportation. However, one of the most important obstacles to the widespread use of electric vehicles is the limited 
driving range and the accompanying challenges such as range anxiety. Researchers have proposed various methods and algorithms to accurately 
predict the remaining driving range of electric vehicles to address these challenges. The study is aimed at analyzing and comparing studies that 
focus on remaining driving range estimation using mathematical-based methods, statistics, and machine learning algorithms. The study includes a 
comprehensive exploration of the datasets, methods, algorithms, and performance metrics used in the selected studies. It was found that machine 
learning algorithms, especially Extreme Gradient Boosting and Random Forest, are frequently used for remaining driving range estimation, 
followed by statistical models such as multiple linear regression. In addition, most of the datasets used are obtained from real-time electric vehicle 
data. This highlights the importance of real-time data for developing accurate prediction models. In addition, performance metrics such as Root 
Mean Square Error, Mean Absolute Error, and Coefficient of Determination are widely used metrics to evaluate the performance of the models. 
The findings obtained within the scope of this study provide valuable information about the current status of remaining driving range estimation 
research for electric vehicles and suggest potential future studies in this area.
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1. Introduction
The development of industrialization has benefited humanity, but 

it has also brought harm to the natural ecosystem. Damage to the natural 
ecosystem can be measured by the carbon footprint. Carbon footprint 
can be defined as a certain quantity of gaseous emissions that are 
related to changes in climate and relevant to human consumption and 
production [1]. It has gained widespread usage in the public discussion 
about sustainability and prevention strategies against threats caused 
by climate change. At this point, various international regulations 
have been made to minimize damage to the natural ecosystem. One of 
them is the International Environmental Policy which covers various 
issues, including biological variety preservation, forests, oceans, 
and soil conservation, as well as climate protection and sustainable 
energy policy. Furthermore, with the coming into force of the Kyoto 
Protocol, industrialized countries have committed to decreasing 
greenhouse gas emissions, leading to significant progress in reducing 
environmental pollution [2]. When it comes to OECD countries whose 
aim is decreasing greenhouse gas emissions, different countries have 
different sources of emission changes. Austria, France, Italy, Spain, 
the Czech Republic, and the Slovak Republic have greenhouse gas 
emission reductions due to the composition effect, which can be done 
by increasing the portion of clean sectors. The method effect, which 
is brought about by the technical advancement in emission intensities, 
helps the mitigation of greenhouse gases in Denmark, Latvia, Poland, 

Sweden, and the UK. For differential emission reduction, these findings 
have important consequences [3].  

The transportation sector is responsible for a significant amount 
of greenhouse gas emissions within the European Union, accounting 
for 25% of total emissions, and this percentage is consistently rising 
[4]. To address this issue, electric vehicles (EVs) are a practical and 
efficient alternate for conventional vehicles in the transportation sector. 
EVs produce minimal noise and emit no exhaust gas, thanks to their use 
of electric motors and battery energy [5]. Undoubtedly, EVs will benefit 
the world’s ecosystem by reducing carbon emissions compared with 
conventional internal combustion engines [6]. However, it is important 
to note that there are also some disadvantages associated with EVs. 
When the studies addressing the disadvantages of EVs are examined, 
according to Bedogni et al. [7], in a recent report conducted by the US 
Department of Energy, approximately 70% of the human population 
would not purchase an EV because of the term called driver range 
anxiety, which is a doubt about not having decent charging stations close 
to users whenever they want and since Li-ion batteries offer significantly 
less range than conventional vehicles [8]. Increasing battery capacity 
will be key to overcoming range anxiety but will also result in bigger, 
heavier, and more expensive batteries due to the relationship between 
battery capacity and maximum range [9]. Ultimately, according to the 
research conducted in reference [10], electric car batteries are highly 
sensitive to temperature changes. This means that extreme temperature 
variations can significantly reduce the performance of EVs.  

In order to overcome many of these challenges mentioned 
above, there is a need for accurate “remaining driving range (RDR) 
estimation.” As shown in Figure 1, the methods proposed in the 
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literature for RDR estimation can be given in three categories: 
mathematical methods, statistical models, and machine learning 
methods. To give a superficial definition of these approaches, statistical 
models are one of the approaches used to establish a mathematical 
relationship with given values. Linear regression, one of the statistical 
models, is practical for predicting a computable output. Machine 
learning methods train models how to use data more effectively and 
efficiently. Nevertheless, the data input enters the algorithm and 
outputs a prediction.

Other reviews in the literature were examined to identify and 
improve the deficiencies in their narratives and to present a more 
comprehensive review. In this context, in the reviewed papers, Chen 
et al. [11] and Gurusamy et al. [12], energy prediction models for EVs 
are categorized into two main categories: rule-based and data-driven 
models, framing them in a general structure. The approach used for 
classification focuses on how the models work. Rule-based models 
perform the prediction process using fixed rules, while data-driven 
models rely on learning processes from datasets. In this context, this 
classification method helps in understanding the basic structure of the 
models but it does not provide sufficient insight into the details of their 
functionality and inner workings. Marzbani et al. [13] classify energy 
consumption prediction models into linear, nonlinear, and hybrid 
categories. This classification method focuses on the mathematical 
structure of the models. However, similar to the previous method, it 
is also insufficient in explaining the inner workings of the models. 
Our classification, based on mathematical, statistical, and machine 
learning models, offers a deeper and more comprehensive perspective. 
With this approach, the mathematical foundations of the model, as 
well as its learning processes and interactions with data, are taken 
into account.

The contributions of our study are as follows:

•  Providing RDR researchers with detailed information about the 
datasets to give them an idea of where they can access them, 
which features they can use, or which dataset they can use by 
providing detailed information.

•  To give researchers an idea about the method they will use by 
examining the methods used in the literature.

•  To give an idea about the performance metrics that can be used to 
evaluate the methods presented by the researchers by examining 
the performance metrics used in the studies.

In light of this information, we aim to guide and facilitate 
researchers working on range estimation in EVs.

2. Literature Review
The literature search was conducted utilizing the extensive 

resources available in the Web of Science database. Careful selection 
of keywords was made to optimize the search query, ensuring that 
all relevant articles available were captured. After compiling a list of 
potential candidates as shown in Figure 2, filtering was performed to 
ensure that only the most appropriate articles were selected for further 
analysis. TS represents title search, and TI represents title inclusion. 
The search queries utilized were as follows:

1.	 Search query for RDR: (TS= (EV OR electric* vehicle) AND (TS= 
(estimation OR prediction OR forecast OR model OR measurement 
))) AND (TI=(range)) AND (TS= (Machine learning OR ML 
Deep learning OR DL Artificial neural network OR AI Regression 
analysis OR Statistical modeling OR Predictive modeling OR 
Data-driven modeling OR Data analysis OR Time series analysis 
OR Forecasting OR Optimization OR Simulation OR Stochastic 
modeling OR Statistical modeling OR Mathematical modeling)).

2.	 Search query for energy consumption: (TS=(EV OR electric* 
vehicle) AND (TS=(estimation OR prediction OR forecast OR 
model OR measurement ))) AND (TI=(energy consumption)) AND 
(TS=(Machine learning OR ML Deep learning OR DL Artificial 
neural network OR AI Regression analysis OR Statistical modeling 
OR Predictive modeling OR Data-driven modeling OR Data 
analysis OR Time series analysis OR Forecasting OR Optimization 
OR Simulation OR Stochastic modeling OR Statistical modeling 
OR Mathematical modeling)).

Figure 2 shows the specific actions taken during the literature 
search. After the search queries were executed, the articles that were 
found were filtered by year in step 3 to get more recent results. Then, 
the articles that passed this filtering process were examined based on 
their titles and abstracts. After conducting a detailed and comprehensive 
review, a total of 68 articles were carefully selected based on their 
relevance, quality, and suitability for the study. The selection process 
involved a thorough analysis of each article’s content, methodology, 
and conclusions to ensure that they meet the required standards.

Figure 3 provides information on the publishers of the 68 selected 
articles. To ensure a comprehensive study, articles were selected 
from various academic publishers. Most of the selected articles were 
published by Elsevier, one of the world’s leading academic publishers. 
The majority of articles were also published by IEEE, which specializes 
in electrical engineering, computer science, and related technical fields. 
In addition, some articles were selected from MDPI, which follows an 
open-access publishing model and publishes scientific journals across 
various disciplines, and Wiley, which operates in academic research, 
professional development, and information services.

Some of the journals that have selected articles were published, 
as presented in Figure 4. To ensure the reliability and precision of 
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EV range prediction approaches
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Journal of Data Science and Intelligent Systems Vol. 00  Iss. 00  2025

the research, articles were primarily selected from journals with Q1 
(Energy, Applied Energy) and Q2 (Energies) scores. This selection 
criterion ensures that the articles are from journals with high-impact 
factors and have experienced strict peer review processes, thereby 
increasing the validity of the research findings. 

Predicting the driving range accurately is crucial for EVs, as 
it combines energy consumption and battery capacity. Therefore, the 
studies in the literature related to the prediction of energy consumption 
were also analyzed besides the studies related to the prediction of the 
driving range of EVs. After a comprehensive review of the studies, 
the highlights of these studies are summarized. These summaries are 
classified into four categories: mathematical approaches, statistical 
models, machine learning methods, and hybrid approaches. Initially, 
studies that use machine learning methods will be discussed, followed 
by mathematical and statistical approaches proposed in the literature 
related to the same task. 

Various approaches in the literature use machine learning 
algorithms in terms of RDR or energy consumption prediction of EVs. 
The study conducted by Achariyaviriya et al. is aimed at examining the 
actual energy consumption rate of commercial Battery Electric Vehicles 
(BEVs) in Thailand. The research includes real-world driving tests in both 
urban and rural modes. Employing various machine learning techniques 

such as Extreme Gradient Boosting (XGBoost), Random Forest (RF), 
Multilayer Perceptron (MLP), and Support Vector Regression (SVR), 
they analyzed the dataset to forecast energy consumption and identify 
influential factors. The most important factors affecting the energy 
consumption of BEVs were determined to be battery current, speed, 
state of charge (SOC), acceleration, and road slope [14].

Nabi et al. [15] used a neural network-based machine learning 
technique to estimate the energy consumption of EVs, which is 
consistent with the results obtained from GT-SUITE software. The one-
dimensional model for eight different driving cycles was estimated by the 
developed neural network scheme. The proposed energy consumption 
model performed successfully with an accuracy rate of 89%.

Hua et al. [16] developed an energy consumption model that 
takes both vehicle and environmental data into account. The prediction 
accuracy was improved by using trajectory segmentation, Bidirectional 
Recurrent Neural Network (BiRNN), and transfer learning. The 
proposed model used real-time speed, vehicle exterior temperature, and 
GPS coordinates to calculate the estimated energy consumption rate 
based on trajectory data.

Ullah et al. [17] estimated the energy consumption of EVs 
with a training model built using 68 trip data collected in Japan. They 
considered various factors such as distance, speed, lighting, heater, air 
conditioner, and road slope to improve the prediction accuracy. The 
proposed model has been shown to outperform commonly used models 
such as Decision Trees (DT), RF, and K-Nearest Neighbors (KNN).

Fukushima et al. [18] developed a data-driven model to accurately 
predict real-world EV trips. They concluded that the prediction error 
rate was improved by 30% with the proposed transfer learning method 
when compared with traditional methods.

Witvoet et al. [19] utilized a platform called AutoMl, which 
simplifies each step of the machine learning process, from handling 
raw data to deploying machine learning models. Their study is aimed 
at predicting the range and SOC. They used models generated using 
AutoGluon for SOC and range prediction. The input data included 
battery voltage, battery current, battery power, current average, and 
voltage average.

Qiu et al. [20] conducted a study on predicting energy efficiency 
based on range prediction. They used a dataset that included medium- 
and heavy-duty battery-electric vehicles (MHD EVs) Data Collection 
(CALSTART, 2023) and ZETI Database (CALSTART, 2023). The 
dataset consisted of duty cycle features, such as average driving speed, 
total distance, total run time, driving time, and idling time percentage, 
and vehicle configuration features, such as manufacture, model name, 
model year, weight, class, vehicle platform, body style, rated energy, 
nominal range, and estimated payload. The researchers used various 
algorithms such as XGBoost, Gradient Boosted Trees, Lasso, and Ridge 
to predict energy efficiency. The most accurate algorithm was found to 
be XGBoost.

Yavasoglu et al. [21] proposed a DT to predict the road type and 
driver profile. The metrics used for range prediction were the driver 
profile, road type, auxiliary loads, environmental factors, constant 
vehicle parameters, and dynamic vehicle parameters. For the known 
road type, the proposed estimation rate was 97.79%. For the unknown 
road type, the proposed estimation rate was 94.33%.

Zhao et al. [22] collected data from the NDANEV platform 
through the EV CAN bus. The study utilized several features, including 
the maximum and the minimum temperatures of the cell, the difference 
between the maximum and minimum temperatures, the braking ratio, 
the stopping ratio, the acceleration ratio, and the driving time. The 
researchers merged XGBoost and LightGBM, to analyze the collected 
data.

The study by Topić et al. [23] is aimed at predicting the All-
Electric Range (AER) of EVs using deep neural network (DNN) models. 
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They preprocessed driving cycles into three input types (IT1, IT2, and 
IT3) to serve as static inputs for neural networks. They considered 
two neural network architectures: Multi-Layer Perceptron (MLP) and 
Convolutional Neural Network (CNN). Due to its effectiveness in 
feature extraction from 2D matrix inputs, similar to the representation 
of driving cycles, they emphasized CNN. The CNN model with IT3 
input showed superior performance, achieving accuracy in predicting 
AER for most points within a ±1-km interval.

Sagar et al. [24] used cloud computing and the RF machine 
learning algorithm to estimate the remaining range of EVs. By 
leveraging cloud computing, massive volumes of real-time data, 
such as weather conditions, traffic status, and road gradients, were 
collected, analyzed, and continuously updated. Due to the multiple 
DTs in Random Forest Regression, overfitting was prevented, resulting 
in a system capable of making consistent predictions under various 
conditions. This model achieved an accuracy of approximately 92%, 
outperforming conventional methods.

Mishra et al. [25] used various machine learning algorithms to 
estimate the remaining range of EVs. In the data preprocessing step 
with Exploratory Data Analysis (EDA) approach, they identified 
anomalies, detected missing and outlier values, and examined the 
relationships between different parameters. Then, they estimated 
the energy consumption rate with linear regression, RF, and Deep 
Multilayer Perceptron (Deep MLP) models. The performance of these 
models was compared using Root Mean Square Error (RMSE), Mean 
Square Error (MSE), and R² metrics. The best estimation results were 
achieved with Deep MLP.

Ozkan et al. [26] proposed a data-driven approach to estimate 
the energy consumption in Plug-and-Play Hybrid Electric Vehicles. 
They integrated driver behaviors in the proposed model. They modeled 
the uncertainty in fuel consumption using LightGBM and Harmonized 
Quantile Regression (CQR). They used data generated using a driver-
cycle simulator with 26 participants and Monte Carlo simulations to 
evaluate the model performance. The experimental results show that 
the proposed model provides statistically valid prediction intervals 
and detects changes in driver behavior, route conditions, and vehicle 
dynamics.

Kim et al. [27] present a machine learning-based technique 
including real-time traffic and route data for enhancing EV range 
prediction. The proposed method combines a DNN that models the 
energy balance relation with Long Short-Term Memory (LSTM) 
networks to interpret time series data (speed and acceleration). Hyundai 
Kona EV driving data (160,000 km, 1000 hours) were used to train 
the model. It was then tested with various data partitions according 
to driving situations (Normal Load vs. High Load). The findings 
show that the LSTM-DNN mixture model significantly outperforms 
conventional physics-based techniques, achieving an error rate of only 
2–3 kilometers in a 40-minute prediction window. By adjusting to 
current traffic circumstances, the method improves the accuracy of EV 
range predictions while lowering driver anxiety.

Zhu et al. [28] propose a machine learning-based framework 
that incorporates physics-informed features and online adaptation 
for real-time enhancements. The dataset includes 91,932 trips from 
55 Beijing-based electric taxis in 2017 and 2018. With an average 
error rate of 6.30%, the Quantile Regression Neural Network was the 
pioneering model. However, its online adaptation drastically improved 
the prediction accuracy by lowering the error rate to 5.04%. Trip 
features (distance, time), road parameters (elevation, road grade), 
vehicle states (speed, acceleration), and environmental factors (wind 
speed, temperature, and humidity) were all considered in the feature 
selection process. To increase prediction reliability, the study also added 
uncertainty estimation utilizing Quantile Extreme Gradient Boosting 
Regression (QEGBR) and Quantile Regression Forests (QRF). The 

findings show that combining machine learning with physics-based 
features can greatly improve the prediction of energy usage for fleets 
of EVs.

In addition to the discussed machine learning algorithms, 
mathematical approaches that produce more precise results with high 
computational costs have also been used in the literature to solve the 
problem addressed in the study. Pei et al. [29] conducted a study on 
predicting the state-of-power for batteries with the help of an Extended 
Kalman Filter (EKF)-based approach. The objective of the study was to 
improve the accuracy of power predictions by taking into consideration 
the battery voltage, current, and SOC limits. The Parameter and State 
Estimation implemented an online method for real-time identification 
of battery parameters and states, ensuring accurate predictions.

Fiori et al. [30] proposed the VT-CPEM model to predict the 
energy consumption rate of EVs. An error rate of 5.86% was obtained 
for field data with the proposed model. Experimental results showed 
that EVs consume significantly less energy than conventional vehicles. 
In addition, energy consumption differences for different EV models 
were presented. The study also found that under certain conditions due 
to the use of auxiliary systems, energy consumption can increase by up 
to 32% and the range of EVs can decrease by up to 24%.

Liu et al. [31] used an improved Seagull Optimization method 
and an updated Recursive Least Squares (RLS) method to predict and 
optimize the energy consumption rate of EVs. Neural networks were 
used to analyze the effect of air conditioning (A/C) usage on energy 
consumption. Variable Forgetting Factor was added to RLS to improve 
the energy consumption prediction accuracy. In the experimental 
results, an error rate of 5.1% was obtained with the proposed VEC 
prediction model. 

Hybrid approaches have also been proposed in the literature to 
improve the performance of the energy consumption prediction model. 
Eissa et al. [32] used a hybrid approach combining LSTM and CNN. 
They collected data from real-life behaviors of about 50 users over the 
last 2 weeks. They found small prediction errors ranging from 1.07 km 
to 5.34 km. 

Varga et al. [33] considered driver behavior, ambient temperature, 
route, and traffic parameters to estimate the SoC of a battery. The 
experimental results show that the traditional methods have an average of 
±2%–8% estimation error, the Adaptive Filter Algorithm has an average 
of ±1%–4% error, the Learning algorithms have an average of ±2%–5% 
error, the Nonlinear Observer has an average of ±1%–4% error, and the 
Hybrid methods have an average of ±1–8% estimation error. 

Wang et al. [34] proposed a new method to estimate the range 
of an EV using a least squares support vector machine (LSSVM) 
model. The model is optimized by particle swarm optimization 
(PSO). Real-time EV data collected in Beijing for 1.5 years, including 
parameters that take into account real-world conditions such as day, 
temperature, and battery discharge depth, were used. The accuracy 
of the LSSVM algorithm optimized with PSO was evaluated using 
statistical parameters such as Relative Error (RE) and Mean Absolute 
Relative Error (AARE). The AARE rates for training and testing data 
were determined as 1.99% and 5.99%, respectively. The study found 
that temperature changes, especially at low temperatures, significantly 
affected the prediction accuracy.

Chen et al. [35] conducted a study that involved gathering real-
world driving data from a large fleet of EVs. They proposed an improved 
nonlinear regression model to estimate energy consumption based on 
density-based classification. The study classified driving behaviors 
according to their characteristics using the improved DBSCAN method. 
A comparison of various methods, such as SVR, MLR, and DBC-SVR, 
was made to determine the most appropriate method for predicting 
energy consumption. The study revealed that DBC-MLR is the most 
suitable method for predicting energy consumption.
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Zhang et al. [36] developed a machine learning-based hybrid 
framework for predicting the energy consumption of EVs. They 
extracted various factors related to the vehicle, the environment, and 
the driver. Monte Carlo was employed for driving condition prediction, 
and the resulting parameters were used to train and test the XGBoost 
machine learning model. Compared with the conventional method, this 
framework achieved 32.05% lower RMSE and 30.14% lower Mean 
Absolute Percentage Error (MAPE).

The study conducted by Pokharel et al. [37] involved collecting 
data from Spritmonitor, a German open-source website. The data were 
preprocessed to extract relevant features using Python and Scrapy 
for web scraping. The study implemented machine learning models, 
including multiple linear regression (MLR), SVR, and XGBoost, using 
Python libraries like scikit-learn. The data were divided into training 
(80%) and test (20%) sets for model evaluation. The independent 
variables used in the study include trip distance, tire type, driving 
style, power, odometer, EV model version, city, motorway, country 
roads, A/C usage, and park heating. The dependent variable was the 
total energy consumption (TEC) in kWh. Among the machine learning 
models, XGBoost demonstrated the highest accuracy (91.86%) and the 
lowest error (RMSE = 9.490 kWh) in predicting TEC.

Huang et al. [38] proposed a method to predict the RDR of an EV 
using SVR. The datasets were recorded from real-world data of EVs. 
This dataset included features such as driving range, driving motor 
temperature, total voltage, and driving motor speed. Looking at their 
algorithm design, they first started with feature extraction using RF. The 
calculation method used in RF is the out-of-pocket data error rate. In the 
second step, the model was trained using SVR. Finally, they optimized 
the model and compared the changes with the MSE to obtain an optimal 
model of driving range.

In the following subsections, studies that have been analyzed will 
be compared by datasets, algorithms, methods, and performance metrics. 
After thorough research, studies related to the prediction of energy 
consumption and driving range of EVs have been analyzed. Studies that 
have detailed information about related topics have been selected.

2.1. Comparison by dataset
In this section, studies have been compared by their dataset 

features, accessibilities, and details. There are various features specific 
to each study, such as battery status, average speed, and consumption. 
All the features used in the studies and their frequency of use will be 
discussed later in this section. The accessibility of the studies was 
categorized into two types: private and public. A private dataset means 
that you are not allowed to access the dataset. A public dataset means 
that the dataset is already an open source or may be available upon 
request. In the details section, a summary of how these datasets were 
acquired is given. The details section includes information such as if it 
was obtained from a website, which website it was obtained from, if  it 
was real-time data, or which vehicle it was obtained from. 

As shown in Table 1, the datasets have been compared by their 
attributes, accessibility, and some brief details about where these 
data were collected. Twelve of the datasets were public, and 10 of 
the datasets were private. A major amount of private datasets were 
collected by real-time data of EVs. To collect all the data, they used 
the EVs’ CAN channel to log the real-time data of the EVs. There 
are several public datasets available that contain data related to EVs. 
One such dataset is collected by a website called “spritmonitor.de,” 
which provides information on various EVs such as their consumption, 
range, and temperature. CALSTART, an organization that offers data 
from different electric cars during specific years from various regions 
of America, also provides a public dataset. Another public dataset 
is obtained from NDANEV, the National Big Data Alliance of New 

Energy Vehicles, which provides data through its open laboratory to 
monitor and manage new EVs [22]. Additionally, some studies use 
datasets that are available on GitHub.

The graph shown in Figure 5 displays the distribution of attributes 
used in various models. The graph is arranged in a way that attributes 
with the same frequency are represented by the same color, while those 
with different frequencies are arranged in different colors. The legend 
located below the graph explains the attributes that correspond to those 
colors. For example, it can be seen that attributes such as charging 
habits, humidity, and cloud amount, which correspond to the green 
columns on the far right of the chart, all have a frequency of 1. The 
most commonly encountered attribute is vehicle speed, which plays 
a significant role in the RDR estimation models. After that, attributes 
such as slope, vehicle mass, SOC, air resistance, temperature, rolling 
resistance, and auxiliaries are observed with considerable frequency.

2.2. Comparison of algorithms and methods
In this section, the algorithms and methods used will be compared. 

Machine learning algorithms, statistical models, and mathematical 
models will be compared according to their frequency and types of 
use. For instance, machine learning algorithms have variations such as 
XGBoost, MLP, and support vector machine (SVM). Statistical models 
have variants such as MLR, SVR, and DT. Ultimately, mathematical-
based methods have variants such as the Bellman-Ford algorithm and 
EKF.

In Table 2, studies have been compared by the algorithms and 
methods that they used. These algorithms and methods have been 
classified into three categories: machine learning, statistical models, 
and mathematical-based approaches.

In Table 2, studies have been compared by the algorithms and 
methods that they used. These algorithms and methods have been 
classified into three categories: machine learning, statistical models, 
and mathematical-based approaches.

Machine learning algorithms are the most commonly used, 
followed by statistical models, with physics- and model-based 
approaches appearing last, as shown in Figure 6.

In Figure 7, algorithms used in machine learning are shown by 
algorithm types. XGBoost is leading with 13.0% of the usage rate. 
Then, RF follows with 11.6% of the usage rate. MLP, deep MLP, and 
NN follow with 8.7% of the usage rate.

In Figure 8, algorithms used in statistical models are shown by 
their usage percentage. MLR is leading with 46.2% of the usage rate. 
Then, linear regression follows with 15.4% of the usage rate. After 
searching the algorithms used in the literature, it was found that the 
physics-based approach is the most commonly used mathematical 
approach. In addition to this, other models such as the Digital Twin 
Model, FastSim’s Model, VT-CPEM, and Adaptive Filter Algorithm are 
also being utilized.

2.3. Comparison by performance metrics
Some performance metrics are needed to evaluate the results of 

the experiment. In light of these metrics, an evaluation can be made 
to decide whether the experiment is effective or not. For example, 
Mean Absolute Error (MAE), RMSE, and Coefficient of Determination 
(R2) are generally used to determine whether a regression algorithm 
is effective or not. Each metric is calculated with its mathematical 
formula. The formulas of performance metrics frequently used in the 
literature are listed below. 

RMSE measures the average difference between the predicted 
value  and the actual value . It estimates model accuracy and 
is given as follows:
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Table 1
Datasets used in literature, their features, and accessibility 

Accessibility Study Features Details
Public [14] Battery current, speed, SOC, acceleration, and road slope. The data presented in this study 

are available upon request from the 
corresponding author.

[15] Motor power, SOC of the battery, vehicle speed, distance 
travelled, and energy consumption.

Data will be made available upon request.

[16] Longitude, latitude, temperature, and real-time speed. https://github.com/gsoh/VED.
[17] Trip distance, travel speed, nighttime lighting, usage of 

the heater and A/C, and road gradient.
https://www.nrel.gov/transportation/se-
cure-transportation-data/tsdc-puget-sound-
traffic-study.html.

[20] Average driving speed, total distance, total run time, driv-
ing time, idling time percentage, and vehicle configuration 
features: manufacturer, model name, model year, weight, 
class, vehicle platform, body style, rated energy, nominal 
range, and estimated payload.

Composed by MHD EV Data Collection 
(CALSTART, 2023), ZETI Database 
(CALSTART, 2023).

[22] Longitudinal speed, motor voltage, motor current, battery 
pack voltage, battery pack current, SOC, maximum cell 
temperature, minimum cell temperature, odometer value, 
and timestamp.

Collected from NDANEV.

[25] Distance, route type, auxiliaries, and vehicle speed. Collected from Spritmonitor.
[28] Distance, time, slope, vehicle speed, acceleration, wind 

speed, temperature, and humidity.
National Monitoring & Management 
Platform for New Energy Vehicles in China 
driving trips from 55 battery electric taxis in 
Beijing.

[31] Distance, slope, air resistance, and acceleration Environmental Protection Agency, 
EXCEEDDATA working condition data.

[35] Velocity, accelerated velocity, and temperature. Data will be made available upon request.
[36] Driving factors, traffic factors, and environmental factors. N/D.
[37] EV model, tire type, power (kW), odometer (miles), trip 

distance (km), city, motorway, country roads, A/C, park 
heating, and TEC (kWh).

Collected from Spritmonitor.

[39] Manufacturer, power (kW), fuel date, odometer, dis-
tance (km), quantity (kWh), tire type, motor-way roads, 
city streets, country roads, driving style, consumption 
(kWh/100km), A/C, parking heating, and avg speed 
(km/h).

Collected from Spritmonitor.

[40] Traffic, road segment context, vehicle context, weather 
context, and driver profile context.

https://github.com/bewiv/DB_EMEC_EV_
UML.

[41] Vehicle-related factors (velocity, acceleration, braking en-
ergy regeneration, and auxiliary system energy consump-
tion), environment-related factors (ambient temperature, 
wind speed, road condition, and traffic condition), and 
driver-related factors (driving patterns, charging habits, 
and route planning).

National Monitoring and Management 
Platform for New Energy Vehicles (NEVs) 
https://rp5.ru/.

Private [18] Trip distance (km), trip time (h), average speed (km/h), 
accumulation of up incline (m), accumulation of down in-
cline (m), maximum battery capacity (kWh), and tempera-
ture (°C) based on information from the SoC, timestamp, 
rest area, road topology, and ambient temperature.

Data on EV trips are collected through 
smartphones.

https://github.com/gsoh/VED
https://www.nrel.gov/transportation/secure-transportation-data/tsdc-puget-sound-traffic-study.html
https://www.nrel.gov/transportation/secure-transportation-data/tsdc-puget-sound-traffic-study.html
https://www.nrel.gov/transportation/secure-transportation-data/tsdc-puget-sound-traffic-study.html
https://github.com/bewiv/DB_EMEC_EV_UML
https://github.com/bewiv/DB_EMEC_EV_UML
https://rp5.ru/
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where n is the observation count.
MAE is the average difference between the actual and predicted 

values, and it is defined as follows:

MAPE is used to evaluate the accuracy of models. MAPE 
calculates the average percentage difference between actual and 
predicted values, and it is calculated as follows:

MSE is the average of the squared differences between the 
predicted and actual values, and it is given as follows:

 represents the percentage of the variance in the dependent 
variable that can be explained by the independent variables included 
in the model. The formula for  includes two parts: the total sum of 
squares (SST) and the residual sum of squares (SSR). SST is calculated 
by summing the squared differences between each data point and the 
mean of the dependent variable. And SSR is the sum of the squared 
differences between actual and predicted values of the dependent. The 

 score can be calculated as  or as follows: 

where  is the mean of the dependent variable.
The absolute difference between the actual value and the 

predicted value is called Absolute Error, and it is calculated as follows:

(1)

(2)

(3)

(4)

(5)

(6)
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Table 1
Continued

Accessibility Study Features Details
[19] Current, voltage, total route speed, total route distance, 

and total route elevation change.
Real-world driving data from Chevy Bolt.

[23] N/D. Driving data collected by using the vehicle 
tracking equipment based on GPS and 
GPRS technology.

[24] Weather, traffic, slope, temperature, humidity, vehicle 
speed, and distance.

Real-world driving data of EV.

[27] Vehicle speed, acceleration, SOC, temperature, and 
auxiliaries.

Collected from Hyundai Kona EV.

[32] SOC, battery current and voltage, battery temperature, 
motor torque and speed, vehicle GPS location, ambient 
temperature, vehicle speed, accelerator pedal position, 
and others.

2019 Nissan Leaf EV.

[36] Time, distance, vehicle speed, acceleration, temperature, 
traffic conditions, and driving patterns.

National Monitoring and Management Plat-
form for NEVs, real-world operating EV.

[38] Distance, temperature, battery voltage, and vehicle speed. Real-world driving data of EV.
[42] N/D. A route in Cookeville, TN, using Nissan 

Leaf.
[43] GPS time, longitude, latitude, GPS speed, acceleration, 

pack current, pack total voltage, pack power, and SOC.
EV converted from a 1987 Nissan D21 
pickup.

[44] GPS coordinates, motor torque and speed, battery states, 
and vehicle velocity.

Nissan Leaf EV, Cookeville, TN, USA.

[45] SOC start, All_v, All_i, Avg_T, V_diff, Max_V, and 
Min_V.

Wireless GPRS device.

[46] Driver behavior, exploitation environment, battery param-
eters, and auxiliary loads on the driving range.

N/D.

[47] Average speed and average power. N/D.
[48] Wind, temperature, vehicle speed, acceleration, distance, 

and driver behavior.
Real-world driving data from five Type A 
Vehicles and five type B vehicles. Hourly 
updated temperature data were acquired 
from the weather website (https://www.
visualcrossing.com).

*N/D: not defined

https://www.visualcrossing.com
https://www.visualcrossing.com
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RE is the ratio of the Absolute Error to the actual value, and it is 
calculated as follows:

Accuracy is used to measure how close a prediction is to the 
actual value. And it is calculated by the difference between the predicted 
value and the actual value and then given the difference as a percentage 
of the actual value. It is calculated using the following formula:

As seen in Figure 9, the performance metrics applied in multiple 
studies, organized according to their frequency of use, are given in 
detail. Among the various performance metrics used in these studies, 
the three most commonly used metrics are RMSE, MAE, and R².

3. Conclusions
When the studies in the literature are examined, it is determined 

that there are many studies on the estimation of EV range. When machine 
learning methods are ranked according to their frequency of use, it 
is determined that algorithms such as XGBoost and RF are the most 
preferred. It is observed that statistical models such as MLR and linear 
regression follow these algorithms. Finally, in mathematical-based 

(7)

(8)
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 Figure 5
Attributes used as input in models

Table 2
Approaches and algorithms used in literature

Approaches Algorithms Study 
Machine 
learning

AutoML [33] 
LSTM, Bi-LSTM [27, 32, 41]
SVM [34, 49, 50]
DT [17, 21, 40, 51] 

Stochastic Model [52] 
CNN [23, 53] 
XGBoost [14, 17, 20, 22, 

36, 37, 41, 54]
MLP, Deep MLP [14, 23, 25, 39, 

50, 55] 
RBF [47] 
RF [14, 17, 24, 25, 

39, 48, 56] 
SVR [14, 37, 48] 
NN [15, 27, 42, 47, 

50, 57]
TL [16] 
BiRNN, RNN [16, 28, 41] 
KNN [17] 
Robust Regression [47] 
Gradient Boosted Trees [20, 50, 51, 58] 
LightGBM [17, 22] 
GRU [41] 
BDT [45] 
Pattern Recognition [46] 
AdaBoost [39, 56, 58] 
ANN [49] 
QR, QEGBR, QRF [28]

Mathematical 
approaches

Second-Order Mixed Estimator, 
Vehicle Longitudinal Model, 
Burckhardt Tire Model, 

[53] 

FastSim’s Model [54] 
Physics-Based Approach [58, 59] 
Transformer, Markov-Chain, 
Modified Intelligent Driver 
Model 

[42]

EKF [29, 60]
VT-CPEM [30]
Thevenin’s Model [60]
Digital Twin Model [61]
Modular Vehicle Model [62]
RLS Algorithm Driving Be-
haviour Correction Algorithm 

[31, 63]

Conventional Methods, Adaptive 
Filter Algorithm, Learning Algo-
rithms, Non-Linear Observer 

[33]
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models, physics-based approaches, EKF, and Belmann Ford algorithm 
are also among the frequently used algorithms. In addition, feature 
selection and engineering play an important role in developing accurate 
estimation models and increase estimation accuracy and robustness. 
It has been determined that factors such as speed, acceleration, and 
slope have a significant effect on energy consumption and have a 
performance effect on range estimation models. Performance metrics 
such as RMSE, MAE, and R2 are frequently used metrics in evaluating 
model performance. In addition to the findings obtained as a result of 
the literature research, it is also important to emphasize the importance 
of ongoing research in the field of range estimation of EVs.

However, despite the availability of various prediction techniques, 
several challenges remain in this area. One of the main challenges lies in 
the availability and quality of datasets. Generally, most of the datasets 
were created with real-time data of EVs. But of course, there is also 
the possibility to create dataset with public data. While real-time data 
from EVs offer valuable insights, obtaining comprehensive and reliable 
datasets is still a challenge.

Future research should focus on improving data collection 
methods and ensuring the quality and reliability of datasets used to 
train prediction models. As technology advances and more data become 
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 Figure 8
Percentages of different statistical models used in literature

 Figure 7
Percentages of different machine learning algorithms used in 

literature

Table 2
Continued

Approaches Algorithms Study 
Statistical 

models
DBC-MLR, MLR [35, 37, 50, 57, 

64, 65, 66] 
Multiple Regression [18] 
Linear Regression [25, 39, 56] 
Hidden Markov Model [55] 
Knowledge-Based [64] 
Lasso and Ridge [20] 
Accurate Computer-Based 
Model 

[66] 

 Figure 6
Percentages of machine learning, statistical models, and 

mathematical approaches used in literature

 Figure 9
Performance metrics used in the literature
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available, opportunities for further improvement and development of 
prediction approaches may arise. Prediction models that are adaptable 
to changing driving conditions and different driver behavior patterns 
in real time can be developed. Increasing user satisfaction and 
confidence is important to promote widespread adoption of EVs as a 
sustainable transportation option. Consequently, continued research 
and development in the field of EV range prediction are imperative. 
Addressing these challenges and conducting further studies in these 
areas will contribute to the development of more accurate and reliable 
methods for predicting the RDR of EVs. 

Furthermore, to improve model transparency and user trust, it 
would be advantageous to integrate Explainable Artificial Intelligence 
(XAI) techniques into EV range prediction models. Open and service-
oriented architectures for explainable AI can offer not only precise 
forecasts but also interpretable insights into the major elements 
impacting model outputs, as recent research [67, 68] has shown. To 
find important driving and environmental factors influencing range 
prediction, future research should investigate incorporating XAI tools 
like Shapley Additive exPlanations (XAI) and Local Interpretable 
Model-Agnostic Explanations into EV range prediction frameworks. 
Furthermore, as suggested by Wang et al. [67], the creation of cloud-
based XAI services can provide replicable and scalable evaluation 
pipelines for model robustness and explainability, particularly in hostile 
and real-world scenarios. By implementing these strategies, consumer 
satisfaction, regulatory transparency, and the widespread use of EVs 
could all be greatly enhanced.

By providing a more thorough viewpoint based on mathematical, 
statistical, and machine learning techniques, this work enhances 
earlier classifications of RDR prediction models. Our approach offers 
deeper insights into model functionality, learning processes, and data 
interactions than previous research that only concentrates on general 
structures or mathematical features. We also provide helpful advice 
on feature selection, method selection, dataset accessibility, and 
performance evaluation measures. Our study intends to promote and 
facilitate future research in EV range estimation by organizing these 
crucial elements, resulting in prediction models that are more accurate 
and dependable.
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