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Abstract: Considerable research has been conducted in location optimization for new infrastructures such as highways and rail lines, as well as 
fixed facilities such as sports arenas, warehouses, and airports. Uncertainty plays a crucial role in determining the final location of such facilities. 
For example, there may be uncertainties about land-use and site characteristics as well as about demand for the new facilities. There may be 
disagreements among various stakeholders that complicate reaching a consensus due to budgetary constraints and differing political views. While 
some uncertainties can be quantitatively represented, others can only be represented qualitatively (e.g., low, medium, or high). Not all of these 
uncertainties can be precisely and mathematically modeled. While deep learning and other probabilistic techniques have been developed to deal 
with uncertainties that can be represented numerically, fuzzy logic has been recognized as a preferred choice for handling qualitative uncertainties. 
This paper identifies situations with uncertainties in locating new infrastructure and offers solutions for handling the qualitative uncertainties with 
fuzzy logic. An example is presented to illustrate the approach to handling uncertainties that can only be represented qualitatively. The results are 
promising for future research dealing with uncertainties represented as linguistic variables, thereby improving the decision-making process. The 
method can be applied in other domains involving uncertainty.
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1. Introduction
Considerable research has been conducted on locating 

infrastructure such as fixed and continuous facilities. In the 
transportation context, such infrastructure includes highways, rail 
lines, airports, and canals [1]. Typically, mathematical formulations 
and solution algorithms are developed to optimize the location or 
alignment of such infrastructure [2, 3]. These formulations often consist 
of an objective function that must be minimized or maximized subject 
to several user-specified constraints [2, 4]. The objective function is 
generally expressed as a function of relevant decision variables. For 
example, Yin et al. [2] developed an objective function representing 
the difference between transportation revenue and costs to optimize 
transportation services using the case of the China railway system. 
Some of the decision variables in their model included the delivery 
volume factor, revenue factor, and the cost of transporting goods. 
Jong and Schonfeld [4] developed an objective function consisting of 
location and user costs for optimizing highway alignments.

A major drawback of existing approaches is that the objective 
functions typically do not account for uncertainties associated with 
decision variables that arise during different stages of the planning 
and implementation process. Uncertainties may involve various 
factors such as land-use data, topographical features, future demand, 
construction and maintenance costs, budget availability, implementation 
timelines, technological advances, and the potential for consensus 
among stakeholders. If these uncertainties are not integrated into the 
optimization process, the outcomes may be overly optimistic, rigid, or 
infeasible in practice.

Among the different types of uncertainty that can arise in 
infrastructure planning, one important category is information 
uncertainty. Information uncertainty refers to vagueness, subjectivity, 
or incompleteness in available input data or expert judgment. It is often 
present during early planning stages when exact numerical data are 
unavailable or when assessments are qualitative in nature—for example, 
when sites are described as having “low suitability” or “moderate cost.” 
This type of uncertainty differs from aleatory uncertainty, which is 
associated with inherent randomness (e.g., weather variability), and 
epistemic uncertainty, which stems from a lack of knowledge and 
could potentially be reduced with more data. Information uncertainty, 
by contrast, is often inherently qualitative and cannot be adequately 
modeled using traditional probabilistic or statistical techniques.

To address numeric uncertainty, researchers have applied 
probabilistic approaches and Machine Learning (ML) methods [5]. 
These models can process large, structured datasets and represent 
uncertainties in quantitative terms. However, they are limited when 
dealing with uncertainties that are not easily quantifiable or when 
linguistic input (such as expert or stakeholder evaluations) is a critical 
component of the decision-making process. ML methods also require 
large, well-labeled datasets, which are often unavailable in the early 
stages of infrastructure development.

This paper presents a modeling framework that explicitly 
addresses qualitative information uncertainty by integrating fuzzy 
logic with linear programming. Fuzzy logic has been recognized as 
a preferred approach for solving problems that involve qualitative 
uncertainties [1, 6–12]. It enables decision-makers to represent vague 
or subjective data—such as environmental impact, constructability, or 
stakeholder preferences—using fuzzy sets and membership functions. 
These are then incorporated into the optimization process through 
fuzzy inference and rule-based reasoning. The fuzzy-augmented model 
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allows infrastructure alignment decisions to reflect the ambiguous, 
often linguistic nature of available information, without requiring 
overly simplified numerical assumptions.

The novelty of the proposed approach lies in its ability to 
embed qualitative, linguistically defined uncertainties directly into a 
formal optimization process. Most conventional methods, including 
probabilistic models and ML approaches, assume that uncertainties can 
be numerically specified. In contrast, this method introduces a flexible 
and robust way to capture real-world decision ambiguity, offering a more 
realistic treatment of uncertainty in infrastructure location optimization 
tasks. This makes the approach particularly relevant during the 
conceptual and preliminary planning stages of infrastructure projects, 
where qualitative assessments dominate and data scarcity is common.

The goals of this research are to develop and demonstrate a fuzzy 
logic-based optimization framework that improves the reliability and 
practicality of infrastructure location optimization decisions under 
uncertain conditions. The scope includes defining appropriate fuzzy 
sets and membership functions for key qualitative decision variables, 
integrating them into a linear programming model, and evaluating 
the method through both artificial test scenarios and a real-world case 
study. The methodology is designed to be transparent, interpretable, and 
easily adaptable to varying project contexts. The paper contributes to 
the literature by:

•  defining and formalizing information uncertainty in infrastructure 
planning,

•  identifying the limitations of conventional models in handling 
such uncertainty,

•  proposing a novel fuzzy logic-based optimization method tailored 
to linguistic and qualitative uncertainty, and

•  demonstrating its practical application and advantages through 
comparative case studies.

The approach can be extended in future research by embedding 
fuzzy logic within ML architectures to further enhance adaptability in 
dynamic and data-scarce environments.

2. Literature Review
Optimizing infrastructure locations is quite complex since many 

conflicting factors and their relative weights need to be considered 
simultaneously, which makes it difficult to obtain an optimal result [12–
14]. For example, Yin et al. [2] developed a time–space network-based 
model for transportation service optimization of the China Railway 
Express. The authors developed an optimization function as a difference 
between transportation revenue and transportation costs. Many decision 
variables, such as quantity of goods supplied by a specific source point 
and a specific source category, and agreed delivery volume, revenue 
factor, and cost of transporting goods were considered. Optimization 
models have been developed for locating transportation infrastructure, 
such as highways [4, 15], rail-lines and rail transit lines [16] as well as 
for locating fixed facilities, such as airports and warehouses [17]. While 
formulations for various cost functions were provided in these studies 
[18], uncertainties with respect to the decision-making process were not 
considered. Jha [19] developed a criteria-based decision support system 
for locating highways. In that work, various conflicting preferences 
of stakeholders were considered within an optimization framework. 
However, the uncertainties about information were not considered in 
the decision-making process.

Pang et al. [20] developed a stochastic route optimization method 
under dynamic ground risk uncertainties. The authors proposed a 
two-stage stochastic optimization method for unmanned autonomous 
system risk management. However, the likelihood of risk in selecting a 
route was handled using a probabilistic method which was not capable 

of handling uncertainties consisting of linguistic hedges, such as the 
inability to mathematically represent the instances of “low”, “medium”, 
or “high”. Other stochastic optimization methods based on a probability 
function also suffered the same weaknesses in handling uncertainty.

ML-based methods, including deep learning, have been used in 
recent works to handle uncertainty [5, 21]. However, those methods 
handle uncertainty using crisp and numerical data. They are unable to 
handle and map uncertainty information that is represented qualitatively.

Uncertainties can be attributed to, among other things, poor 
knowledge about the terrain and topographic features, climate change 
issues (e.g., hydraulic instabilities due to excessive rain, wildfires, and 
hurricanes), as well as decision-making and project delays due to scope 
changes. Fang and Zhu [22] use an active learning framework to address 
uncertainties in labeling of unstructured datasets. The framework is 
based on the concept of diverse density which is a machine learning 
approach. The diverse density defines the density of instances or 
situations, in terms of how many positive bags are within a region and 
how far the region is from the negative bags, to help predict whether an 
instance is positive or not. A bag is a cluster of densely populated points 
representing the instances or situations. Maron and Lozano-Perez [23] 
provide insights into diversity density functions in the context of ML 
and the concept of bagging applied to unstructured datasets. The active 
learning framework can refine the intermediate task durations before 
optimizing a critical path for the end-to-end execution of transportation 
and construction projects.

Fuzzy logic has been widely used to model uncertainty in 
various domains, such as water security assessment [24], gas lift design 
[25], and analysis of heterogenous data [26]. It has also been used in 
modeling and controlling nonlinear systems [27, 28].

Uncertainties about climate change have been recognized in 
a recent study in the hydrologic context [29]. Uncertainties due to 
measurement errors have primarily been handled using statistical and 
probability theories [30]. Tennøe et al. [31] developed a Python toolbox 
for uncertainty quantification and sensitivity analysis in computational 
neuroscience. They based the uncertainty analysis on polynomial 
chaos expansions which are more efficient than the Monte-Carlo based 
approaches. Uncertainties regarding railroad alignments have been 
analyzed with robust optimization methods [32, 33].

Fuzzy logic has been proposed in previous works to handle 
linguistic situations which are difficult to model mathematically, for 
optimization purposes. Some examples in handling uncertainty include 
“somewhat”, “may be”, and “about right”. Some earlier works on the 
foundation and applications of fuzzy logic can be found in Zadeh [34] 
as well as in Yager and Filev [35]. In other works [36, 37], methods 
using fuzzy logic to handle uncertain information were proposed. 
Zimmermann [38] developed the concept of fuzzy set theory and 
offered some applications. Kikuchi and Milkovic [39] applied fuzzy 
logic to preprocess observed traffic data for consistency. Kikuchi et al. 
[40] examined some methods, including fuzzy logic to adjust observed 
traffic volumes on a network. Kikuchi and Jha [41] developed a method 
for reconciling the values of parameters using fuzzy logic. They 
developed a fuzzy-logic approach to address uncertainty associated 
with decision-making considering diverse viewpoints of the decision 
makers. A fuzzy set was used to represent the notion of desire, and a 
fuzzy optimization approach based on linear programming was used to 
obtain the optimal solution. The approach is extended in this paper to 
deal with qualitative uncertainties in locating infrastructures.

3. Research Methodology
Route optimization for highways usually involves finding the 

3-dimensional points of intersections (PIs) and fitting appropriate 
curves to connect the tangents between PIs [42]. A similar concept is 
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followed for optimizing railway routes, except that different transition 
curves are used.

For large-scale analysis, some fixed facilities can be modelled as 
discrete points [17]. The objective is to optimally locate a facility (of 
desired shape) subject to some constraints. For example, a sports arena 
can be considered a fixed facility whose location will be largely affected 
by its accessibility to sports fans. An airport can also be considered as 
a fixed facility as a point for a macroscopic analysis, whose location 
will be driven not only by the accessibility to the travelers but also 
by keeping a buffer distance from the residential neighborhoods to 
minimize the noise impacts on the neighborhoods due to flights. Many 
other factors affect airport location including topography, land use, land 
availability and costs, wind patterns, obstructions to flights, relations to 
other airports (especially in market shares and flight paths), and various 
environmental factors.

Figure 1 shows the concept of locating highways, rail lines, and 
fixed facilities (e.g., sports arenas and airports).

3.1. Uncertainties with respect to terrain, topographic 
features, and property values

While terrain, topographic features, and property values are 
available from GIS maps, the extent of their relative impacts cannot 
be ascertained, and a trade-off analysis may be needed. For example, 
while it is preferable to minimize the total cost of a highway, it may 
be desirable or necessary to also minimize the wetland or sensitive 
watershed impacts at the expense of increasing the total cost to some 
desirable extent [19]. Figure 2 shows a conceptual GIS map of soil 
characteristics. It can be seen that if a highway is to be constructed 
between the bottom left corner to top right corner, it is impossible to 
avoid average or poor soil characteristics.

Uncertainties may arise due to the inherent variability in the 
computational parameters used for solving a mathematical optimization 
problem. This may include certain algorithm-specific tuning parameters 
in genetic algorithms or swarm intelligence that have been used for 
infrastructure location optimization problems.

There could be many situations with uncertainties regarding 
terrain and topographic features. For example, there could be missing 
information on soil characteristics or property values. Previous models 
assumed that these values are available. Construction cost is affected by 
soil characteristics and right-of-way cost is affected by property values. 
In this paper, we present a generalized methodology for handling 
qualitative uncertainties in the route optimization process using fuzzy 

logic.

3.2. Modeling uncertainty with fuzzy logic
As explained in Section 2, fuzzy logic is especially suited to 

handle uncertainty when linguistic variables, such as “low”, “medium”, 
and “high” cannot be mathematically represented. Such linguistic 
uncertainties can be encountered at many stages of infrastructure 
optimization problems. For example, the future values of properties 
impacted by infrastructure construction can be rated as low, medium, or 
high. The terrain can be susceptible to future climate changes, such as 
flood, earthquake, or wetland formation. The likelihood of such changes 
could only be rated in different geographic domains as low, medium, or 
high. In Figure 2, while indices of soil characteristics in various cells are 
available, their initial values are fixed with the option of readjustment 
within an allowable range. In the same overlapping search space, there 
will be values for terrain elevations, hydrological characteristics, land 
(or property values), and other topographical features. These values 
could be related by a certain set of relations. For example, high elevation 
areas should be avoided if less expensive alternate terrain is available 
for road or rail construction. The problem is to find the optimal values 
that satisfy the relations. A trade-off among the values of these attributes 
will be needed in order to find an optimized solution.

The values given initially and to be optimized may be observed (or 
measured) values, estimated values, or desired values, and uncertainty is 
associated with each value with respect to its acceptability and tolerance. 
The relations that the values must satisfy may include a “hard” equality 
or inequality, or a “soft” equality or inequality. The relations may (1) 
satisfy a set of equality (exact or approximate) relations; or (2) satisfy 
a set of approximate inequality relations (e.g., “much greater than”).

The following situations may require analysts to adjust or 
optimize the values:

•  When the values are used as inputs to another set of models, or 
inputs to a computer package.

•  When analysts wish to change one or more of the already agreed 
upon design values to reflect their or the client’s desire for design 
modification.

•  When the data points are known, the parameters of an equation 
that best fit the data points must be found.
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 Figure 1
Conceptual illustration of highways, rail lines, and fixed facilities

Figure 2
A conceptual GIS map of soil characteristics (soil characteristics 

are represented on a scale of 1–100)
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The method must satisfy the following general requirements:
•  The final adjusted value should be close to the initially presented 

value as possible.
•  The method should allow analysts the opportunity to interact 

with those who are directly involved in deciding the acceptability 
of the values and allow dialogues and readjustment.

•  The method should be able to measure the level of satisfaction (or 
acceptability) of the adjusted values.

3.2.1. Traditional approaches and their limits
Traditionally, this type of problem has been handled in two 

ways: (1) by a trial-and- error method, in which an approximate band 
of tolerable deviation is assumed for each value; within the band, each 
value is adjusted by trial-and-error (sometimes involving negotiation); 
and (2) by the least-squares method, in which the squared sum of 
the differences between the initial values and the adjusted values is 
minimized. While ML methods, such as deep learning, have been used 
to model uncertainty (generally referred to as “noise”), those methods 
are not capable of handling linguistic hedges.

In summary, existing approaches cannot accommodate in a 
systematic manner, the soft notions of “desire” and “tolerance” in the 
mind of an analyst or concerned party. Such a method is particularly 
useful for the early stage of planning or design in which many 
parameters of decision and design are uncertain to the analyst or to the 
concerned parties.

3.2.2. The proposed method
While the study focuses on fuzzy logic-based optimization for 

handling uncertainty, it acknowledges the importance of alternative 
uncertainty-handling techniques such as probabilistic models and ML 
approaches. A comparative analysis is shown in Table 1 to justify the 
methodological choice and clarify its domain of relevance. Bayesian 
networks assume the availability of conditional probabilities between 
variables, which are often unavailable or subjective during early-stage 
infrastructure planning.

Deep learning methods require extensive labeled data and 
perform poorly when input features are ambiguous or described using 
natural language.

Fuzzy logic, in contrast, allows direct modeling of vagueness and 
stakeholder perceptions without the need for empirical frequency data, 
making it a more realistic choice for the early, data-sparse stages of 
infrastructure decision- making.

In the current research, fuzzy logic was chosen because it 
uniquely addresses information uncertainty expressed in linguistic 

terms, a frequent occurrence in early infrastructure planning stages. 
Unlike probabilistic methods that rely on numerical distributions, fuzzy 
systems can accommodate subjective human judgment (e.g., “moderate 
cost,” “low consensus”) and integrate it directly into an optimization 
framework. Furthermore, the resulting model can be solved using 
standard linear programming techniques, making it both interpretable 
and computationally efficient.

We propose a fuzzy logic-based optimization process as shown 
in the flow-diagram shown in Figure 3. As illustrated earlier, fuzzy 
logic was chosen over probabilistic methods, like Bayesian networks 
or deep learning because the problem domain primarily involves 
qualitative uncertainty, rather than randomness or statistical variation. 
While probabilistic approaches require large, well-structured datasets to 
model distributions, fuzzy logic is uniquely suited to handle imprecise, 
linguistically expressed knowledge, such as “low soil stability” or 
“moderate stakeholder resistance,” where numeric probabilities are 
difficult or impossible to obtain.

Linguistic descriptors such as “low,” “medium,” and “high” 
were transformed into numerical values using triangular membership 
functions, a common approach in fuzzy systems. Each linguistic label 
was assigned a fuzzy number with a peak (representing maximum 
membership) and a base that defines the acceptable range:

For instance, “medium” property cost might have a peak at 200 
and extend from 120 to 280. The degree of satisfaction or compatibility 
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 Figure 3
Flow-diagram showing the fuzzy logic-based optimization process

Approach Key feature Limitations
Fuzzy logic (this study) Models qualitative uncertainty using linguistic variables; 

enables integration of vague, imprecise knowledge via 
membership functions

Limited flexibility in learning from data; requires 
expert-defined functions

Bayesian networks Captures conditional probabilities and belief updates; 
suitable for probabilistic causal inference

Requires known prior probabilities; difficult to 
apply when data is sparse or qualitative

Deep learning/ML Learns from large datasets; can model nonlinear 
relationships and uncertainty quantitatively

Needs large, labeled datasets; poorly handles 
ambiguity or subjective inputs

Robust optimization Focuses on worst-case scenarios; ensures solution 
feasibility under bounded uncertainty

Often pessimistic; lacks flexibility to model 
nuanced linguistic hedges

Stochastic programming Integrates randomness through probability distributions; 
useful for cost–benefit trade-offs

Requires well-defined distributions; unsuitable for 
purely qualitative inputs

Table 1
Comparison of fuzzy logic with other methods for handling uncertainty
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is then computed using piecewise-linear functions depending on how 
far an actual value deviates from this range.

These membership functions enable smooth, interpretable 
mapping from qualitative expressions to a numerical framework 
suitable for optimization. Only triangular membership functions were 
used in this study. This choice was made for the following reasons:

•  Interpretability: Triangular functions are intuitive and easy to 
communicate to stakeholders.

•  Computational Simplicity: They yield linear constraints in the 
fuzzy optimization model, allowing the use of efficient linear 
programming solvers.

Previous studies [41, 43] have demonstrated the adequacy of 
triangular functions in similar infrastructure problems.

Although alternative functions (e.g., trapezoidal, Gaussian) 
can offer smoother transitions, the simplicity and transparency of 
the triangular form were considered appropriate for this exploratory 
application. Future studies could compare different shapes to explore 
sensitivity and robustness.

The initial value harbors the notion of desire, approximation, 
or tolerance. A fuzzy number is introduced to represent these notions 
[43]. The membership function of a fuzzy set A, A(x), characterizes the 
degree of “compatibility,” or “satisfaction” as a function of x such that 
the value of A(x) is between 0 and 1. A(x) = 0 representees the least 
degree of compatibility or satisfaction whereas A(x) = 1 represents the 
highest degree of compatibility or satisfaction.

The relations that the values must satisfy may be a combination 
of equations and inequalities, both in the exact and the inexact sense. 
The “hard” equality or inequality relations are usually associated with 
the physical principles, such as the conservation of flow in which the 
total input must be equal to the total output. The “soft” equality and 
inequality relations arise when analysts are unsure about the exact 
relation. An approximate relation, such as “x is ‘much’ greater than y,” 
and “x and y are ‘approximately’ equal,” are examples of fuzzy relations.

A flow-diagram depicting the fuzzy logic-based optimization 
process used in this study is shown in Figure 3. A fuzzy optimization 
model is developed (see Figure 4 for a diagrammatic representation 
of the fuzzy optimization model) with the following assumptions and 
calculations:

1.  Input Uncertainty as Fuzzy Sets: Each input variable (e.g., soil 
condition, stakeholder support) is assumed to have uncertainty 
best described by a triangular membership function, capturing its 
possible deviation from an initially preferred value.

2.  Tolerances Defined by Experts: The bounds (±) for each variable 
are defined by experts or decision-makers and reflect acceptable 
deviation ranges from nominal values.

3.  Hard vs. Soft Constraints:
a.  Hard constraints (e.g., total length or cost) must be satisfied 

exactly (e.g., x1 + x2 + x3 + x4 = z1).
b.	 Soft constraints (e.g., “x2 is approximately 2x3”) are expressed 

using fuzzy logic, allowing approximate satisfaction with 
decreasing degrees of confidence as deviations grow.

c.  Satisfaction Level Maximization: The goal is to find variable 
values that maximize the minimum satisfaction level (h) across 
all fuzzy constraints and initial preferences (Bellman-Zadeh 
principle).

d.  Each variable’s deviation from its initial value is modeled using 
a triangular membership function.

e.  These functions are piecewise-linear and yield values from 0 
(fully unsatisfactory) to 1 (fully satisfactory).

f.  The fuzzy optimization model is transformed into a linear 
programming (LP) problem by expressing these membership 
functions and fuzzy inequalities as linear constraints.

In the optimization model, the individual values of the variables x 
should be close to their initial values, but they are “pulled” from them in 
order to satisfy the required relations. Thus, the solution is found at the 
point of compromise or trade-off. Such an optimization process follows 
the Bellman-Zadeh principle; that is, the solutions, or the decision set, 
lies in the confluence of the goal and the constraints: D = C ∩ G, where 
D is the solution set, C is the constraint set, and G being the goal set 
(Bellman and Zadeh 1970). The solution set, D, is a set of values that 
satisfies both C and G. The optimization objective is to select a value 
that “best” satisfies both C and G.

The process can be formalized as:

where  is the best solution.  indicates the degree of overall 
satisfaction with the best solution, and  and  indicate the 
degree to which x satisfies the constraint and the goal, respectively. 
Finding the value of  in Equation (1) is equivalent to solving the 
following optimization problem, where the unknowns are x and h. The 
quantity, Z is the objective function to be maximized.

subject to:

Assume the following:

•  w1, w2, … are the initial values, which the analyst (or stakeholder) 
wishes to adjust.

•  W1(x1), W2(x2), … are the membership functions of the fuzzy 
numbers derived from the initial value.

•  fR1(x1, x2, x3,…), fR2(x1, x2, x3,...) are the “hard” relations and 
requirements that the values must satisfy.

•  FR1(x1, x2, x3…), FR2(x1, x2, x3...) are the membership functions of 
the “soft (fuzzy)” relations that the adjusted values must satisfy.

•  Z is the objective function (to be maximized).

(1)

(2)

(2a)

(2b)

(2c)

(2d)
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 Figure 4
Diagrammatic representation of the fuzzy optimization problem
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The general formulation for the optimization process is:

subject to:
For initial values:

For hard relations:

For soft relations:

As an example, consider the following five values of the decision 
parameters in an infrastructure location optimization problem that need 
to be adjusted: X1, X2, X3, X4, and Z1. This example, while artificial in 
nature, mimics real-world situations of uncertainty. We consider these 
five variables in the optimization process. The example can easily be 
applied to a real-world scenario, for example, in assessing the soil 
characteristics, availability of skilled labor, availability of materials, 
variation of future climate change parameters, and susceptibility of 
decision-makers in reaching a consensus in deciding on the final 
location for the infrastructure construction. Such an infrastructure could 
be a metro line (e.g., the red line under consideration in the City of 
Baltimore, Maryland, USA). The method will yield an optimal solution 
with any real-world variables.

In an optimization sense, these decision parameters are similar to 
being the decision variables whose values must be adjusted in order to 
reach the optimal solution. Their initial values are 450 (=x1

0), 200 (=x2
0), 

120 (=x3
0), 160 (=x4

0), and 1,100 (=z1
0), respectively. The tolerance for 

deviation from the value is for X1, 450 ± 100; for X2, 200 ± 80; for X3, 
120 ± 50; for X4, 160 ± 90, and for Z1, 1100 ± 100. The corresponding 
membership functions are shown in the upper layer of Figure 5.

For the above problem, the following four relations are 
considered:

The objective is to maximize the value of Z according to the 
formulation in Equation (3). The membership functions for parameter 
values, x1, x2, x3, x4, and Z1 are defined as a triangular function. For the 
right- and left-hand side of the triangle, the corresponding equations are 
hxi + (xi) and hxi – (xi), respectively.

where  = 450,  = 200,  = 120,  = 160,  = 1100 and   
, , , , 

.

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

6

 Figure 5
Illustrations for solutions of the example problem
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For the constraints based on the required relations:

The above formulation can be reformulated in the linear 
programming format as:

The constraints related to the relations can be expressed as 
follows:

‐
‐

‐
‐

‐
‐

4. Solution Procedure
Applying linear programming, the optimized values, the 

satisfaction level relative to the initial value, and also the satisfaction 
level relative to the required relations, are obtained as shown in Tables 2 
and 3.

5. Results and Discussion
The above optimization problem may or may not have a feasible 

solution. When a feasible solution is found, the value of Z indicates 
the degree to which all the constraints are satisfied. The satisfaction 
of individual constraint relations can be found by inserting the derived 

xi’s into the respective membership functions, Equations (5) and (6). If 
the analysts require that the solution must yield at least a given level of 
satisfaction, α, then an additional constraint, h ≥ α, can be added. The 
optimized result is shown in Figure 5.

If the solution does not exist, then a set of values that satisfies 
the initial desire for the parameters and the required relations do not 
exist. A possible action is to revise some (or all) of the initial values 
of the fuzzy variables, or to change the corresponding membership 
functions of the fuzzy variables, and/or fuzzy relations by widening or 
shifting their bases. The readjustment of the membership functions may 
involve further investigating desired tolerance intervals of the decision 
variables.

The example shown here can be used for handling uncertainty 
in soil characteristics, topographical features, future demand patterns, 
or conflicting viewpoints of various stakeholders, including politicians 
involved in the decision process of building infrastructures. For example, 
before building a metro line, locating stations, or expanding a major 
highway, townhall meetings are generally conducted to accommodate 
the viewpoints of as many stakeholders as possible. These viewpoints 
are often conflicting in nature. The mathematical method presented here 
can serve as a useful tool for handling such uncertainty. The inherent 
benefit of fuzzy logic is its ability to convert linguistic hedges (such as, 
good, not so good, ok, or kind of) into numerical terms.

The proposed fuzzy optimization method has strong real-world 
relevance, especially during the early stages of infrastructure planning, 
where data scarcity and stakeholder ambiguity are common. Here is 
how policymakers and planners can benefit:

1.  Decision Support Under Uncertainty
Policymakers often face incomplete or conflicting information 

(e.g., environmental risk, stakeholder resistance). The fuzzy logic 
framework allows them to incorporate qualitative input (e.g., “high 
risk,” “moderate support”) directly into the planning model, yielding 
solutions that reflect practical realities.

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
(32)
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Relations With the adjusted values
Satisfaction 
h–value

1. 428 + 252 + 142 + 209 = 
1031

1.0

2  is close somewhat 
greater or equal to 

428 is close but somewhat 
greater or equal to 
[252 + 142] (=396)

0.34

3 142 ≈ 209 0.34
4. 252 ≈ 2 x 142 (=284) 0.34

Table 3
Optimal relations

Parameter
Initial value 

(range)
Adjusted 

value Satisfaction (h-value)
X1 450 (±100) 428 0.78
X2 200 (±80) 252 0.35
X3 120 (±50) 142 0.56
X4 160 (±90) 209 0.45
Z1 1100 (±100) 1031 0.33* (min satisfaction)

*: Max–Min solution of h.

Table 2
Optimal parameters



Journal of Data Science and Intelligent Systems Vol. 00  Iss. 00  2025

2.  Stakeholder Engagement
By modeling stakeholder inputs as linguistic variables, the method 

helps planners reconcile diverse opinions (e.g., environmentalists, 
engineers, community members) into a unified, mathematically 
tractable optimization framework. This promotes transparent and 
inclusive decision-making.

3.  Policy Trade-off Analysis
The model supports trade-offs among competing objectives (e.g., 

cost vs. environmental impact), allowing planners to evaluate multiple 
scenarios while ensuring solutions remain within acceptable tolerance 
bands.

4.  Adaptability to Real Data
Once qualitative assessments are converted to fuzzy numbers, 

they can be updated as more precise data becomes available, enabling 
the model to evolve alongside project development.

5.  Integration into Existing Tools
Fuzzy optimization can be integrated into GIS-based tools, 

transportation planning platforms, or used in tandem with rule-based or 
simulation models already in use by agencies.

6. Conclusions and Future Extensions
We studied the infrastructure location optimization problem 

considering uncertainties which are qualitative in nature. We reviewed 
Machine Learning (ML) literature in the context of handling uncertainty. 
Two recent papers are especially relevant: Russel and Reale [5] and 
Loquercio et al. [44]. We found that ML-based methods can only 
handle quantitative uncertainties referred to as epistemic uncertainty 
and aleatoric uncertainty. Epistemic uncertainty reflects uncertainty in 
the model parameters used to perform prediction in machine learning 
problems. Aleatoric uncertainty reflects the noise inherent to the data.

We advocated the use of fuzzy logic to handle uncertainties 
consisting of linguistic hedges (e.g., impact of soil characteristics 
being labeled as low, medium, or high) which cannot be formulated by 
existing ML techniques due to inherent limitations of those techniques 

pursued in future works.
The proposition of fuzzy logic presented here is an effective tool 

for handling uncertainty because it takes a range of possible values into 
account in reaching an optimized solution. In many actual situations the 
tolerance of decision variables resides within specified bounds, and a 
best traded-off optimized solution is desired. A traditional deterministic 
model where each input parameter has a chosen fix value, gives a 
single output of the model. An uncertainty quantification of the model 
accounts for the distributions of the input parameters, and the output of 
the model becomes a range of possible values.

Future work may include exploring ML models for handling 
uncertainty. ML concepts have recently become very popular for 
performing prescriptive, descriptive, and predictive analytics. Predictive 
analytics is also known as a classification problem in which data-driven 
decision-making is performed to predict a single independent variable 
(or multiple independent variables) dependent on a set of dependent 
variables. The process mimics the structure of a typical mathematical 
optimization problem, except that ML algorithms are purely data driven. 
If the data are incomplete or information (data) on stronger predictor 
variables are missing (or incomplete), predictions are less accurate. 
Nevertheless, ML concepts can be exploited to handle uncertainties 
associated with the route optimization process when integrated with a 
fuzzy logic approach presented here.

Some of the ML methods applied for handling uncertainty 
include neural networks, deep ensembles, and deep learning. While 

each of these methods has its advantages and disadvantages, they can 
be integrated with the proposed fuzzy logic approach in future works. 
We intend to explore these methods in future studies.

The study has several limitations. First, the numerical example 
used is synthetic and illustrative, not drawn from a real-world case. 
Second, the model relies on expert-defined membership functions 
and tolerance thresholds, which may introduce subjectivity. Third, 
the current framework does not include automated learning of fuzzy 
parameters from data, which may limit scalability. Lastly, field 
validation and testing in large-scale infrastructure projects remain to 
be conducted.

These limitations offer opportunities for future work, including 
the integration of fuzzy logic with data-driven machine learning 
models, refinement of membership function estimation methods, and 
application to real-world transportation or infrastructure datasets.
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