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Abstract: Alzheimer’s disease (AD) is a brain-related disease in which the patient’s condition worsens over time. Early diagnosis of AD is uniquely 
challenging due to its primarily neurological and cognitive anomalies, such as beta-amyloid plaque accumulation, tau tangles, and hippocampal 
atrophy, which are subtle and slowly progressive. Unlike diseases with clear physical or biochemical markers, AD anomalies often overlap with 
normal aging and require analyzing complex data such as brain imaging and cognitive tests. This study reviews various machine learning and deep 
learning techniques for early AD detection. The findings reveal that deep learning techniques, especially convolutional neural networks (CNNs), 
and hybrid architectures such as VGG16 and CNN–long short-term memory models achieve near-perfect performance (accuracy of 99.95% and 
99.92%, respectively), while traditional models such as support vector machines excel in smaller datasets (accuracy between 90% and 96%) due 
to their simplicity and interpretability. The combination of multimodal data (magnetic resonance imaging, positron emission tomography, and 
cerebrospinal fluid biomarkers) significantly improved diagnostic performance, indicating the potential of innovative artificial intelligence (AI) 
methods in early AD identification. However, deep learning faces key limitations, including high computational demands, lack of interpretability, 
and reliance on large, annotated datasets, which can hinder clinical applicability. By pursuing learning techniques, such as transfer learning, 
to reduce data needs and explainable AI to achieve interpretability, researchers and developers can overcome the bottlenecks and enhance the 
accuracy and efficiency of real-world AD diagnosis.
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1. Introduction
Alzheimer’s disease (AD) is an irreversible and progressive 

neurodegenerative disorder that causes short-term memory loss, 
paranoia, and delusional thoughts. It is the most common cause of 
dementia, particularly in older adults. This disease disrupts the function 
of a person’s brain cells, leading to behavioral changes and difficulty 
speaking or performing daily tasks. According to the World Health 
Organization, an estimated 55 million people worldwide suffer from 
dementia . This number is expected to reach 78 million by 2030 and 
increase to 139 million by 2050 [1]. In the United States, approximately 
seven million people suffer from AD, which places a huge psychological 
and economic burden on patients, their families, and society. Following 
heart disease, cancer, and brain hemorrhage, it is the fifth leading cause 
of death among Americans aged 65 and older [2]. While the exact 
cause of AD is still unclear, factors such as aging, genetics, education, 
and lifestyle play a role. Additionally, there are various associated 
neuropathologies that cause clinical dementia [3]. Most of these cases 
are observed among individuals aged 65 and older. Although only 5% 
of AD patients are between the ages of 65 and 74, the risk of developing 
the disease increases by 50% after the age of 85. People with higher 
education have been found to be less vulnerable. The brain forms more 
synaptic connections as a result of higher education. In this way, the 
brain builds up a synaptic reserve that helps patients replace the neurons 
lost as the disease progresses [4].

There is currently no medication that can cure AD, but early 

diagnosis can slow the progression of the disease and improve patient 
outcomes. The diagnosis and management of AD are challenging due 
to the complex nature of the disease and the lack of effective treatment 
options. Early detection and accurate diagnosis of AD are crucial for 
efficient management and treatment to maintain patient’s mental health 
and delay its effects, allowing patients to live a better life [4]. Machine 
learning (ML) and deep learning (DL) have emerged as powerful tools for 
predicting and classifying AD, offering the potential for more accurate 
and efficient diagnosis. Advancements in ML have shown tremendous 
potential in healthcare, highlighting the effectiveness of interpretable 
ML models for early-stage disease prediction using explainable AI 
(XAI) technique SHAP (SHapley Additive exPlanations) to interpret 
the model prediction decision and help to understand the factors that 
have the most influence [5]. 

In this review article, we provide a comprehensive overview of 
the current state-of-the-art in ML- and DL-based AD prediction and 
classification. It aims to summarize current methodologies, assess 
their performance, highlight common challenges, and evaluate their 
practicality. By combining insights from recent studies, this study 
provides guidance for researchers and practitioners in developing 
interpretable and practical diagnostic tools for early AD detection. The 
rest of this review article is organized as follows: Section 2 defines the 
stages of AD. Section 3 provides a review of the available literature, 
the research challenges and gaps, and describes a comparative study of 
the experimental results acquired with various performance indicators 
from those studies as its focus. Section 4 presents the most important 
neuroimaging modalities utilized for AD diagnosis. Section 5 discusses 
the dataset used in those research studies. In Section 6 we outline 
the process of AD diagnosis. Section 7 is dedicated to describing 
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and analyzing different ML and DL models developed for the early 
prediction and classification of AD. Finally, Section 8 discusses the 
study’s pertinent findings, results, challenges, and potential future 
directions.

2. Stages of Alzheimer’s Disease
AD typically progresses slowly over several years, eventually 

affecting most areas of the brain. The condition highlights its profound 
psychological impact, emphasizing the urgent need to prioritize mental 
health as an essential component of care and recovery strategies [6]. 
Patients initially experience mild cognitive impairment (MCI), which 
may lead to AD, although not all MCI patients eventually develop AD. 
Five stages associated with AD  are shown in Figure 1 [7]:

Stage 1: Preclinical Alzheimer’s disease
Stage 2: Mild cognitive impairment (MCI) 
Two distinct types of MCI: progressive MCI (pMCI), which indicates 

that a person will develop AD, and stable MCI (sMCI), which 
indicates that a subject will not develop AD

Stage 3: Mild dementia (MD)
Stage 4: Moderate dementia (MoD)
Stage 5: Severe dementia due to Alzheimer’s disease

3. Literature Review 
In this section, we present a comprehensive summary of 

noteworthy research articles from 2017 to 2024 that focus on 
advancements in the early diagnosis of AD through the application of 
ML and DL techniques using various neuroimaging modalities. Table 1 
highlights the research articles included in the study and the datasets 
used. It also provides the modality and total number of participants 
used in their study. Table 2 explains the different methods used by the 
researchers and their results from the dataset.

Zhao et al. [8] proposed a novel method using longitudinal 
fluorodeoxyglucose positron emission tomography (FDG-PET) scans 
to predict the progression of MCI to AD. They constructed metabolic 
networks for each patient using sophisticated techniques such as support 
vector machine (SVM) with leave-one-out cross-validation, enhanced 
by feature selection using Lasso regression. Notably, their findings 
highlighted the predictive superiority of integrating multi-time-point 
data over single-time-point analysis. While their results are promising, 
the small sample size and potential generalizability issues suggest that 
more research is needed to confirm these findings. To address this, 
k-fold cross-validation can be used to prevent overfitting.

Frölich et al. [9] emphasized the use of a comprehensive mix of 
biomarkers of MCI to predict AD. The classifiers were improved using 
SVM and bootstrapping techniques, and the performance of classifiers 
with an imbalanced class distribution was evaluated and compared 
using the receiver operating characteristic (ROC) curve. However, a 
discussion about the difficulties and possible consequences of a small 
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 Figure 1
Five stages  of Alzheimer’s disease

Table 1
Description of dataset and their modalities used in literature in-

cluded in this study

References Dataset Sample Size Modality
[8] ADNI 79 participants PET
[9] ADNI 115 participants MRI, CSF
[10] ADNI 819 participants MRI
[11] ADNI 790 participants MRI
[12] ADNI 1242 participants MRI, FDG-

PET
[13] ADNI-1, 

ADNI-2, and 
MIRIAD

1526 participants MRI

[14] ADNI 80 participants sMRI; 
rs-fMRI

[15] ADNI 818 participants MRI
[16] ADNI 1618 participants MRI, PET, 

CSF
[17] ADNI 1409 participants MRI
[18] ADNI 267 participants MRI 1.5T
[19] OASIS 373 participants MRI 1.5T
[20] ADNI 1144 participants MRI
[21] ADNI+OASIS 4769 participants MRI 1.5T
[22] ADNI+PND 2272 participants MRI
[23] ADNI 134 participants MRI[
[24] ADNI 560 participants MRI 1.5T
[25] OASIS 235 participants MRI 1.5T
[26] NINCDSA-

DRDA
- PET, EEG

[27] ADNI 1371 participants MRI
[28] ADNI 3692 scans MRI
[29] Hospital Clínic 

de Barcelona 
(HCB)

339 participants MRI

[30] OASIS 150 participants MRI
[31] Kaggle 6400 scans MRI
[32] ADNI 1060 participants
[33] ADNI 294 scans MRI
[34] Kaggle 6400 scans MRI
[35] ADNI, OASIS 6400 scans MRI
[36] ADNI 6400 scans MRI
[37] Kaggle 6400 scans MRI

Abbreviations: CSF, cerebrospinal fluid;  EEG, electroencephalography; MRI, 
magnetic resonance imaging; PET, positron emission tomography;  rs-fMRI, 
resting-state functional MRI; sMRI, structural MRI.
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Table 2
AUC, precision, and recall metrics when evaluating on X-Wines_

Slim dataset 

References Dataset Method Results
[8] ADNI SVM Accuracy 83%

Sensitivity 87%
Specificity 78%

[9] ADNI SVM with linear 
kernel

Accuracy 82%

Sensitivity 85%
Specificity 70%

[10] ADNI SVM Accuracy 76%
Sensitivity 70%
Specificity 81%

[11] ADNI Binary LR Accuracy 93%
Sensitivity 86%
Specificity 83%

[12] ADNI Multimodal and 
multiscale deep 
neural network 
(MMDNN)

Accuracy 75%
Sensitivity 73%
Specificity 76%

[13] ADNI-1, 
ADNI-2, and 
MIRIAD

DMIL Accuracy 76%
Sensitivity 42%
Specificity 82%

[14] ADNI SVM Accuracy 96%
Sensitivity 94%
Specificity 100%

[15] ADNI CNNs Accuracy 79%
Sensitivity 84%
Specificity 74%

[16] ADNI Multimodal DL 
+ RNN

Accuracy 81%
Sensitivity 84%
Specificity 80%

[17] ADNI CNN+RNN Accuracy 74%
Sensitivity 75%
Specificity 75%

[18] ADNI RF Accuracy 85.77
Sensitivity 54.7%
Specificity 97.44%

[19] OASIS KNN + Linear 
regression

KNN:
CNN
Sensitivity 98.30%
AUC 99.60%
LR:
Accuracy 98.30%
Sensitivity 97.40%
AUC 99.70%

Table 2
Continued

References Dataset Method Results
[20] ADNI CNN Accuracy 76%

Sensitivity 79%
Specificity 76%

[21] ADNI+​
OASIS

RF + LR RF:
Accuracy 98.89% 
Sensitivity 99.19%
LR:
Accuracy 84.33% 
Sensitivity 84.14%

[22] ADNI+PND SVM+CNN Accuracy 67%
Sensitivity 68%
Specificity 66%

[23] ADNI SVM Accuracy 80%
Precision 84%
Sensitivity 85%
Specificity 82%

[24] ADNI SVM Accuracy 90.00%
Sensitivity 93.90%
Specificity 85.10%

[25] OASIS SVM Accuracy 85.80%
Precision 87.83%

[26] NINCDSA-
DRDA

SVM Accuracy 89%
Sensitivity 90%
Specificity 88%

[27] ADNI LSTM Accuracy 93.87%
Sensitivity 94.07%
Precision 94.07%

[28] ADNI CNN Accuracy 97.57%
Sensitivity 97.60%

[29] Hospital 
Clínic de 
Barcelona 
(HCB)

SVM Accuracy 90%

[30] OASIS GaussianNB, 
decision tree,  
RF, XGBoost, 
Voting  
Classifier, 
 and Gradient-
Boost

Voting  
Classifier 
Accuracy 96%
Precision 100% 
Recall 43% 
F-1 Score 60%

[31] Kaggle CNN Accuracy 99.30%
Precision 100.00%
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dataset size was necessary. Additionally, it was determined that k-fold 
cross-validation was required for smaller datasets to avoid overfitting. 
There is no doubt that using measurements other than the ROC curve 
can simplify their work significantly.

Gavidia-Bovadilla et al. [10] presented a framework 
using longitudinal magnetic resonance imaging (MRI) data, 
neuropsychological tests, and cerebrospinal fluid (CSF) profiles. They 
used a linear mixed effects model to analyze changes in MRI biomarkers 
over five years and trained SVM classifiers on using the residuals to 
predict subject classifications and early progression  of MCI to AD. 

Based on the annual rate of change, biomarkers were categorized 
as variant or quasi-variant. It would be helpful if they included a more 
diverse dataset showing CSF observations at later stages and features 
that aid in prediction. Reliance on a specific dataset—the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI)—the lack of longitudinal 
data, and limited generalizability posed challenges for this study.

Luk et al. [11] employed a novel three-dimensional (3D) 
voxel-based texture analysis on T1-weighted MRI scans to predict 
the progression of MCI to AD. This work suggested a multifactorial 
predictive model that combined texture features with clinical factors 
such as APOE-ε4 genotype, cognitive test scores, and hippocampal 
volume. Although this method demonstrated superior predictive 
capability over hippocampal volume alone, its limitations include 
its reliance on a single dataset (ADNI) and a lack of validation in 
independent datasets. It would be beneficial to consider validating the 
predictive model in diverse and independent populations, integrating 
additional clinical markers, and longitudinal data to make the models 
more applicable to real-world settings.

Liu et al. [13] proposed a comprehensive approach for diagnosing 
brain disease using MRI, namely, the Landmark-based Deep Multi-
Instance Learning framework. It is a combination of landmark-based 
feature extraction and deep multi-instance learning (DMIL). The 
method uses anatomical landmarks to extract image patches, enabling 
the model to capture both local and global structural information. 
The framework demonstrated strong performance, particularly in 
distinguishing AD patients from healthy controls, but it does face 
challenges. It can efficiently process large datasets and provide a level 
of interpretability in its decision-making process, a key feature for 
medical applications. However, the study would benefit from further 
justification of the selected landmarks and exploration of alternative 
or automated selection methods. Additionally, although the framework 
performs well, the risk of overfitting remains a concern, particularly 
with limited data. To ensure robustness and applicability to new, unseen 
datasets, it is essential to implement strong validation techniques.

Hojjati et al. [14] investigated the integration of structural MRI 
(sMRI) and resting-state functional MRI (rs-fMRI) to enhance the 
prediction of MCI progression to AD. Although they used advanced 
feature selection techniques to identify key markers from both modalities 
and applied SVM for classification, the small sample size of the study 
limits generalizability and its reliance on predefined brain atlases may 
overlook other important biomarkers. Better prediction outcomes 
require more diverse datasets and detailed classification models.

Lin et al. [15] developed a hybrid convolutional neural network 
(CNN)-based framework for predicting the progression of MCI to AD 
using MRI data. Their approach focused on extracting small, informative 
regions from the hippocampus and enhancing these images with 
structural adjustments to account for age-related changes. By combining 
these refined MRI features with additional structural data through an 
extreme learning machine, they achieved significant improvements in 
prediction accuracy and reliability. Despite its successes, the reliance 
of the study on specific brain regions can overlook broader neural 
changes. The model needs thorough clinical validation in real-world 
settings before it can be applied to clinical studies.

Lee et al. [16] employed multimodal DL approach using a 
recurrent neural network (RNN), specifically a gated recurrent unit, 
to predict AD progression from MCI. They combined neuroimaging, 
CSF analysis, and cognitive performance data, boosting prediction 
accuracy from 75% with single data types to 81% when using 
multiple modalities. To identify key biomarkers and support patient 
monitoring and treatment planning, they improved their models with 
attention mechanisms on MRI, PET, and CSF data. They did, however, 
recognize the difficulties in ensuring consistent model performance by 
standardizing data from various sources.

Basaia et al. [17] utilized a DL model to analyze 3D MRI 
scans for detecting MCI and the stages of AD. The model works 
effectively across different MRI protocols without requiring complex 
preprocessing. However, it struggled to differentiate between MCI 
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Table 2
Continued

References Dataset Method Results
[32] ADNI k-means, KNN Adjusted

F Score:
KNN 72.70%
GMM 71.79%
ELM 72.76%
SVM 73.59%
RF 47.71%
AUC:
KNN 85.51%
GMM 84.53%
ELM 84.73%
IF 81.51%
SVM 86.51%
RF 78.23%

[33] ADNI LR AUC 88%
[34] Kaggle CNN and fine-

tuned VGG16 
model

CNN:
Accuracy 99.95%
Fine-tuned 
VGG16:
Accuracy 97.44%

[35] ADNI, 
OASIS

BiLSTM and 
ANN

ADNI:
Accuracy 99.22%
Specificity 99.51%
Precision 98.26%
OASIS:
Accuracy 98.96% 
Sensitivity 98.32%
Specificity 99.21%

[36] ADNI CNN-LSTM Accuracy 99.92% 
Specificity 100.00

[37] Kaggle Pipelined LeNet 
(PLN)

Accuracy 99.5% 
Sensitivity 99.9%
Specificity 99.8%
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subtypes. The authors suggested combining MRI data with biomarkers 
such as PET scans or genetic information for a more comprehensive 
diagnosis and the need for clinical validation in real-world settings.

Alickovic et al. [18] developed a straightforward approach for 
detecting AD using ML. They extracted features from MRI scans using 
histograms and classified them with random forest (RF) algorithm. 
This method relies on preprocessed data from the ADNI database and 
achieved an accuracy of 85.77%, with k-nearest neighbors (KNN)  value 
showing a higher sensitivity of 65.28%. While the model is simple and 
computationally efficient, its sensitivity falls short compared to more 
complex methods, highlighting the trade-off between ease of use and 
diagnostic precision.

Battineni et al. [19] proposed an approach to classify dementia 
patients using principal component analysis (PCA) for feature 
extraction and three classifiers: SVM, Logistic Regression (LR ), and 
KNN. The use of PCA improved model performance by simplifying the 
data. Attention to feature interpretability is required to use this approach 
in broader applications and real-world clinical relevance.

Gao et al. [20] introduced AD-NET, a novel DL model designed 
to predict the progression of MCI to AD using MRI scans. The model 
uses age-adjusted dynamic features to capture the difference between 
a person’s biological age and chronological age, which helps refine 
predictions. AD-NET outperformed other models in terms of area under 
the curve (AUC, 0.81) and showed the best results on younger patients. 
However, the interpretation of the decision-making process of DL 
models remains hindered by their black-box nature. Reliable outcomes 
depend on consistent preparation and data collection.

Alroobaea et al. [21] developed a method for early AD detection 
using two different datasets. They applied LR, SVM, and RF, and the 
preprocessing steps included feature selection, handling missing data, 
and encoding categorical variables. LR performed best on the ADNI 
dataset with an impressive accuracy of 99.43%, but the result on the 
Open Access Series of Imaging Studies (OASIS) dataset was slightly 
lower at 84.33%. The system performed well on structured datasets  
but faced challenges in generalizing across different datasets and relied 
heavily on preselected features, suggesting that more adaptive or robust 
model training approaches may be needed.

The objective of Bron et al. [22] was clearly specified and they 
utilized both SVM classifiers and CNN approaches in their study. 
The research emphasized the comparison between the multi-center 
Parelsnoer Neurodegenerative Diseases (PND)  dataset and the ADNI 
dataset. While the study included external validation results, it lacked 
detailed metrics and in-depth analysis to fully quantify and explain the 
observed decline in performance

In both unimodal and multimodal classification, Arco et al. [23] 
used searchlight analysis to integrate two data modalities, MRI and 
neuropsychological testing, and outperformed PCA. The searchlight 
approach provided valuable insights into specific brain regions 
associated with AD progression, while the use of nested cross-validation 
ensured robust and optimized results. However, due to a small sample 
size , the generalizability of the findings to larger populations is low. 
Additionally, the exclusive focus on converters overlooks the potential 
insights from non-converters that could provide a deeper understanding 
of the various stages of MCI and AD.

Li and Yang [24] compared the effectiveness of SVM, 3D 
VGGNet, and 3D ResNet for AD classification using MRI data. They 
used voxel-wise features for SVM and transfer learning to optimize the 
DL models, achieving 90% accuracy with SVM and 95% with both 
DL models. Grad-CAM (Gradient-weighted Class Activation Mapping) 
visualizations identified the cerebral cortex and cerebellum as key 
regions associated with the disease. However, the small sample size of 
the study, high computational demands for ResNet, and lack of external 
validation limited its generalizability.

Savita et al. [25] developed an ML method to detect AD using 
MRI data from the OASIS dataset, focusing on the hippocampal region. 
Their approach extracted key features such as entropy and contrast using 
the gray level co-occurrence matrix (GLCM) and combined artificial 
neural network (ANN) and SVM to classify the disease stages from 
normal to severe. Although the method achieved an 85.8% accuracy, its 
reliance on a single dataset and lack of volumetric analysis limited its 
broader applicability and potential for higher accuracy.

Rossini et al. [26] used SVMs combined with PCA, to analyze 
electroencephalography (EEG) data to detect AD in its early stages. The 
approach demonstrates the potential of EEG as a noninvasive and cost-
effective tool, but it requires detailed information about the baseline and 
follow-up data from the limited dataset. 

To improve accuracy and efficiency, El-Sappagh et al. [27] 
proposed a two-stage model that combines transfer learning and 
contrastive learning to perform targeted feature extraction on 
hippocampal image patches. Using 3D Grad-CAM, the study provided 
insights into brain regions that influence predictions and estimated 
MCI-to-AD conversion time. However, further research is needed 
to refine the personalized models, improve prediction accuracy, and 
validate findings using larger datasets of MCI conversion time.

Shukla et al. [28] proposed an approach to improve AD detection 
using ML and DL models, focusing on improved data quality through 
preprocessing. They simplified the four-dimensional MRI scans into 
two-dimensional (2D) images by applying techniques such as grayscale 
conversion, histogram equalization, and selective clipping to improve 
clarity and reduce complexity. The reliance of the approach on intensive 
preprocessing and high-performance computing resources may limit 
scalability and real-time applicability in clinical settings. 

Pérez‐Millan et al. [29] developed a ML method that combined 
PCA and Multiple Factor Analysis to simplify MRI data and then 
used SVM to classify AD, frontotemporal dementia, and healthy 
controls. Using both cross-sectional and longitudinal MRI data, they 
demonstrated improved accuracy in longitudinal data, achieving up to 
90.0% for AD versus controls. However, the study faced challenges, 
including a small sample size for longitudinal data, reliance on a single 
center for data collection, and the use of only structural MRI, which 
limited the inclusion of richer imaging techniques.

Uddin et al. [30] developed an ML model that combined multiple 
algorithms, including Random Forest, XGBoost, and a Voting Classifier, 
to predict AD using the OASIS longitudinal dataset. They focused on 
improving accuracy through data preprocessing, handling missing 
values, and selecting the most relevant features, ultimately achieving 
96% accuracy with the Voting Classifier. The use of multimodal 
imaging data can further improve the results. The reliance of the study 
on a single dataset and imputed missing values, as well as the lack of 
multimodal imaging data, may limit its usefulness in diverse clinical 
applications.

Altwijri et al. [31] proposed a DL model using EfficientNetB0 to 
classify AD into four stages—normal, very mild, mild, and moderate—
based on MRI images. Their approach included preprocessing 
techniques such as skull removal, histogram equalization, and image 
resizing to improve the quality of the input data. The model performed 
impressively, outperforming other models such as VGG16 and 
ResNet50. However, its reliance on a single dataset and the difficulty 
in distinguishing early stages of AD due to limited data highlight 
challenges of wider application of this method.

Liu et al. [32] predicted MCI conversion using a novel approach 
to novelty detection (ND) methods. The outcomes are improved through 
comprehensive analysis that includes hyperparameter tuning and ANN 
CV-based methods. Additionally, it provides a benchmark for this work 
by contrasting supervised binary classification algorithms (SVM and 
RF) with ND techniques. Due to the limited data source, a generalized 
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dataset was necessary for this investigation. The decision to consider 
only the overall results of each assessment may ignore potentially 
important nuances. A sensitivity analysis or feature importance 
assessment can show the relative value of several modalities because all 
of them contribute equally to the prediction, but this may not be the case.

Park et al. [33] proposed a new approach called prospective 
classification to predict whether patients with MCI will progress to 
AD. By analyzing changes in brain features over time using MRI scans, 
the method projects current brain data into future states and uses these 
projections for classification. The approach outperformed traditional 
methods, achieving a high AUC of 0.881, and identified key brain 
regions, particularly the frontal and temporal lobes, as being crucial for 
predicting AD progression. However, the method relies on longitudinal 
MRI data, which is challenging to obtain in clinical settings, limiting its 
broader applicability.

Arafa et al. [34] used a custom CNN and fine-tuned VGG16 
model and achieved high performance for both models. Apart from 
the extensive preprocessing and computational requirements of deep 
models, their approach shows valuable promise for utilizing MRI 
images for early AD diagnosis.

Matlani [35] proposed a hybrid DL model combining BiLSTM 
and ANN for early AD diagnosis. This method involves preprocessing 
images to reduce noise, extracting key features with PCA-NGIST, and 
optimizing the selection of features using the Improved Wild Horse 
Optimization algorithm before classification using a BiLSTM-ANN. 
It requires detailed feature engineering, which poses challenges for its 
practical application.

In a significant advance in medical imaging, Sorour et al. [36] 
investigated various DL methods to classify AD using MRI scans. They 
focused on five distinct approaches, among which CNN-LSTM model 
stood out, achieving a remarkable accuracy of 99.92% and leveraging 
the spatial feature extraction of CNNs and the sequence-handling 
capabilities of LSTMs. The risk of overfitting is a concern with this 
approach.

Prasath and Sumathi [37] adopted the Pipelined LeNet (PLN) 
architecture. The approach involved resizing and enhancing low-
resolution MRI images through image fusion and extracting ternary 
features, which were then classified using the PLN model. The system 
achieved exceptional performance and outperformed conventional 
methods, however the lack of testing and cross-validation on real-world 
clinical datasets can affect its applicability in broader settings. 

Recent developments in multimodal ML have shown the benefits 
of combining diverse data types for more reliable and interpretable 
predictions. Su et al. [38] introduced a framework combining CNN-
based image features, text representations from transformers, and 
tabular data processed through multilayer perceptrons to improve 
vehicle rating predictions. They used Grad-CAM for visual attention 
mapping and feature importance scoring for tabular data to further 
enhance model transparency. 

Su et al. [39] reviewed ML approaches for diagnostics and 
prognostics in industrial systems using open-source Prognostics Health 
Management Data Challenge datasets. Their study emphasized the 
use of interpretable models such as decision trees, RFs, and SHAP 
technique to explain complex model outputs. 

All of these studies provide practical insights for developing 
interpretable and generalizable AI systems that are highly relevant 
to AD diagnosis, where diverse data modalities and clinical trust are 
critical for real-world use.

4. Neuroimaging Modalities
Neuroimaging plays a crucial role in the early diagnosis and 

monitoring of AD. Different modalities can provide detailed description 

of brain regions, showing how well different parts of the brain are 
working, and can reveal changes in how brain networks communicate. 
Degenerative histological alterations, such as hypometabolism, amyloid 
plaques, and atrophy, can be seen using biomedical imaging techniques 
such as MRI and PET. Imaging can provide quantitative biomarkers 
that point to AD and dementia prognosis [40]. These modalities, 
combined with advances in AI, make it possible to detect AD earlier 
and predict how it might progress. Figure 2 shows the diagnosis of AD 
using different neuroimaging modalities.

In this section, we discuss the most important modalities used to 
diagnose the early development of AD.

4.1. Magnetic resonance imaging (MRI)
MRI is one of the most widely used noninvasive neuroimaging 

techniques for studying AD. It provides high-resolution, detailed 
images of the brain structure  and is valuable for detecting physical 
changes associated with AD, such as spot signs of shrinkage in the 
hippocampus and entorhinal cortex [42], regions that are often affected 
early in the disease. This neuroimaging methodology makes it possible 
to distinguish between the different stages of AD and helps make the 
right decisions for early AD diagnosis. Figure 3 shows sample MRI 
scans of healthy and AD patients used to diagnose AD.

4.2. Functional MRI (fMRI)
fMRI is a noninvasive imaging tool for studying functional 

connectivity between different brain regions. It measures brain activity 

6

 Figure 2
Neuroimaging modalities for diagnosing AD patients 

 Figure 3
MRI brain image of healthy and AD patients
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by detecting changes in blood flow. This helps researchers and clinicians 
observe how different parts of the brain work together during tasks or 
at rest. In AD, fMRI often shows disrupted communication between 
brain regions, particularly within networks such as the default mode 
network (DMN), which is active when the mind is at rest and involved 
in memory and self-referential thinking. Changes in activity patterns 
observed with fMRI can occur even before structural damage becomes 
visible, making it a promising tool for early detection of the disease 
[41]. Figure 4 represents fMRI imaging of healthy and AD patients. 
fMRI is also used to analyze how the brain responds during specific 
tasks treatments and study how AD affects memory, decision-making, 
and other cognitive functions.

4.3. PET and FDG-PET modality
PET uses radiotracers injected into the bloodstream to generate 

2D or 3D images, showing the chemical distribution within the brain. 
A major advantage of PET imaging is its ability to clearly show blood 
flow, oxygen usage, and glucose metabolism in active brain tissues, 
providing valuable insights into brain function. For the diagnosis 
of progressive neurodegenerative diseases, PET scans can provide 
objective measurements of pathophysiological changes through 
metabolic imaging [40]. FDG-PET determines glucose metabolism in 
the brain and highlights areas with reduced metabolic activity, which 
can be used to differentiate between different types of primary dementia. 
Figure 5 shows examples of PET and FDG-PET images of AD patients.

4.4. Electroencephalography (EEG)
EEG is another noninvasive method that records electrical activity 

in the brain through electrodes placed on the scalp. It is especially 
useful for spotting changes in brain wave patterns associated with 
AD, such as slower waves becoming more dominant and faster waves 
decreasing [43]. Figure 6 gives a bird’s-eye view of EEG data. EEG is 
valued for its high temporal resolution, which allows for effective real-
time monitoring of functional brain activity. It is also cost-effective and 
widely accessible, making it a useful tool in both research and clinical 
settings for studying cognitive decline and neurological conditions.

5. Dataset
There are several publicly available datasets that are used in 

many literature sources. In this section, we discuss the datasets used in 
AD diagnosis.

ADNI: The Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) is the most widely used dataset. Under the direction of the 
principal investigator, Dr. Michael W. Weiner, the initiative began in 

2004 with the goal of providing researchers with neuroimages for the 
accurate diagnosis and prediction of AD [13, 16]. The first ADNI-1 
study was conducted in 2009 and was subsequently expanded to ADNI-
2 and later ADNI-3. The participants in the project were adults aged 
55-90 years from different regions of the United States and Canada 
[10]. Each version of the ADNI dataset contains images from various 
neuroimaging modalities: sMRI, fMRI, PET, and FDG-PET.

MIRIAD: The Minimal Interval Resonance Imaging in 
Alzheimer’s Disease (MIRIAD) dataset consists of 708 volumetric T1 
MRI scans performed by the same radiographer using the same scanner 
(GE Medical systems, Milwaukee, WI, USA) on 46 patients with mild-
to-moderate AD and 23 healthy senior individuals for a total of 69 MRI 
scans [13]. The subjects were categorized as either normal controls 
(NC) or AD patients based on their prior analysis of Mini-Mental State 
Examination scores.

OASIS: Open Access Series of Imaging Studies is another 
frequently used free neuroimaging dataset. It has three versions: The 
initial released dataset OASIS-1 contains a collection of 434 cross-
sectional MRI datasets from 416 subjects. OASIS-2 includes 150 
participants and 373 longitudinal MRI datasets of older adults with and 
without dementia. OASIS-3 is the most recent version and includes 
MRI and PET images from 1098 participants aged 18 to 96 years [25]. 

Kaggle: Kaggle is a website that provides online datasets for 
analysis and research across a range of disciplines. There are 1279 MRI 
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 Figure 5
PET image (a) and FDG-PET image (b) of AD patients 

 Figure 6
EEG data
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scans for testing and 5121 MRI scans for training in the dataset. The 
dataset was categorized into 2560 Non-Demented, 1792 Very Mild 
Demented, 717 Mild Demented, and 52 Moderate Demented [34]. 

6. AD Diagnosis Process
The process of AD diagnosis using ML and DL involves several 

important steps, each of which is designed to ensure accurate and 
reliable outcomes.

6.1. Data acquisition
The process starts with collecting high-quality datasets from 

various sources. There are some datasets publicly available for AD 
diagnosis. Data can be acquired from those sources. High-quality, 
comprehensive datasets are crucial for accurate analysis and diagnosis.

6.2. Data preprocessing
Data collected from datasets often require extensive preprocessing, 

which is essential to ensure its quality, usability, and consistency for 
analytical use. Preprocessing includes noise reduction, normalization, 
standardization, and handling of missing data to prepare the datasets for 
further processing and analysis. Various data preprocessing techniques 
can be applied to AD datasets to enhance the quality and accuracy of 
analysis results. This review highlights some of the most commonly 
used preprocessing methods discussed in the reviewed research articles

Data Cleaning: This step focuses on cleaning up the dataset by 
finding and fixing any errors, missing information, or inconsistencies. 
It involves identifying problems, such as gaps, unusual values, or 
inconsistencies in the data, and then correcting, removing, or filling 
these problems to improve the quality of the dataset [30].

Imputation: When data are missing, imputation can fill the gaps 
by estimating the missing values. Techniques such as using the average 
value (mean), predicting values through regression, or more advanced 
methods such as multiple imputation are used to complete the dataset 
and prepare it for analysis [30].

Noise Reduction: Reducing noise in image data preprocessing 
is essential to make the images clearer and more reliable for analysis. 
Methods such as smoothing filters, wavelet transforms, or DL models 
clean up distortions while keeping important details intact and 
maintaining image quality [35].

Image Normalization: This process involves adjusting the 
intensity values of images to a standardized scale. Techniques such as 
normalization, histogram equalization, and contrast stretching are often 
used to improve image visualization [18].

Cropping and Resizing Image: Cropping helps focus on 
important parts of an image, such as a specific brain region, by 
cutting out unnecessary areas. Resizing ensures that all images are the 
same size. These steps make the data easier to work with while still 
preserving the important details [20].

Augmentation: This process involves adding images or changing 
variations of the original image to increase the data size. Augmentation 
can be achieved by flipping, scaling, and changing the contrast of the 
image [34].

Segmentation: This is the process of dividing an image into 
meaningful regions or sections to isolate specific structures or regions 
of interest (ROIs). Segmentation makes it easier to study and analyze 
key features. In some articles, GM, WM, and CSF tissues were first 
obtained  using tissue segmentation and then one or more tissues were 
structurally segmented to obtain relevant parameters including regional 
cortical thickness [25]. A number of studies divided the whole brain into 

anatomical ROIs and directly extracted global characteristics such as 
volume, surface, and form from the ROIs [33].

6.3. Feature extraction and selection
This is then applied to select the most important and relevant 

features from the dataset. It reduces the complexity of the dataset by 
eliminating redundant or irrelevant features, thus improving model 
efficiency and accuracy. Various techniques such as correlation analysis 
and PCA can be used for this process [30]. Feature extraction transforms 
raw data into meaningful and useful representations to create new 
features using techniques such as PCA, wavelet transform, and DL-
based methods [19, 34]. This step ensures that the raw data is converted 
into a format suitable for analysis. 

6.4. Classification
Classification is the process of categorizing data into predefined 

groups based on its characteristics. This allows for the diagnosis and 
classification of patients with AD. Most studies use binary classification 
to classify AD. Common algorithms include SVM, decision trees, LR, 
and DL models. Figure 7 shows the steps involved in the process of AD 
diagnosis using different ML and deeper learning techniques.

7. Methodology
For this article, we conducted a systematic review using relevant 

research articles published between 2017 and 2024. Key sources and 
databases include IEEE Xplore, PubMed, ScienceDirect (Elsevier), 
Springer, MDPI, Nature, and Google Scholar. The review includes 
studies that investigate and analyze different ML and DL techniques 
using neuroimaging (e.g., MRI, PET) and clinical dataset as modalities 
for the early prediction of AD.

Although the review followed a structured search process 
with clear selection criteria to reduce bias, limitations remain due to 
inconsistent demographic reporting and limited external validation in 
many studies. Many studies lacked detailed demographic information, 
limiting insights into data diversity and potential biases. Most studies 
used standard validation techniques such as k-fold or hold-out methods, 
few included statistical significance testing such as confidence intervals 
or p-values, and only a few studies validated their models on external 
dataset. Overfitting was a common challenge, particularly in DL models 
trained on limited data, though some studies tried to resolve it using 
techniques such as dropout, regularization, or data augmentation.

8

 Figure 7
Process  of AD diagnosis 



Journal of Data Science and Intelligent Systems Vol. 00  Iss. 00  2025

Researchers have applied ML and DL methods across various 
fields [44] and combined them with other techniques, such as SVMs 
with autoregressive integrated moving average [45], linear regression 
[46], and ANN with genetic algorithms [47]. Recent advancements in 
DL-based disease detection frameworks [48] and medical imaging [49] 
demonstrate their growing impact on healthcare application.

Figure 8 shows the methods used in the different articles 
reviewed in this study, along with their highest accuracy achieved by 
each specific classifier.

In this section, the most commonly used ML and DL models in 
the reviewed studies, emphasizing their application, performance, and 
advantages. Table 3 summarizes the ML and DL methods applied in 
this review article. 

7.1. ML models
Support Vector Machine (SVM)

SVM is a supervised ML algorithm widely used in AD detection 
for their ability to handle multiclass, high-dimensional data. SVM finds 
the optimal hyperplane that separates classes by maximizing the margin 
between the data points. 

Equation 1 defines the linear hyperplane, where  is the 
transpose weight vector, which is the vector that determines the 
orientation of the hyperplane; X is the feature vector corresponding to 
the input data point; and b is the bias term that determines the offset or 
distance of the hyperplane from the origin [50]. SVMs demonstrated 
robust performance in studies using imaging and clinical data, achieving 
convincing accuracy. For instance, Hojjati et al. [14] achieved 96.0% 
and Pérez‐Millan et al. [29] reported 90.0% accuracies.

Random Forest (RF) 
RF is an ensemble learning method that combines multiple 

decision trees to improve prediction accuracy and reduce overfitting. 
It is particularly effective in processing high-dimensional datasets, 
making it a popular choice for AD detection. This method utilized 
multiple trees to build a forest, where each tree is trained on a random 
subset of the data (bootstrapping) and a random subset of features is 
selected on each branch, ensuring diversity and robustness [30]. To 
classify data, RF obtained the Gini Index using the following formula:

In Equation 2, pi is the probability that an object will fall into a 
particular class or feature and k is the total number of classes. The Gini 
index ranges from 0 to 1. In AD detection, RF has demonstrated its 
ability to handle high-dimensional data and its superior specificity. For 
example, Alickovic and Subasi [18] achieved a specificity of 97.44% 
and Alroobaea et al. [21] achieved an accuracy of 98.89%, making 
it effective in processing multimodal datasets and identifying key 
predictors. Its simplicity, interpretability, and ability to handle complex 
data make it a valuable tool for early AD diagnosis.

Logistic Regression
LR is a supervised learning algorithm for binary classification. 

This method is used to predict the binary result (true or false) in 
classification problems. It analyzes the relationship between input 

(1)

(2)
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 Figure 8
Methods and their highest accuracy achieved by each specific clas-

sifier in the different articles used in the study

Table 3
Evaluation of the adaptive recommendation by users from the 

Web platform

References Method Technique

[8] SVM ML 
[9] SVM with linear kernel ML
[10] SVM ML
[11] Binary LR ML
[12] MMDNN DL
[13] DMIL DL
[14] SVM ML
[15] CNN DL
[16] Multimodal DL + RNN DL
[17] CNN+RNN DL
[18] RF ML
[19] KNN and Linear regression ML
[20] CNN DL
[21] RF + LR ML
[22] SVM+CNN ML
[23] SVM ML
[24] SVM ML
[25] SVM ML
[26] SVM ML
[27] LSTM DL
[28] CNN DL
[29] SVM ML
[30] GaussianNB, decision tree, RF, XG-

Boost, Voting Classifier, and Gradient-
Boost

ML

[31] CNN DL
[32] k-means, KNN ML
[33] LR ML
[34] CNN and fine-tuned VGG16 model DL
[35] BiLSTM and ANN DL
[36] CNN-LSTM DL
[37] Pipelined LeNet (PLN) DL



Journal of Data Science and Intelligent Systems Vol. 00  Iss. 00  2025

features and the probability of an outcome that belongs to a specific 
class.

Equation 3 is the LR model, where p is the predicted probability 
of the positive class, e is Euler’s number which is 2.71828,  is the bias 
term,  is the linear term, and  is the quadratic term that captures 
the nonlinear relationship between x and p. LR is simple and effective in 
AD research, with Luk et al. [11] achieving 93% accuracy using ADNI 
data whereas Alroobaea et al. [21] achieved 84.33% accuracy with the 
combined ADNI and OASIS datasets.

7.2. DL models
Convolutional Neural Networks (CNN) 

CNN is a DL model specifically designed for processing and 
analyzing structured data, particularly images. In CNN, two images 
(represented as matrices) are multiplied to generate a new matrix 
to extract features. It performs two main tasks: feature extraction 
and classification. CNNs are powerful because they can learn and 
generalize patterns from large datasets. They use filters to scan images 
and create feature maps, then apply pooling to simplify the data while 
keeping the most important details. A type of pooling operation can be 
expressed as 

Equation 4 describes a maximization operation applied to function 
S, where the variables x and y are scaled and optionally shifted by the 
parameters a and b. The value of a and b can either be 0 or 1. Here a and 
b represent the horizontal and vertical offsets of the subregion from the 
top-left corner at position (2x, 2y).

The research articles included in this review paper used various 
CNN models such as LeNet-5, VGG, ResNet-101.

LeNet-5: It was designed for tasks such as handwritten digit 
recognition and laid the foundation for subsequent developments of 
CNN. It processes 32×32 grayscale images using convolutional layers 
for feature extraction, followed by pooling layers to reduce spatial 
dimensions, and fully connected layers for classification. LeNet uses 
Tanh activation and outputs probabilities through a softmax layer. 
While it is simple and efficient for small datasets, it lacks the capacity 
to handle high-resolution images or complex data, but it still has key 
influence on modern CNN architectures [37].

VGGNet: VGG is a 2D CNN designed for image classification. 
It takes 224×224 RGB images as input and uses small 3×3 filters in its 
convolutional layers, with the number of filters increasing deeper in 
the network. Rectified linear unit (ReLU) activations add nonlinearity, 
while max pooling layers (2×2) reduce the size of feature maps and 
improve translation invariance. The network ends with a layer that 
outputs classification probabilities, making it ideal for image tasks. Its 
straightforward design contributes to its popularity, and VGG models 
come in various depths (e.g., VGG16, VGG19) [50–52].

ResNet-101: Residual networks, or ResNets, address the 
challenges of training very deep networks. ResNet-101, part of the 
ResNet family, is a DL model with 101 layers designed for tasks such as 
image classification. It processes 224×224 RGB images, starting with 
a 7×7 convolutional layer, followed by batch normalization and ReLU 
activation. Its core consists of residual blocks with convolutional layers 
that enable efficient learning. The network ends with a global average 
pooling layer, a fully connected layer, and a softmax activation layer to 
output classification probabilities [50–52]. 

Artificial Neural Network (ANN) 
An ANN is a computational model inspired by the structure and 

function of the human brain and is used to find patterns and relationships 
in data, such as MRI scans. It works a bit much like the human 
brain, consisting of layers of interconnected units called neurons, or 
perceptions. These perceptions process information and help classify 
data from MRI images based on how the network is set up. Traditional 
neural networks typically have only two layers, which is insufficient 
for handling complex tasks such as analyzing large MRI datasets. For 
this purpose, DL introduces additional layers, ranging from 10 to over 
100, depending on the computational requirements. Each neuron passes 
information through the network, allowing it to uncover hidden details 
in the MRI images. The neurons in the lower layers start by processing 
raw data, while those in the deeper layers focus on finding more 
meaningful patterns and insights. Each neuron in an ANN performs the 
following operation:

α σ

In Equation 5  are inputs to the neuron,  is weights of the 
connections, b is the bias term, and σ(z) is the activation function (e.g., 
sigmoid, ReLU) [51, 52]. ANNs are widely used in AD detection due 
to their ability to learn nonlinear relationships in data. Matlani [35] 
applied ANN to ADNI and OASIS datasets and achieved accuracies 
of 99.22% and 98.96%, respectively, demonstrating the robustness of 
the network.

Recurrent Neural Network (RNN)
RNN is a special type of ANN adapted to work for processing 

time series data and word sequences. RNNs can remember information 
from previous inputs, making them ideal for tasks where the order of 
data is important. At each step in a sequence, the network updates its 
“hidden state,” which acts as its memory. This is done using the current 
input and the hidden state from the previous step. The output sequence 
is computed as 

Here  is the current hidden state,  is the previous state, 
are weight matrices,  is the current input, and  is the hyperbolic 
tangent activation function [16]. In Lee et al. [16], RNN is applied in 
AD detection to analyze temporal patterns in longitudinal datasets by  
combining RNN with multimodal DL, achieving an accuracy of 81%.

Long Short-Term Memory (LSTM)
LSTM is a type of RNN designed to handle long-term 

dependencies in sequential data, overcoming the limitations of 
traditional RNNs. They use memory cells and gates (forget, input, and 
output) to decide what information to forget, keep, or pass on. They 
use memory cells (Ct) and gates to manage the flow of information at a 
given time [27]: 

Forget gate decides what information to discard:

 

Input gate decides what information to keep:

Cell state update:

 

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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Output gate controls the final output: 

In AD detection, LSTMs can effectively analyze time-series data, 
such as tracking disease progression. El-Sappagh et al. [27] achieved an 
accuracy of 93.87%, and Sorour et al. [36] combined LSTM with CNNs 
and achieved an accuracy of 99.92%. 

Figure 9 shows the performance of different methods used in 
the reviewed articles, focusing on sensitivity (true positive rate) and 
specificity (false positive rate). Of note, some studies did not include 
sensitivity or specificity in their papers. 

8. Discussion and Conclusion
AD remains the most challenging neurodegenerative disease to 

diagnose in its early stages. Accurate diagnosis of early-stage AD is 
very crucial in the treatment of patients. Early diagnosis can minimize 
the effect of AD on neuronal degeneration. This review highlights the 
significance of ML and DL techniques to improve the accuracy of early 
diagnosis, providing valuable insights for healthcare professionals and 
treatment management. 

The review shows that DL models, particularly CNNs and hybrid 
architectures, outperform traditional ML models in terms of accuracy 
and scalability. However, ML models such as SVMs and RFs remain 
essential due to their simplicity, interpretability, and effectiveness in 
small datasets. Among the ML methods, SVMs stood out with 96% 
accuracy and 94% sensitivity in multimodalities and 90% accuracy 
with 93% sensitivity in single modality. In contrast, DL models showed 
even greater potential. The fine-tuned VGG16 achieved a remarkable 
accuracy of 99.95% and CNN-LSTM hybrids model achieved an 
accuracy of 99.92%. However, high accuracy alone cannot guarantee 
the usefulness of a model in real-world clinical settings. A model with 
high accuracy but low sensitivity could miss early cases, which is 
crucial for AD detection. To evaluate the effectiveness of the model, in 
addition to accuracy, metrics such as sensitivity and specificity must be 
considered carefully. Although accuracy and AUC are widely reported, 
they do not always capture how a model performs in real-world clinical 
situations. In AD diagnosis, false-negative results can delay treatment 
and false positives can cause unnecessary stress. In medical diagnosis 
it is important to examine how well a model handles these trade-offs 
by assessing its sensitivity and specificity to ensure its reliability in 
patient care. The integration of multimodal data, such as MRI, PET, 
and CSF biomarkers, further improves diagnostic performance. For 
instance, BiLSTM and ANN models incorporating such diverse data, 

values, highlighting the value of comprehensive approaches for early 
diagnosis. These results underscore the potential of DL models for 
processing complex neuroimaging and longitudinal datasets. However, 
these models function as “black boxes” and offer little transparency 
into how decisions are made, which limits their clinical application. In 
contrast, ML models may not achieve the same level of accuracy but 
are easier to interpret and implement. This trade-off highlights the need 
to find a balance between high accuracy and practical use in real-world 
clinical settings. Our study suggests the integration of multimodal data 
and the application of fine-tuned architectures are likely to yield more 
reliable and precise diagnostic tools.

This review also reveals important limitations and challenges 
that are often overlooked in earlier work. Many studies rely heavily on 
benchmark datasets with limited demographic diversity, raising concerns 
about data bias and limited generalizability. In most cases, external 
validation and testing across different institutions or equipment are 
lacking, thus limiting clinical applicability. Despite the high accuracy of 
DL models, their high computational costs, reliance on large annotated 
datasets, and lack of interpretability hinder their application in real-
world clinical settings. Moreover, existing methods often have limited 
generalizability across diverse populations and datasets, limiting their 
applicability in real-world scenarios.

To address these limitations, future research must focus on 
techniques such as transfer learning to reduce data dependency and 
explainable AI (XAI) such as SHAP and LIME (Local Interpretable 
Model-agnostic Explanations) to enhance the transparency and 
trustworthiness of model decisions to clinicians. Federated learning 
enables secure collaborative training across institutions without 
compromising patient privacy. Further ensemble learning strategies 
could help prevent overfitting and enhance model accuracy. New 
metrics, such as longitudinal change metrics to track gradual cognitive 
or imaging alterations, and brain network connectivity scores derived 
from functional MRI, can improve diagnostic accuracy. In addition, 
newer techniques such as Vision Transformers, Swin Transformers, and 
graph neural networks (GNNs) also show potential in improving the 
reliability of predictions. Vision and Swin Transformers help capture 
complex patterns across whole brain scans while GNNs are suitable 
for modeling the brain as a network, which helps to understand how 
different regions interact with each other.

In conclusion, although significant progress has been made in 
the early diagnosis of AD, challenges such as interpretability, data 
requirements, and scalability still need to be addressed to fully realize 
the potential of these models. By focusing on innovative metrics, 
transparency, better handling of multimodal data, collaborative 
learning, and real-world validation, these models can become more 
effective tools for early AD detection, thereby improving patient care 
and clinical outcomes.
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