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Using Test Trials of Processing Systems for
Non-Blind Recovery of Signals and Images

Andrey V. Novikov-Borodin1,*
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Abstract: The mathematical method for non-blind recovery of one-dimensional and multidimensional signals, including images, distorted
during processing by linear stationary (or time-invariant) systems is considered. Instead of transfer functions, which are often difficult to
determine because they belong to the class of generalized functions, the proposed method uses test trial signals of processing systems for
signal recovery. Unlike the transfer functions, the test signals belong to the class of ordinary functions, which simplifies the signal
reconstruction procedure considerably and makes it more accurate and stable. It also allows existing methods, such as regularization
technique, to be effectively used to solve ill-posed and ill-conditioned problems for recovering nondeterministic signals with high levels
of noise and uncertainty. The proposed operator approach based on the multidimensional convolution equation significantly reduces the
number of operations and increases the speed of numerical computations. The considered method allows improving the quality of signal
and image processing without complex and expensive modernization of the equipment.

Keywords: mathematical recovery, non-blind methods, test trials of processing systems, multidimensional convolution equation, ill-posed
and ill-conditioned problems

1. Introduction

Real processing systems are imperfect, resulting in distortion
and noise in the processed signals. Hardware methods of
distortion suppression require solving complex scientific and
technical problems and creating expensive equipment. Alternative
mathematical methods use special transformations to recover
undistorted data from distorted and noisy ones. Recovery
problems are usually ill-posed and often ill-conditioned [1–4], so
there are no universal methods for their solution, and developing
methods that are effective in specific cases is an urgent challenge.

In this paper, we consider the recovery of data distorted during
processing by linear stationary (LS) (or linear time-invariant)
systems. Data transformations by these systems satisfy the
convolution-type equations, so data distortions are determined by
their transfer functions ([5] and Section 2). In various fields of
science, transfer functions are also called as hardware or system
functions, system distortions, distortion kernels, superposition
functions, point spread functions, etc. Noise and uncertainties in real
nondeterministic signals can be considered as a random part of signal
distortions (for details, see the model of signal processing in Section 2).

When the distortion kernels and/or noise distributions are
known, non-blind deconvolution methods can be used to recover
undistorted data from distorted ones [6–14]. However, processing
systems are quite different, and their transfer functions and noise
distributions in signals are very diverse and usually unknown.
Transfer functions often belong to the class of generalized
functions [5] and Section 2 for details), so they are quite difficult

not only to identify but also to represent. It follows that non-blind
methods are typically used on a small set of blur kernels and
noise distributions.

Blind methods do not require direct identification of distortion
functions, but they use a priori knowledge or assumptions about the
original or desired appearance of the recovered data, their parts, and/
or structure [15–17]. However, also as in the previous case, it is quite
difficult to get this information for very diverse processing systems,
signals, and noise distributions. It severely limits the scope of blind
methods, which are mainly used to reconstruct images in which
object representations can be systematized.

The use of neural networks also avoids direct determination of
transfer functions, but neural networks are trained on a large number
of samples, and in many cases, such averaging does not provide high
accuracy of data reconstruction [18–21].

The reconstructionmethod proposed in this paper can be used in
areas where the considered existing methods are ineffective or fail.
This method can be categorized as non-blind because it relies on the
exact correspondence of input and output data within certain physical
constraints. However, it does not require transfer or distortion
functions, but instead uses the test trial signals of the processing
systems. Unlike transfer functions, test signals (TS) belong to
ordinary functions, so defining and representing them is not
difficult. Furthermore, in the absence of generalized functions,
various methods can be effectively used to solve ill-posed and ill-
conditioned problems of recovering real nondeterministic signals
with high levels of noise and uncertainties. In this paper, we use
the regularization technique [22, 23], but many other methods
(e.g., iterative or wavelet) can also be used.

Unlike previous works [24, 25], which introduced the idea of
using test trial signals in the reconstruction process, this paper
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proposes a model of processing by LS systems of nondeterministic
signals with noise and uncertainties. This model allows us to analyze
in detail the basic equation for signal recovery, called the test trial
equation. The analysis proved that the test trial equation has a low
level of uncertainty, which predetermines the stability of the
algorithm and the recovery efficiency of the highly noisy data.
Also in contrast to previous works [24, 25], an operator approach
based on the multidimensional convolution equation is used
instead of the matrix approach to recover the signals in the spatial
domain. This significantly speeds up numerical computations,
reducing the number of required operations from � 5n3 to � 5n2

when recovering big data sets of n elements. These program codes
and related datasets are openly placed on GitHub.

The numerical experiments presented in this paper demonstrate the
capabilities of the proposed method for the reconstruction of one-
dimensional signals in the spatial domain and two-dimensional
images in the spectral domain. In the first example, the effective
bandwidth of the processing system, which is a capacitive voltage
divider, was increased by three orders of magnitude, from 1 MHz to
about 1 GHz. This example also demonstrates the stability of the
algorithm at high levels of noise and uncertainties in signals. To
illustrate the algorithm of recovery of multidimensional signals in the
spectral domain, an example of recovery of a fractal image distorted
by a random two-dimensional kernel with discontinuities is given.

2. Test Trial Equation

Aprocessing system is LS, if in a region x 2 D its responsew xð Þ
(output signal) to an external action v xð Þ (input signal) corresponds
to a convolution-type equation [5], which we will call the LS system
equation, or, for short, the LS equation:

w xð Þ � η xð Þf g ¼ u � vð Þ xð Þ ¼
Z
D
u x � ξð Þv ξð Þdξ: (1)

Here u xð Þ is an LS system transfer function characterizing its
operation and η xð Þ ¼ Δw� u �Δv �Δu � v þΔu �Δvð Þ xð Þ is
the LS equation uncertainty. The LS equation follows from the
convolution equation:

w0 xð Þ ¼ u0 � v0ð Þ xð Þ

for the corresponding deterministic functions without
uncertainties w0 xð Þ ¼ w�Δwð Þ xð Þ, u0 xð Þ ¼ u�Δuð Þ xð Þ, and
v0 xð Þ ¼ v �Δvð Þ xð Þ shown in Figure 1.

By introducing the convolution operator F generated by a
function f xð Þ:Fg xð Þ � f � gð Þ xð Þ, we can represent the LS equation
in the operator form:

Uv xð Þ ¼ w xð Þ � η xð Þ

or, by using the Borel’s convolution theorem, in its spectral domain:

U ωð ÞV ωð Þ ¼ W ωð Þ � N ωð Þf g:

Here F ωð Þ ¼ FT f xð Þ½ � is the spectrum (Fourier transform) of
the function f xð Þ and N ωð Þ ¼ ΔW ωð Þ � U ωð ÞΔV ωð Þ �
ΔU ωð ÞV ωð Þ þΔU ωð ÞΔV ωð Þ. Note that the spectrum of
introduced convolution operator coincides by definition with the
spectrum of its generating function (F ωð Þ ¼ FT f xð Þ½ � ¼ FT F½ �).

It is possible to reconstruct the spectrum of the input signal by
dividing both parts of the LS equation spectral form by the spectrum
of the transfer function, but only if: U ωð Þj j 6¼ 0. When the uncertainties
in the transfer function are random with zero mean deviation:
hΔUi ¼ 0, then: hUi ¼ hU0i, and it can be expected that the spectrum
V ωð Þ can be recovered only inside the frequency region, which we will
call the expected frequency reconstruction range (FR range) of the LS
equation:

ΩV
LS ¼ ΩV

U ¼ ω : U0 ωð Þj j 6¼ 0f g:

This region corresponds to the LS system bandwidth. It is also
possible to use the confidence range, within which the spectrum
amplitude of the LS equation uncertainty is smaller than
the spectrum amplitude of the transfer function: ΩV

U ¼
ω : U0 ωð Þj j > γ N ωð Þj jf g, where γ � 0 is a confidence coefficient,
but further for simplicity of estimations we will use the FR range.

LS systems can also be described by an ordinary differential
equation with constant coefficients ak: w xð Þ ¼ P

n
k¼0 akv

kð Þ xð Þ.
Indeed, for locally integrable functions: v kð Þ xð Þ ¼ δ kð Þ � v

� �
xð Þ,

where δ kð Þ is the k-th derivative of the delta function, so using
linearity and associativity of convolution, we obtain:

w xð Þ ¼
X

n
k¼0

akv
kð Þ xð Þ ¼

X
n
k¼0

ak δ kð Þ � v� �
xð Þ ¼

¼
X

n
k¼0

akδ kð Þ
� �

� v
� �

xð Þ ¼ u � vð Þ xð Þ:

Thus, the transfer functions of such LS systems are equal to the sum
of derivatives of the δ-function: u xð Þ ¼ P

n
k¼0 ak δ

kð Þ xð Þ , so, in
general, they belong to the class of generalized functions. In this case,
for real nondeterministic signals, the determination of the transfer
function u0 xð Þ from the TS equation:

uc � vcð Þ xð Þ ¼ wc xð Þ � ηc xð Þf g; (2)

where wc xð Þ is the response of the LS system to some test action
vc xð Þ, and ηc xð Þ ¼ Δwc � uc �Δvc �Δuc � vc �Δuc �Δvcð Þ xð Þ
and uc xð Þ ¼ u0 þΔucð Þ xð Þ (see Figure 1), can be a much more
difficult task than recovering signals belonging to the class of main
functions.

It is possible to avoid many problems associated with the use of
transfer functions by eliminating them from consideration. Let’s
convolve both parts of TS equation (2) with action v xð Þ, and LS
equation (1) with test action vc xð Þ:

v �wcð Þ xð Þ ¼ v � uc � vcð Þð Þ xð Þ þ v � ηcð Þ xð Þf g;
vc �wð Þ xð Þ ¼ vc � u � vð Þð Þ xð Þ þ vc � ηð Þ xð Þf g:

�

Subtracting the second equation from the first one and given
that: uc � uð Þ xð Þ ¼ u0 þΔuc � u0 �Δuð Þ xð Þ ¼ Δuc �Δuð Þ xð Þ,
we obtain the test trial (TT) equation:

wc � vð Þ xð Þ ¼ vc �wð Þ xð Þ � ηT xð Þf g; (3)

where ηT xð Þ ¼ vc � Δwþ v �Δuð Þ � v � Δwc þ vc �Δucð Þð Þ xð Þ. In
the spectrum domain the TT equation is:

Figure 1
Signal processing by the LS system
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Wc ωð ÞV ωð Þ ¼ Vc ωð ÞW ωð Þ � N T ωð Þf g:

Formally, the expected FR range of reconstructing the input signal
v xð Þ from the TT equation ΩV

TT ¼ ω : Wc
0 ωð Þj j 6¼ 0f g is the same

as the expected FR range ΩV
LTS of reconstructing this signal

from the LS equation and determining the transfer
function u xð Þ from the TS equation. Indeed, ΩV

TT ¼
ω : U0 ωð ÞVc

0 ωð Þj j 6¼ 0f g ¼ ΩV
LS nΩU

TS ¼ ΩV
LTS . However, the error

of reconstruction of the action v xð Þ from LS and TS equations also
includes the error of representing the transfer function, which can be
very large if the transfer function is a generalized one.

Substituting the expressions for η xð Þ and ηc xð Þ fromEquations (1)
and (2) into ηT xð Þ, we see that the terms v �Δu and vc �Δuc are
reduced:

ηT xð Þ ¼ ðvc � Δw� u �Δv þΔu �Δvð Þ �

� v � Δwc � uc �Δvc þΔuc �Δvcð ÞÞ xð Þ;

which follows the reducing the expected error of signal
reconstruction from the TT equation.

Considering further that u xð Þ ¼ u0 þΔuð Þ xð Þ and uc xð Þ ¼
u0 þΔucð Þ xð Þ, one can see that the uncertainty

ηT xð Þ ¼ ðvc � Δw� u0 �Δvð Þ �

� v � Δwc � u0 �Δvcð ÞÞ xð Þ

does not depend explicitly on the uncertainties Δu xð Þ and Δuc xð Þ
in the transfer function, which follows the stability of the recovery
algorithm from the TT equation.

Thus, the TT equation does not contain transfer functions, so
there are no problems with the determination and representation of
generalized functions. The determination and representation of LS
system signals belonging to ordinary functions is not difficult
since both numerical and experimental methods can be used. This
ensures the versatility of the proposed approach, the stability of its
algorithm, and accuracy when recovering highly noisy data.

Note thatwhenTSs are determined experimentally, there is no need
to analyze theLS systemand also the parasitic parameters of its elements,
since this information is provided in the TSs. This allows recovering
signals of high-speed and precise processing systems of almost any
complexity and structure. Note also that signals of LS systems can be
of any type. For example, they can be electrical signals or physical
fields acting on, measured, or generated by the processing system.

3. Solutions to TT equation

The TT equation is a convolution-type equation and, according to
regularization theory [22, 23], its solution vr xð Þ is the functionminimiz-
ing the functional Φ v½ � ¼ jVcw�Wcvj jj2 þ λ jPvj jj2 with stabilizer
λ jPvj jj2, where P is the operator corresponding to the constraints
imposed on the reconstructed function v xð Þ, and λ is the regularization
parameter. Equating to zero the variation of this functional on v, we
obtain:

vr xð Þ ¼ Wþ
c Wc þ λPþPð Þ�1Wþ

c Vcw xð Þ; (4)

where Fþ is a conjugate-transpose operator to the operator F . The
spectral form of this solution is:

Vr ωð Þ ¼ Wþ
c ωð ÞVc ωð ÞW ωð Þ

Wþ
c ωð ÞWc ωð Þ þ λPþ ωð ÞP ωð Þ :

In the multidimensional case, it is possible to consider the
equality FT FþFð Þ ¼ Fþ ωð ÞF ωð Þ as a definition of the conjugate-
transpose operator.

The optimal stabilizer for real-valued functions with random
uncorrelated uncertainties commonly encountered in practice
corresponds to the Wiener filter: λPþ ωð ÞP ωð Þ ¼ N T ωð Þj j2= V ωð Þj j2,
where the power spectra N T ωð Þj j2 and V ωð Þj j2 of random stationary
processes are understood as expected values.

The Wiener stabilizer is usually unknown, but since it is non-
negative and symmetric for real-valued functions, one can search
it in the form of a non-negative symmetric function, e.g., as a
polynomial: λPþ ωð ÞP ωð Þ ¼ P

n
k¼0 λk ω

2k considering the non-nega-
tive coefficients λk � 0 as regularization parameters. According to
the Fourier transform for derivatives, this representation corresponds
to solutions having 2k order derivatives with a “degree of continuity”
determined by the values of λk. Consequently, the widest class of
solutions with “degree of continuity” determined by the value
of λ0 gives a zero-order stabilizer (n ¼ 0): Pþ ωð ÞP ωð Þ ¼ λ0 or
PþP ¼ λ0J , where J is an identity operator.

According to regularization theory, the residual
jðvc �w� wc � vr λð Þj Þ xð Þjj increases monotonically with increasing
of λ, so the optimal values of λ can be found from the
equation: jðvc �w� wc � vr λð Þj Þ xð Þjj ¼ jjηT xð Þjj. Therefore, the nec-
essary condition for recovering signals from the TT equation
is: jηT xð Þjj � jðvc �w� wc � vj Þ xð Þjjj .

Let the functions g xð Þ, f xð Þ and h xð Þ: g xð Þ ¼ f � hð Þ xð Þ be
represented as M-dimensional arrays g ¼ gi1::iM

� �
, f ¼ fi1:: iM

� �
and h ¼ hi1::iM

� �
on the grid di1...:iM

� �
, ik ¼ 0::mk � 1, k ¼ 1::M,

partitioning the rectangular region D0 	 D. From Equation (1)
for the element gi1::iM ¼ g di1::iM

� �
we have: gi1::iM ¼R

D0
f ξð Þh di1::iM � ξ

� �
dξ. The partial sum of this integral on the grid

di1::iM
� �

:

gi1::iM 

Xm1�1

j1¼0

� � �
XmM�1

jM¼0

fj1::jM hi1�j1;::;iM�jMΔj1::jM (5)

is exactly the discrete convolution equation if the array f is redefined
as fj1::jM ¼ fj1::jMΔj1::jM , whereΔj1::jM is the volume element. Being the
partial sum of the integral, Equation (5) contains the errors associated
with data discretization.

Considering Equation (5) as a convolution operator of
multidimensional discrete data: g ¼ Fh ¼ f � h, we obtain from
Equation (2) the TT equation in the discrete form:

Vcw ¼ Wcv � ηTf g: (6)

On a uniform partitioning grid, one can reduce the volume elements
in both parts of this equation, so, unlike Equation (5), no function
redefinition is required here. From Equation (4), we obtain the
discrete regularized solution of the TT equation in the operator form:

vr ¼ Wþ
c Wc þ λPþPð Þ�1Wþ

c Vcw (7)

and in the spectral form:
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Vr
j1::jM

¼ Wcþ
j1::jM

Vc
j1::jM

Wj1::jM

Wcþ
j1::jM

Wc
j1::jM

þ λPþ
j1::jM

Pj1::jM
:

The number of operations required to recover arrays with n elements
using the operator Equation (7) based on the discrete convolution
Equation (5) can be estimated as: N nð Þ � O 5n2 þ nþ N λPð Þð Þ,
which is much faster for large n than the matrix approach used earlier
in Novikov-Borodin [24, 25], which required � 5n3 operations.
When using the spectral form of Equation (7) (with direct and inverse
DFT), the required number of operations is: N nð Þ � O 4n log nð Þþð
nþ N λPð ÞÞ. Here, N λPð Þ and N λPð Þ are the number of operations
with stabilizers.

Numerical calculations in the spectral domain are much faster
than in the spatial domain. However, signals are usually considered
in limited spatial or time regions, outside of which they are unknown.
In this case, if the signals in the outer regions are non-zero and non-
periodic, their spectra depending on Fourier transform over a hole
space cannot be determined. This circumstance significantly limits
the scope of the application of spectral methods and makes
calculations in the spatial domain relevant and in demand.

4. Test Signals

As mentioned in Section 2, the expected frequency range of the
TT equation ΩV

TT ¼ ω : U0 ωð ÞVc
0 ωð Þj j 6¼ 0f g directly affects the

reconstruction error, so to decrease this error, the expected frequency
range of the test action Ωc

V ¼ ω : Vc
0 ωð Þj j 6¼ 0f g should exceed

the expected frequency range of the reconstructed signal
ΩV ¼ ω : V0 ωð Þj j 6¼ 0f g and/or the bandwidth of the processing
system ΩU ¼ ω : U0 ωð Þj j 6¼ 0f g. To decrease the term
N T ωð Þ=Wc

0 ωð Þf g (see Equation (3)) one also needs to increase
the amplitude of the test action spectrum. Since the term N T ωð Þ
is random and can have a very wide frequency range, the amplitude
of the spectrum of an ideal test action should be large and uniform
over the widest possible frequency space. However, this is the spec-
trum of a delta function, which has zero width and infinite amplitude,
so it cannot be realized in practice.

Consider some approximation to the one-dimensional delta
function in the form of a trapezoidal pulse with the amplitude A,
duration T, leading b, and trailing B edges: r tð Þ ¼ A t=b
at t 2 0; b½ �, A at t 2 b;T þ b½ �, A T þ bþ B� tð Þ=B at
t 2 T þ b;T þ bþ B½ �. The amplitude of the spectrum
R ωð Þ ¼ FT r tð Þð Þj j of this pulse is equal to:

R ωð Þ ¼ A
ωj j

sin ωb
2

� �
ωb
2

� sin ωB
2

� �
ωB
2

e�Iφ

					
					; (8)

where φ ¼ ω T þ Bþ bð Þ=2ð Þ and I is an imaginary unit.
When B ¼ b, R ωð Þ has a lot of zeros on the frequency axis,

which reduces the frequency range of the signal. One can extend this
range by decreasing the duration T, but this results in a proportional
decrease in the amplitude of the spectrum. It is possible to achieve
best results by adjusting the duration of the pulse edges.

Figure 2a shows trapezoidal pulses r tð Þwith peak durationT ¼ 10
ns, leading edge b ¼ 1 ns, various trailing edges B ¼ b [1] (red lines),
B ¼ πb [2] (blue lines), B ¼ 4πb [3] (green lines), and spectrum ampli-
tudes R νð Þ, ν ¼ ω=2π GHz, of these pulses. When the edges are equal
B ¼ b ¼ 1 ns [1], the amplitude of the pulse spectrum has many zeros
on the frequency axis. As the trailing edge B increases, the summands in
Equation (8) are zero at different frequencies ωk ¼ 2πk=b and
ωm ¼ 2π m=B, where k;m are non-zero integers, and when B=b is
an irrational number, these summands do not simultaneously go to zero

on the entire frequency axis. As the trailing edge increases to B ¼ πb
[2], the dips in the spectrum amplitude are decreasing and at B ¼ 4πb
(B � b) [3] smooth out to small oscillations around the main trend
defined by the first term in the Equation (8).

With further increasing B, the zeros of the first term in Equation (8)
are less compensated by the second term. In the limit, when B ! 1, we
obtain the TS as a step function with leading edge b, whose spectrum
amplitude determined by the first term in Equation (8) has a maximum
value in the low-frequency region, but the zeros of the first term are not
compensated by the second term. In addition, the step function is
unbounded on the right-hand side, which leads to problems when con-
sidering signals at finite intervals, for example, in numerical calculations.
Thus, the relationsB 
 T � b can be considered optimal for trapezoidal
test pulses.

One can come to similar conclusions in the case of trapezoidal-
like pulses with nonlinear edges, for example, with Gaussian edges:
g tð Þ ¼ A exp � t � bð Þ2=2b2ð Þ at t � b, A at b < t � T,
A exp � t � Tð Þ2=2B2ð Þ at t > T, or with exponential ones:
e tð Þ ¼ A 1� exp �t=bð Þð Þ= 1� exp �T=bð Þð Þ at 0 < t � T,
A exp � t � Tð Þ=Bð Þ at t > T. Figure 2b and c show the pulses
g tð Þ and e tð Þ and their spectrum amplitudes G νð Þ and E νð Þ at
B ¼ b [1], B ¼ πb [2], and B ¼ 4πb [3]. As before, the ratios
B 
 T � b are optimal for reducing the dips in the spectrum ampli-
tude and extending the frequency range of the TSs.

The amplitude distribution of the spectrum of pulses with
exponential edges is more uniform than with linear ones and
decreases with increasing frequency not as fast as for pulses with
Gaussian edges. Pulses with exponential and Gaussian edges are
not limited on the right-hand side, which can cause problems when
recovering signals at finite intervals. For nondeterministic signals,
one can consider finite intervals beyond which the level of signals
is less than the level of uncertainties in them. The frequency range
of nondeterministic signals is determined up to dips of amplitudes
of their spectra to amplitudes of uncertainty spectra.

In the multidimensional case, it is possible to use TSs in the
form of a direct product of the considered one-dimensional TSs,
e.g., vc xð Þ ¼ e x1ð Þ 
 r x2ð Þ 
 � � � 
 e xnð Þ.

5. Examples of Reconstruction

The results of the numerical experiment on recovery of one-
dimensional signals v0 tð Þ ¼ v �Δvð Þ tð Þ of complex shape (superposi-
tion of trapezoidal andGaussian pulses) at the input of the capacitive volt-
age divider from the distorted output signalw tð Þ using the TSswc tð Þ and
vc tð Þ are presented in Figure 3. A trapezoidal-like pulse with different
exponential edges was used as the test action vc tð Þ, providing a wide sig-
nal spectrum (see Section 4 for details). The circuit diagram of the divider
was taken from the standard library ofMicro-CAP12.2.0.4 analog/digital
circuit simulator of Spectrum Software. The signals were also calculated
using this program. For visibility, the output signals are shown with a
scaling factor compensating the voltage drop across the divider.

All signals on the interval from 0 to 250 ns were transformed
into vectors w, v, v0, wc, vc of size n ¼ 500 with sampling step
Δ ¼ 0:5 ns. The operator Equation (7) with a zero-order stabilizer
λ0J was used for the searching the widest class of solutions with
the “degree of continuity” determined by the parameter λ0. Without
additional noise in the signals, the relative error of the vr
reconstruction of the v0 signal at the sample points was
δvr ¼ jjvr � v0jj=jjv0jj ¼ 0:23 %. The results vr of reconstruction
of signal v0 in the presence of additional Gaussian noise with
dispersion 5 and 10 % of the maximum values of signals v, vc and
w, wc are shown in Figure 3b and c. The relative reconstruction
errors δvr in these cases were 1:73 and 2:93 %.
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In the considered example, the divider cutoff frequency was
1 MHz, but using the proposed mathematical method we were able
to register the signals with nanosecond edges. In fact, the proposed
method allows us to increase the effective bandwidth of the process-
ing system by three orders of magnitude from 1 MHz to � 1 GHz.

Numerical calculations were performed in the Maple 2017.3
Waterloo Maple Inc. environment on an HP 255 G7 laptop with
an AMD Ryzen 3, 2.5 GHz processor. Program codes and data
sets are available in GitHub at https://github.com/novikov-borodi
n/data-rec/signal-rec. The recovery time for discrete signals of size
n ¼ 501 corresponding to a sampling step Δ ¼ 0:5 ns was
1:6::2:0 s. For data of size n ¼ 251 (Δ ¼ 1:0 ns), the computation
time was 0:4 . . . 0:5 s, which is in a good agreement with the earlier
estimates of the quadratic dependence of the number of operations in
Section 3 (see comments to Equation (7)).

The nonlinear slowing down of the reconstruction error growth
with increasing noise level in the data can be explained by efficient
smoothing of the growing high-frequency noise spectrum during
regularization of the solution. In general, the reconstruction error
is random, since it depends not only on the noise level but also on
the random noise distributions in the data. Figure 4 illustrates the

dependence of the relative reconstruction error δvr % on the relative
noise level δw % in the output signal. The dots show the
reconstruction errors obtained in numerical experiments. The curve
hδvri is the expected value of reconstruction errors, the curves δvmin

and δvmax show the expected range of these errors. The noise levels in
the TSs in Figure 4 were δwc ¼ 2:2 % and δvc ¼ 1:4 %.

Figure 5 illustrates the reconstruction of multidimensional
signals in the spectral domain. Note that images are only a special
case of multidimensional signals because images are usually
composed of objects, so they have some predefined properties and
structure. Multidimensional signals in general do not have such
properties. Thus, a fractal image v with different scales of objects
is chosen for reconstruction only for clarity. Figure 5 shows the result
of recovering vr of the color image v of size 500
 700 pixels in jpeg
format from the imagew of size 549
 769 blurred with a kernelu of
size 50
 70 using the spectral representation of Equation (7). The
distortion kernel u is not required for reconstruction, and it is
presented in Figure 5 for clarity to show that it is a random two-
dimensional kernel with discontinuities.

For simplicity, the distortions were the same for all three-color
layers, so it was sufficient to use grayscale test images wc and vc in

Figure 2
Test signals and their spectrum amplitudes
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for reconstruction. Otherwise, color test images and a color distortion
kernel would have been required. The test image vc is a direct product
of trapezoidal signals with exponential edges (see Section 4 for
details). The relative error of image reconstruction without additional
noise in the data is δvr ¼ vr � v0 =j jv0j j ¼ 4:23 � 10�10 %. When
random noise with normal distribution with variance 0:1 and 0:05
is added to the output signals w and wc, the reconstruction error
increases to δvr ¼ 2:30 %.

In general, different image reconstruction quality estimates
cannot be used for multidimensional signals, so the statistical
distribution of error bars vr � v0j j is presented in Figure 5. The errors
are maximal (white areas) at sharp edges of the image objects.

Calculations were made in the Maple 2017.3 environment of
Waterloo Maple Inc. Program codes and data sets are available in
GitHub at https://github.com/novikov-borodin/data-rec/image-rec.

The recovery time of the color jpeg image (with three layers) of
500
 700 pixels size shown in Figure 5 was 127:2 s, which corre-
sponds to the computation time of each layer t ¼ 127:2=3 ¼ 42:4 s.
The recovery time of the grayscale jpeg image (with one layer) of size
201
 201 pixels was t2 ¼ 4:453 s. Recalculating the recovery time
t ¼ t2N nð Þ=N n2ð Þ ¼ 42:55 s (
 42:4 s) shows a good agreement
with the estimates of the required number of operations given above
in Section 3.

6. Discussions

The test trial method proposed in this paper has been classified
as non-blind, because within some physical constraints, it uses an
exact correspondence between the input and output signals.
However, the TT method does not utilize transfer or distortion

Figure 3
Reconstruction of 1D signals
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functions, so formally it can also be categorized as blind. Moreover,
one can consider the described test trial of processing system as a
single but effective training of a neural network for signal
recovery. It seems that exactly these mixed features predetermine
the advantages of the TT method and its effective use in areas
where other methods are ineffective or do not work. For example,
when the transfer or distortion functions are unknown and belong
to the class of generalized functions.

Thus, the main achievement of TTmethods is the expansion of the
field of application of mathematical reconstruction methods. However,
exactly this advantage leads to difficulties in comparing TT methods
with others. Indeed, how to compare methods with different fields of
application? And, how do you quantitatively compare TT methods
with others if they don’t use TSs and they are not presented in
papers? We found only one reference with estimates suitable for
comparison. A plenary report [26] reviewing the general capabilities
of signal recovery in measurement systems concluded that existing
mathematical methods they used, including neural networks, can
improve the quality of processing systems (e.g., effective bandwidth)
by a factor of 1.5–2. Nevertheless, in a numerical experiment
(Figure 3 in Section 5), we increased the effective bandwidth of the

processing system by three orders of magnitude from 1 MHz to ∼1
GHz using TT methods. In this example, we also demonstrated the
robustness of the proposed reconstruction algorithm under high
levels of noise and uncertainty in the signals (Figures 3 and 4).

In fact, the test trials of the processing systems are their extended
calibration or their dynamic calibration in the one-dimensional case.
Exactly this extended calibration provides an opportunity to improve
the effective parameters of the processing systems. From this point
of view, the proposed TT method is a technique for using the TSs of
the processing systems to restore the signals distorted by them.

The basic equation for signal reconstruction – the TT equation (3)
– is a standard convolution-type equation, but it does not contain the
generalized functions, which allows the efficient use of many
existing methods. We used the regularization technique to illustrate
the capabilities of the TT method while preserving its versatility
using a zero-order stabilizer (see Section 3 for details). However,
various methods can also be used to solve the TT equation. That is
why we do not consider the regularization technique to be an integral
part of the TT method. In some specific cases, other methods may
be more efficient. This is another reason why it is difficult to
compare the TT approach with other methods. Although we do not
consider methods for solving TT equations to be an integral part of
the TT approach, from the resulting point of view, solving ill-posed
and ill-conditioned reconstruction problems remains one of its main
problems.

Signal reconstruction is possible in both spatial and spectral
domains. Numerical calculations in the spectral domain are much
faster than in the spatial domain, even taking into account the
direct and inverse Fourier transforms. However, in practice,
signals are usually considered in limited spatial or time regions,
outside of which they are unknown. In this case, if the signals in
the outer regions are non-zero and non-periodic, their spectra
depending on Fourier transform over a hole space cannot be
determined. This circumstance significantly limits the scope of
application of spectral methods and makes calculations in the
spatial domain relevant and in demand.

The TT method operates under the assumption that the
processing system is linear and stationary, so in general, small
nonlinearities in signal transformations will be interpreted
as additional noise and uncertainties. Nevertheless, some
nonlinearities can be eliminated. For example, sometimes the
shift-invariant blur process is modeled by the Equation [27]:

Figure 4
Reconstruction errors versus noise level in the signals

Figure 5
Image recovery
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wðxÞ 
 cðu � vÞðxÞ;

where cðxÞ is some nonlinear function. If the function cðxÞ has an
inverse c�1ðxÞ, then the equation c�1wðxÞ 
 ðu � vÞðxÞ describes
the LS system without nonlinearity.

Note that within the framework of TT methods, it is quite easy
to consider any kind of LS system actions and reactions. These can be
electrical signals or physical fields acting on, measured, transmitted,
or generated by the processing system. The only thing to do is to use
the appropriate types of actions and reactions of the test trials.
Moreover, when TSs are determined experimentally, there is no
need to analyze the LS system and parasitic parameters of its
elements, since this information is provided in the TSs. This
allows recovering signals of high-speed and precise processing
systems of almost any complexity and structure.

7. Conclusions

Mathematical methods for non-blind reconstruction of
multidimensional signals and images distorted and noisy during
their processing by LS systems are proposed and analyzed. Instead
of transfer functions, which are often difficult to determine because
they belong to the class of generalized functions, the proposed TT
methods use test trial signals of processing systems. The signals
belong to the class of ordinary functions, which allows the efficient
use of many existing methods, such as regularization techniques, to
solve ill-posed and ill-conditioned reconstruction problems.

The test trials of the processing systems are in fact their extended
calibration or their dynamic calibration in the one-dimensional case.
This extended calibration determines the accuracy of the TT
method, the stability of its algorithm, and the possibility of
improving the effective parameters of the processing systems.

The proposed operator approach based on the multidimensional
convolution equation significantly increases the speed of numerical
computations. The considered method allows improving the quality
of signal and image processing without complex and expensive
modernization of the equipment.

Recommendations

The proposed TT approach allows to expand the scope of
application of mathematical reconstruction methods, so it has a
wide area of practical application. They enable to improve the
quality of signal and image processing without complex and
expensive modernization of equipment.

Within the framework of TT methods, it is possible to consider
any kind of LS system actions and reactions by simply using the
appropriate types of test actions and reactions.

When TSs are determined experimentally, there is no need to
analyze the LS system and parasitic parameters of its elements,
since this information is provided in the TSs. This allows
recovering signals of high-speed and precise processing systems
of almost any complexity and structure.
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