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Abstract: Accurate medical image segmentation (MIS) is crucial for computer-assisted diagnosis and treatment planning. This research proposes 
a deep learning (DL) architecture for accurate and efficient MIS, named Dynamic Contextual Residual U-Net (DCRU-Net). This design is a 
variation of the conventional U-Net that combines dynamic contextual residual block (DCRB) with a squeeze-and-excitation (SE) block. DCRU-
Net combines the strengths of the DCRB and SE block. The SE block improves the feature-capture performance of the model by retuning the 
channel-specific feature responses. The DCRB adaptively modifies feature representations, selecting and adding significantly relevant contextual 
features at each network step, making DCRU-Net adaptable across multiple medical imaging modalities and to the difficulties of segmentation 
tasks. Experimental tests on six medical image collections show that DCRU-Net is superior to state-of-the-art (SOTA) methods in terms of Dice 
similarity coefficients (DSC) and intersection over union (IoU). Consistent performance is achieved across different medical imaging datasets 
with less annotated data because of the resilience and generalizability of the architecture. DCRU-Net is a new approach to accurate and automated 
MIS that can transform healthcare by improving segmentation accuracy and flexibility and becoming an invaluable instrument in computer-aided 
diagnosis.
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1. Introduction
Segmenting medical images is a vital part of many diagnostic 

procedures, making it an important task in medical imaging. Organs, 
tumors, lesions, and other anatomical features are just a few examples 
of regions of interest that need to be carefully delineated and extracted 
from medical images [1]. Clinicians can benefit from precise diagnosis, 
treatment planning, disease monitoring, and research through the 
segmentation of medical images. Several approaches have been 
developed for medical image segmentation (MIS) due to the widespread 
use of recent breakthroughs in computer vision, machine learning (ML), 
and deep learning (DL) [2].

Medical images are notoriously difficult to accurately segment 
due to their complexity and variability. Because anatomy, pathology, 
imaging technique, and image quality of each patient vary, these images 
can appear significantly different from one another in terms of size, 
form, and intensity [3]. Artefacts, noise, and partial volume effects 
are also common in medical images and can make segmentation more 
difficult. Although thresholding, region-growing, and active contours 
were promising early approaches to automated segmentation, they 
ultimately fell short because of their inability to adequately handle the 
intricacies inherent in medical images [4].

The introduction of DL, and in particular convolutional neural 
networks, or CNNs, has transformed the field of medical imaging 
by facilitating automated learning of features. CNNs are useful for 
gathering both coarse-grained features (such edges and textures) and 
fine-grained semantic meaning because to their capacity to learn high-

dimensional input [5]. CNN models built on massive image datasets are 
modified for MIS in a process called transfer learning, which allows 
researchers to overcome the difficulty of sparsely annotated medical 
image datasets [6]. Fully convolutional networks (FCNs), U-Net, 
SegNet, and DeepLab are just a few examples of state-of-the-art 
(SOTA) approaches to medical image segmentation [7]. When it comes 
to pixel-wise segmentation, FCNs [8] were among the earliest designs, 
while U-Net skip connections facilitated better data transfer. To improve 
computational performance, SegNet used an encoder-decoder design 
with skip links, whereas DeepLab incorporated dilated convolutions to 
improve multi-scale segmentation [9–11].

Although much progress has been made with DL-based methods, 
there are still many obstacles to overcome. Clinicians need to have clear 
knowledge of the decision-making process of the model, which makes 
the interpretability of DL models a major challenge [12]. Models must 
maintain consistency in their performance across a variety of datasets 
and clinical contexts, making robustness and generalizability essential. 
Multimodal imaging [13] combines data from several imaging 
modalities and is an intriguing path toward improving segmentation 
accuracy. The problem of insufficient annotated data can be mitigated 
with the use of semi-supervised or unsupervised learning approaches, 
as well as efficient augmentation techniques [14].

Improvements in MIS are expected to have a significant impact on 
clinical decision-making and patient care [15]. Researchers are making 
great strides toward a more promising future in MIS by exploring novel 
structures, optimization strategies, and interpretability approaches. 
Collaboration in the fields of medical imaging, computer vision, and 
ML will define future advancements in this crucial area of research and 
the future of healthcare in general [16].
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The remainder of this paper is outlined as follows: In Section 2, 
we present the relevant work, and in Section 3, we present the proposed 
methodology; the flowchart is shown in Figure 1. In Section 4 we 
present the experimental data and methodology. In Section 5, we discuss 
the results of our experiments and the analysis of the collected data. 
Additionally, we will evaluate the proposed model against competing 
SOTA models. In the last section, we conclude the work with future 
directions. Below are the key contributions of this research:

•  DL Architecture: Dynamic contextual residual U-Net (DCRU-
Net) builds on the well-established U-Net framework, enhancing 
performance through the integration of two critical components: 
the Dynamic Contextual Residual Block (DCRB) and the 
Squeeze-and-Excitation (SE) block.

•  Feature-Capture Efficiency: The SE block improves feature-
capture performance by recalibrating channel-specific feature 
responses, ensuring that the model prioritizes the most relevant 
information.

•  Adaptive Feature Modification: The DCRB introduces 
adaptive modifications to feature representations, dynamically 
adjusting the relevance of features at each network stage. This 
process enables DCRU-Net to capture both local and global 
contextual information, ensuring robust segmentation across 
diverse medical imaging modalities and challenges.

•  The extensive testing on various medical image datasets 
shows that DCRU-Net outperforms SOTA methods in terms of 
evaluation metrics such as Dice similarity coefficients (DSC) 
and IoU. This superior performance highlights the effectiveness 
of the proposed architecture in accurately segmenting medical 
images.

2. Literature Review
Disease diagnosis, treatment planning, and patient care all rely 

heavily on medical imaging, making MIS a vital role in this profession. 
Researchers have explored several approaches over the years to 
improve the efficiency in the MIS process [17]. The complexity of 
medical images was too great for early efforts, which relied on proven 
techniques such as thresholding [18], region expanding [19], and edge 
detection [20]. However, the introduction of DL has greatly improved 
segmentation outcomes by using big annotated datasets with models 
such as U-Net [9], SegNet [10], and FCNs [8]. Undersupervised and 
semi-supervised techniques, in addition to unsupervised and self-
supervised methods, have emerged as feasible options in situations with 
minimal annotated data [21]. Multimodal and multitask segmentation 
algorithms have been developed due to the promising results achieved 
by integrating information from multiple imaging modalities or tackling 
multiple tasks concurrently [22].

Some of the challenges in MIS have been addressed through 
recent advances. To help segmentation models generalize to other 
clinical situations, for instance, experts have begun using complex data 
augmentation approaches [23]. Overall segmentation accuracy has also 
improved because of the use of adversarial learning, which has shown 
progress in the development of realistic and high-quality segmented 
outputs. The use of explainable artificial intelligence methodologies 
has resulted to more interpretable models [24], leading to increased 
confidence and acceptability among medical professionals. To better 
assess and compare segmentation algorithms [25], the medical and 
computer vision communities have worked together to create specialized 
medical image datasets, customized to particular clinical applications 
[26]. As MIS continues to advance, it is vital that researchers focus on 
real-world deployment and validation of these algorithms to guarantee 
their smooth incorporation into clinical processes, and eventually help 
patients and advance medical knowledge [27].

Ronneberger et al. [8] developed U-Net in 2015, and since then it 
has become a popular CNN architecture for MIS. There are mainly two 
parts to this design: the encoder [28] and the decoder networks [29]. 
The encoder network takes an input image and extracts its hierarchical 
features; the decoder network then takes those feature maps [21] and 
upsamples them to recreate the segmentation mask. Because of the 
inclusion of skip connections in the encoder and decoder networks [30], 
the model can learn both the global and local context [31] of the input 
image.

Khan et al. [7] proposed a new framework for endoscopy 
image classification that consists of three essential modules: Local-
Global Convolutional Neural Network, Endoscopy-Lesion Attention 
Module, and Gastrointestinal Endoscopy CNN. The performance of 
the framework is evaluated on two publicly available datasets, Kvasir 
and HyperKvasir, demonstrating its efficacy in effectively classifying 
endoscopy images. DoubleU-Net, suggested by Jha et al. [2] to enhance 
performance of U-Net on different segmentation tasks, is a unique DL 
architecture that consists of two stacked U-Net topologies. For medical 
imaging, Oktay et al. [32] created an attention gate model called 
Attention U-Net, which is able to train itself to concentrate on target 
structures without the assistance of any external tissue localization 
components [33]. TransUNet, suggested by Chen et al. [34], is a robust 
alternative to MIS that combines Transformers [35] and U-Net. To 
improve features, it recovers localized spatial information from CNN 
feature maps and encodes it into tokenized image patches. Improved 
segmentation accuracy and real-time efficiency were the motivation for 
the proposal of the parallel reverse attention network (PraNet) by Fan 
et al. [36]. In their work, Lin et al. [37] proposed the DS-TransUNet 
framework  for deep MIS, which uses a hierarchical Swin transformer 
in place of the usual U-shaped encoder-decoder architecture [38].
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 Figure 1
Designed procedure flow diagram
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3. Research Methodology
This section discusses about our proposed DCRU-Net in detail. 

We discuss the SE block adopted in this network. Next, the proposed 
DCRB is illustrated, then the complete architecture is introduced which 
includes the encoder and decoder blocks.

The network design of DCRU-Net consists of the contracting 
path (encoder), the bottom of the DCRU-Net, and expanding path 
(decoder). The contracting path extracts the contextual and high-
level characteristics from the input image. There are four encoder 
layers of increasing depth, all of which use DCRB and max pooling 
to downsample the feature maps. The integration of DCRB and SE 
blocks in the U-Net framework is achieved by embedding DCRBs in 
both the encoder and decoder paths, where they process the feature 
maps at each stage. SE blocks are applied after the convolutional 
layers (CLs) to recalibrate channel-wise feature responses, and skip 
connections merge the encoder and decoder outputs, ensuring that the 
network effectively combines spatial details with high-level features for 
accurate segmentation. The introduction of a central bottleneck layer 
with enhanced capacity allows the acquisition of more abstract features.

Each of the four decoder layers uses transposed convolution 
and concatenation to merge features from the encoding layers. The 
expanding path begins with the transposed CLs, which increases the 
spatial dimensions of the feature image while reducing the number of 
channels. After each transposed CL, the feature maps are concatenated 
via skip connections into the appropriate layer in the contracted 
route. Therefore, the network employs both coarse- and fine-grained 
properties to aid the segmentation process. After the first concatenation, 
its DCRB further concatenates with transposed convolutions. The final 
output layer typically consists of a single CL with one channel using a 
sigmoid activation function (AF). The complete network design with its 
input size is given in Figure 2.

The computational efficiency of DCRU-Net is maintained through 
the optimized design of the DCRB and SE blocks, which enhance 
feature extraction and recalibration without significantly increasing the 
computational overhead. Residual connections in the DCRB facilitate 
gradient flow, thereby reducing the training time, while SE blocks focus 
on relevant features, thereby minimizing redundant computations. 
This design ensures robust performance on diverse datasets even with 
limited computational resources.,

3.1. Squeeze-and-excitation block
By improving feature recalibration of the CNN, the SE block 

contributes to making them more representative. To rebalance the 
feature maps, the block learns channel-wise scaling factors to enhance 
relevant features and minimize irrelevant ones. Figure 3 outlines the 
structure of the SE block and the five steps involved in the block are

Step 1: Global Average Pooling (GAP)
The input tensor is initially processed using GAP in the SE block. 

GAP calculates the average value of each feature channel across the 
height and width spatial dimensions, so each channel has only one 
value. Assume X is an input feature map with height (H), width (W), 
and channels (C). For each channel c∈C, the average value across all 
spatial locations is calculated as

where  is the average value for channel c and  represents the pixel 
value located at coordinates (i, j) in channel c.

By performing this action, the dimensionality of each channel is 
reduced to 1×1.

Step 2: Reshape
After GAP, the output is reshaped to have the dimension 

1×1×number of channels. This reshaping is done to prepare the data for 
the subsequent fully connected (FC) layers. This can be represented as

(1)
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 Figure 2
DCRU-Net architecture

 Figure 3
Feature recalibration architecture
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where Y is the reshaped tensor, GAP procedure yields z as its result, and 
[1, 1, C] denotes the desired shape of the reshaped tensor. 

Step 3: Squeeze or Feature Reduction
After Y is transformed, it is sent into an FC layer that uses a 

rectified linear unit (ReLU) AF. This layer reduces the number of 
channels by dividing the number of channels by a reduction ratio r. The 
aim of this step is to make the calibration process nonlinear and reduce 
its dimensionality. This operation can be defined as

where S represents the squeezed tensor and  is the FC 
layer that reduces the dimension to C/r.

Step 4: Excitation or Feature Activation
After the squeeze step, the excitation tensor E is generated by 

applying another FC layer with a sigmoid AF. This tensor contains per-
channel scaling factors that determine how to emphasize the information 
of each channel:

where E is the excitation tensor, σ denotes the sigmoid AF, and 
 is an FC layer that maps the squeezed tensor S to a tensor 

of the same dimension as the input C.

Step 5: Feature Recalibration
The last step involves recalibrating the input tensor X with 

the help of the excitation tensor E. This is achieved by element-wise 
multiplication between E and X:

where Z represents the recalibrated feature map and ⋅ denotes element-
wise multiplication.

3.2. Dynamic contextual residual block
DCRB is a robust building block for deep neural networks that 

integrates convolutional feature extraction with block normalization 
(BN), AFs, an SE block, and residual connections as shown in Figure 4. 
Training problems, such as vanishing gradients, are reduced, and the 
network is better able to absorb contextual information both locally and 
globally. Each block starts with an input feature map, which is then 
passed through a sequence of CLs with normalization and activation, 
recalibrated with an SE block, combined with the original input through 
a residual connection, and then activated.

The DCRB combines multiple CLs with contextual information 
and residual connections to boost feature extraction in the CNN. The 
steps for the DCRB are as follows:

Step 1: Convolutional Layers
First, the block uses a sequence of CLs because we have a 

specified number of CLs to adjust the depth of the network. Features 
are extracted from the input tensor by applying a set of learnable filters 
to each CL. For the ith CL in the block, where i lies between 1 and the 
number of CLs

where the output feature map of the ith CL is denoted as , the input 
feature map for the ith CL is represented as ,  represents the 

trainable weights for the ithCL, and the bias for the ith CL is denoted 
by .

Step 2: Batch Normalization (BN) and Activation
After each CL, BN is applied to normalize the feature maps:

BN normalizes the activations of each layer, which helps stabilize 
and accelerate training. Then nonlinearity is added incrementally with 
the use of exponential linear unit (ELU) AFs:

where  is the batch-normalized feature map and  is the activation 
output by the ELU.

Step 3: Squeeze-and-Excitation Block
Following CLs, feature maps can be flexibly recalibrated using 

the SE block. It has the same steps as mentioned above. The SE improves 
feature recalibration by exploring channel-wise scaling factors E for the 
feature map .

Step 4: Residual Connection
The output of the SE block is connected to the input tensor through 

a residual connection. To maintain the residual connection, the input 
feature map  is combined with the recalibrated feature map :

where  is the residual output of the ith convolutional block.
This connection eliminates the vanishing gradient problem by 

allowing the gradient to pass directly through the block during training.

Step 5: ReLU
The output of the SE block is combined with a residual 

connection, and then an element-wise ReLU activation is performed on 
the output tensor:

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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 Figure 4
Dynamic Contextual Residual Block Architecture
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4. Datasets and Experimental Design
This section details the datasets used in this work and the 

intricacies of the experimental design. It provides insights into the data 
source and its characteristics. A detailed description of the experimental 
setup is also given.

4.1. Datasets
Polyp segmentation and nuclei segmentation datasets are used 

to generalize the DCRU-Net. Polyp datasets consist of five endoscopy 
datasets: ETIS [40], ClinicDB (CVC-ClinicDB) [39], EndoScene [41], 
ColonDB (CVC-ColonDB) [42], and Kvasir [43] datasets. Nuclei 
segmentation is generalized on Data Science Bowl (DSB) 2018 dataset 
[38]. The majority (80%) of datasets are used for training, while 10% 
are utilized for model validation and the rest are used for testing. Below 
is a complete description of all the available datasets:

4.1.1. ETIS
This dataset contains colorectal cancer images at early diagnosis. 

ETIS has 196 polyp images of 1225×966 resolution taken from 34 
colonoscopy recordings. This dataset presents a greater challenge 
because of the variation in size and form of the polyp items in ETIS.

4.1.2. ClinicDB
From 31 colonoscopy videos, this dataset includes 612 high-

resolution images of polyps with 384×288 pixels. This dataset helps 
in the field of medical imaging in detecting polyps from colonoscopy 
videos.

4.1.3. EndoScene
ClinicDB and CVC-300 are combined to create this dataset, 

which includes 912 photos collected from 36 patients using 44 
colonoscopy sequences. For our experiments, only 60 images with 
574×500 resolution of CVC-300 are used for testing. 

4.1.4. ColonDB
ColonDB is a collection of colonoscopy video sequences with 

annotations. It has 15 distinct colonoscopy clips covering 15 studies. 
Only 380 frames at 574×500 resolution from the entire sequence are 
used for the polyp segmentation and annotated with high-quality labels 
for the entire region containing the polyps.

4.1.5. Kvasir
The information was gathered by endoscopic methods by Vestre 

Viken Health Trust in Norway. The Kvasir dataset has 1000 annotated 
polyp images from gastrointestinal endoscopy operations. The 
resolution of each polyp image is 626×547. 

4.1.6. DSB 2018
Images of cell nuclei have been segmented and are included 

in this dataset in large numbers. Different cell types, magnification 
levels, and imaging techniques (brightfield vs. fluorescence) were used 
to acquire these images. This dataset contains 670 images of human 
nuclei.

Both the DSB 2018 dataset and the polyp segmentation datasets 
have been downsampled to 128×128. Data augmentation is used for 
some datasets. It artificially increases the size of data by using several 
transformations. In addition to preventing the overfitting problem, this 
also boosts the performance of the model. Table 1 lists all datasets, 
whether or not they have undergone data augmentation, and also gives 
the number of samples in both the original and augmented datasets. 
The horizontal flip, 180˙ rotation, 90˙ counterclockwise rotation, 90˙ 
clockwise rotation, translation between (-20, 20), and rotation between 
(-30, 30) are the techniques used to augment the data. 

4.2. Evaluation metrics
The metrics Precision (Pre), recall (Rec), intersection over union 

(IoU), and Dice coefficient are used to evaluate the performance of the 
proposed segmentation model. A brief description of these evaluation 
metrics is given below.

4.2.1. Precision
Precision evaluates the accuracy of a positive prediction of a 

model. It is calculated as the ratio of accurate predictions (true positives, 
TP) relative to all predictions (correct and wrong, false positives, FP).

4.2.2. Recall
Recall is the percentage of relevant outcomes that are correctly 

identified. It is the ratio of true positives (TP) over the sum of TP and 
false negatives (FN), the missed positive outcomes.

4.2.3. Dice Coefficient
Harmonic mean of Precision and Recall is used to determine the 

Dice coefficient.

4.2.4. Intersection of Union (IoU)
The IoU assesses the overlap between the predicted and actual 

regions in object segmentation tasks. It is the quotient of the expected 
and actual regions over the union of the two.

4.3. Experimental design
Designing experiments for DL requires careful planning to 

ensure meaningful conclusions about the performance of the model. So 
hyperparameter setting is very important for the DL model. Our learning 
rate for the DCRU-Net model during training is 1e-3. The learning rate 
decreasing factor is 0.90 for EndoScene, DSB 2018, and ClinicDB 
datasets; 0.98 for Kvasir dataset; 0.94 for ETIS; and 0.95 for ColonDB. 
Adam is used to optimize the results with batch sizes 16 for EndoScene 
and ClinicDB, 8 for DSB 2018, 64 for Kvasir, 24 for ETIS, and 32 for 
ColonDB. For ClinicDB, EndoScene, Kvasir, and DSB 2018, 80% is 
used for training and 10% each for validation and testing. For ETIS and 
ColonDB, 60% is used for training and 20% each for validation and 
testing. DCRU-Net uses three CLs for ETIS, ColonDB, EndoScene, 

(11)

(12)

(13)

(14)
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Dataset Augmentation Count before Count after
ETIS Yes 196 1372
ClinicDB Yes 612 3060
EndoScene Yes 912 3360
ColonDB Yes 380 2660
Kvasir Yes 1000 7000
DSB 2018 No 670 670

Table 1
Augmented data with original count
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DSB 2018, ClinicDB, and Kvasir. EarlyStopping callback method is 
used to avoid the overfit issue of the model. DCRU-Net is trained using 
the binary cross-entropy loss. The experiment is run on TensorFlow 
version 2.12 and the Kaggle platform. Kaggle provides Nvidia Tesla 
P100 GPU. TensorFlow is used with Python 3.10.

5. Results and Output Analysis
The proposed DCRU-Net is tested on six different datasets. We 

start by testing polyp segmentation on two separate datasets, ClinicDB 
and Kvasir, so that we can make a fair comparison. We conduct a cross-
study using all five datasets to ensure the effectiveness of the proposed 
DCRU-Net. The segmentation models have improved and achieved 
varied degrees of success in successfully segmenting images compared 
with SOTA methods on the Kvasir and ClinicDB datasets, as can be seen 
in Table 2 and Table 3. Table 4 displays the mIoU and mDice scores of 
several different image segmentation models on many different medical 
image datasets. Our DCRU-Net achieves an average mIoU of 80.9% 
and an average mDice of 89.2%, making it a good choice for MIS tasks.

It can be seen from Table 2 and Table 3 that U-Net and its variants 
have achieved distinct degrees of success. The other FCN variant of 
U-Net improves the mDice and mIoU for better segmentation of the 
conventional encoder-decoder architecture as the DoubleU-Net model 
is achieving 0.813 mDice and 0.733 mIoU on the Kvasir dataset. 
Transformer-based architectures are segmenting images with better 
performance metrics. For example, DS-TransUNet achieves 0.913, 
0.942 mDice scores and 0.859, 0.894 mIoU scores on the Kvasir and 
ClinicDB datasets, respectively. The proposed DCRU-Net performs 
better on each independent dataset in terms of the evaluation metrics. 
DCRU-Net achieves 0.924 and 0.944 mDice scores on Kvasir and 
ClinicDB datasets, respectively. The proposed model outperforms the 
SOTA methods such as HarDNet-MSEG with 0.904 mDice and FANet 
with 0.936 mDice. The quantitative results are taken from Siddique 
et al. [38] for the comparative study.

DCRU-Net exhibited significant improvements in medical 
imaging modalities, particularly in endoscopic and microscopic 
imaging, which highlights its versatility and effectiveness. In endoscopic 
imaging, the model excelled in polyp segmentation tasks and achieved 
remarkable results on datasets such as Kvasir and ClinicDB. On the 
Kvasir dataset, DCRU-Net achieved a DSC of 92.4% and an IoU of 
86.0%, demonstrating precise segmentation of gastrointestinal polyps 
despite challenges such as anatomical variations and image noise. 
Similarly, on the ClinicDB dataset, it recorded a DSC of 94.4% and 
an IoU of 89.4%, surpassing SOTA methods in accurately delineating 
polyp boundaries in high-resolution colonoscopy images. Additionally, 
on the more challenging ETIS dataset, which features colorectal cancer 
images with significant variations in polyp size and shape, DCRU-
Net achieved a DSC of 84.9% and an IoU of 74.1%, showcasing its 
robustness in handling complex cases.

In microscopic imaging, DCRU-Net also demonstrated 
exceptional performance in nuclei segmentation, a critical task for 
analyzing cellular structures and identifying pathological changes. 
On the DSB 2018 dataset, it achieved a DSC of 92.4% and an IoU 
of 86.7%, outperforming competing methods across diverse imaging 
techniques, including brightfield and fluorescence microscopy. The 
ability of the model to accurately segment nuclei, despite variations in 
cell shapes, sizes, and imaging conditions, highlights its adaptability to 
cellular-level segmentation tasks.

The mDice and IoU metrics for polyp datasets demonstrate 
that DCRU-Net consistently outperforms SOTA methods, achieving 
significant improvements across Kvasir, ClinicDB, and ETIS datasets. 
The superior performance highlights the effectiveness of the DCRB and 
SE blocks in recalibrating features and capturing contextual information 
critical for accurate polyp segmentation.

DCRU-Net achieves an mDice of 94.4% and an IoU of 89.4% 
on the ClinicDB dataset, marking a significant improvement over 
SOTA methods. This superior performance highlights the capacity of 

6

Model Year
Pre 
(%)

Rec 
(%)

mIoU 
(%)

mDice 
(%)

U-Net [8] 2015 82.8 80.8 68.4 78.3
DoubleU-Net [2] 2020 86.1 84.0 73.3 81.3
Attention U-Net [32] 2018 85.2 79.3 68.6 78.7
UNet++ [33] 2018 82.0 81.7 67.8 78.4
TransUNet [34] 2021 91.3 91.2 83.3 89.6
MCTrans [3] 2021 - - - 86.2
Swin-Unet [30] 2021 90.6 90.6 82.5 89.0
HarDNet-MSEG [39] 2021 90.7 92.3 84.8 90.4
FANet [29] 2021 90.1 90.6 81.0 88.0
SegFormer [35] 2021 90.4 93.5 84.8 90.9
DS-TransUNet-B [38] 2022 91.4 93.5 85.6 91.1
DS-TransUNet-L [38] 2022 91.6 93.6 85.9 91.3
ConvMLPSeg [40] 2023 - - 86.9 92.1
BLE-Net [41] 2023 - - 85.4 90.5
HarDNet-CPS [42] 2023 - - 85.6 91.1
CTNet 2024 - - 86.3 91.7
DCRU-Net (Ours) - 93.3 92.5 86.0 92.4

“-” means that the result is not available in that respective research paper, and the 
most promising results are highlighted in bold for each column.

Table 2
Quantitative evaluation of polyp segmentation on Kvasir dataset

Model Year
Pre 
(%)

Rec 
(%)

mIoU 
(%)

mDice 
(%)

U-Net [8] 2015 91.7 86.8 80.4 87.2
DoubleU-Net [2] 2020 95.9 84.6 86.1 92.4
Attention U-Net [32] 2018 90.9 88.7 82.7 89.0
HarDNet-MSEG [39] 2021 94.5 91.2 86.4 91.8
FANet [29] 2021 94.0 93.4 89.4 93.6
SegFormer [35] 2021 91.1 94.2 86.0 91.1
UNet++ [33] 2018 88.5 91.0 81.9 88.1
TransUNet [34] 2021 91.7 94.2 86.9 92.3
MCTrans [3] 2021 - - - 92.3
Swin-Unet [30] 2021 90.7 91.8 84.9 90.6
DS-TransUNet-B [38] 2022 93.1 94.6 88.5 93.5
DS-TransUNet-L [38] 2022 93.7 95.0 89.4 94.2
ConvMLPSeg [40] 2023 - - 87.1 92.4
BLE-Net [41] 2023 - - 87.8 92.6
HarDNet-CPS [42] 2023 - - 88.7 91.7
CTNet 2024 - - 88.7 93.6
DCRU-Net (Ours) - 95.7 89.4 89.4 94.4

“-” means that the result is not available in that respective research paper, and the 
most promising results are highlighted in bold for each column.

Table 3
Quantitative evaluation of polyp segmentation on ClinicDB dataset
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the model to adapt to high-resolution datasets and effectively segment 
polyps, even in challenging cases with subtle boundary variations.

The training and validation graphs for loss and accuracy show 
consistent convergence, with both loss decreasing and accuracy 
increasing steadily over epochs as represented in Figure 5. The close 
alignment between the training and validation curves indicates a well-
generalized model with no signs of underfitting or overfitting. The 
qualitative results shown in Figure 5 demonstrate the effectiveness of 
the model by comparing the predicted outputs with the ground truth. 
The visual comparisons highlight the ability of the model to accurately 
segment, showing clear boundaries and minimal errors.

The training and validation loss curves for polyp segmentation 
datasets demonstrate steady convergence, indicating effective learning 
by DCRU-Net.

The qualitative results in Figure 6 of polyp segmentation 
demonstrate precise delineation of polyp boundaries, even in 
challenging cases with small or irregularly shaped polyps.

Further, the DCRU-Net is evaluated on the DSB 2018 dataset for 
the nuclei segmentation task. The quantitative results are given in Table 5 
with the comparison of SOTA methods. Table 5 shows the performance 
metrics for various semantic segmentation models on the DSB 2018 
dataset. The included models are FANet with high precision and recall, 
UNet++ with high mIoU, and Swin-Unet  with competitive scores. 
The proposed DCRU-Net outperforms others by achieving a superior 
precision of 95.6%, recall of 92.5%, mIoU of 86.7%, and mDice of 
92.4%, demonstrating its effectiveness in accurately segmenting objects 
in images. The training and validation trends of loss and accuracy are 
depicted in Figure 7, showing the effectiveness of the model. The visual 
segmentation images results are shown in Figure 8.

The tabulated metrics for nuclei segmentation show that DCRU-
Net achieves higher mDice and mIoU scores than SOTA methods on the 

DSB 2018 dataset. This superior performance highlights the robustness 
and adaptability of the model for cellular-level segmentation tasks, 
reinforcing the contributions of its novel architectural components.

The training and validation curves for the DSB 2018 dataset 
show smooth convergence, with minimal gaps between the training and 
validation loss. This demonstrates that DCRU-Net effectively learns 
generalized features for nuclei segmentation tasks without overfitting, 
even in the presence of diverse cell types and imaging conditions.

The qualitative visualization of nuclei segmentation reveals the 
ability of DCRU-Net to accurately segment nuclei, including those with 
irregular shapes or overlapping structures.

To validate the performance improvements achieved by DCRU-
Net over SOTA models, a paired t-test is conducted using mDice and 
mIoU metrics across multiple datasets. The paired t-test evaluates 
whether the observed differences in performance are statistically 
significant by analyzing the mean difference between paired 
measurements, the variability of these differences, and the standard 
error.

For the mDice metric, the differences between the 
DCRU-Net and SOTA models across datasets are calculated as 

. The calculated mean difference ( ) is 
1.3, with a standard deviation (SD) of 0.6164. Using the standard error 

, the derived t-value is . Similarly, 
for the mIoU metric, the mean difference is 1.06 with a standard 
deviation of 0.4336 and a standard error of 0.1939, resulting in a t-value 
of t = 5.467. 

Both t-values exceed the critical threshold for statistical 
significance at a 95% confidence level (p < 0.05) confirming that 
the observed improvements in mDice and mIoU by DCRU-Net are 
statistically significant. These results highlights the robustness of the 
DCRU-Net architecture and demonstrate its superior performance in 
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ClinicDB Kvasir ColonDB ETIS EndoScene Average

Model Year
mIoU 
(%)

mDice 
(%)

mIoU 
(%)

mDice 
(%)

mIoU 
(%)

mDice 
(%)

mIoU 
(%)

mDice 
(%)

mIoU 
(%)

mDice 
(%)

mIoU 
(%)

mDice 
(%)

U-Net [8] 2015 75.5 82.3 74.6 81.8 44.4 51.2 62.6 71.0 33.5 39.8 58.1 65.2
UNet++ [33] 2018 72.9 79.4 74.3 82.1 41.0 48.3 62.4 70.7 34.4 40.1 57.0 64.1
Attention U-Net [32] 2018 78.9 85.0 73.0 81.4 48.4 56.1 30.5 37.1 68.2 77.3 59.8 67.4
TransUNet [34] 2021 85.6 91.0 86.0 91.2 71.5 79.7 67.1 75.4 81.5 88.7 78.3 85.2
PraNet [36] 2020 84.9 89.9 84.0 89.8 64.0 70.9 56.7 62.8 79.7 87.1 73.9 80.0
HarDNet-MSEG [39] 2021 88.2 93.2 85.7 91.2 66.0 73.1 61.3 67.7 82.1 88.7 76.7 82.8
Swin-Unet [30] 2021 83.6 89.9 83.5 89.6 66.6 75.9 58.6 68.1 76.4 85.0 73.7 81.7
SETR-PUP [6] 2021 88.5 93.4 85.4 91.1 69.0 77.3 64.6 72.6 81.4 88.9 77.8 84.7
SegFormer [35] 2021 82.6 89.1 84.4 90.4 67.4 76.2 65.8 74.8 78.0 85.6 75.6 83.2
TransFuse-S [31] 2021 86.8 91.8 86.8 91.8 69.6 77.3 65.9 73.3 83.3 90.2 78.5 84.9
TransFuse-L [31] 2021 88.6 93.4 86.8 91.8 67.6 74.4 66.1 73.7 83.8 90.4 78.6 84.7
DS-TransUNet-B [38] 2022 89.1 93.8 86.8 93.4 71.7 79.8 69.8 77.2 81.0 88.2 80.1 86.5
DS-TransUNet-L [38] 2022 88.7 93.6 88.9 93.5 72.2 79.8 68.7 76.1 84.6 91.1 80.6 86.8
ConvMLPSeg [40] 2023 87.1 92.4 86.9 92.1 71.8 79.3 67.6 75.3 82.2 89.3 79.1 85.7
BLE-Net [41] 2023 87.8 92.6 85.4 90.5 65.8 73.1 59.4 67.3 80.5 87.9 75.8 82.3
HarDNet-CPS [42] 2023 88.7 91.7 85.6 91.1 65.8 72.9 61.9 69.0 82.6 89.1 77.0 82.8
CTNet [43] 2024 88.7 93.6 86.3 91.7 74.4 81.3 73.4 81.0 84.4 90.8 81.4 82.7
DCRU-Net (Ours) - 89.4 94.4 86.0 92.4 74.1 84.9 70.6 82.6 84.6 91.6 80.9 89.2

Table 4
Cross-study experimental results on the polyp segmentation task. The most promising results are highlighted in bold for each column 
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MIS tasks across diverse datasets. This statistical validation provides 
strong evidence of the efficacy of DCRU-Net compared to existing 
SOTA methods.

Table 6 compares the parameter counts (in millions) for various 
segmentation models and emphasizes the relative complexity and 
design considerations. Traditional architectures, including U-Net 
(24.56 million [M]), UNet++ (25.09M), Attention U-Net (25.09M), 
and DoubleU-Net (29.30M), have relatively low parameter counts, 

demonstrating their lightweight nature. Transformer-based models, 
such as MCTrans (23.79M), SegFormer (84.59M), TransUNet 
(105.28M), TransFuse (115.59M), and Swin-Unet (149.22M), show 
a significant increase in parameter counts, reflecting the additional 
computational complexity introduced by transformer components. 
The DS-TransUNet variants, DS-TransUNet-B (171.44M), and DS-
TransUNet-L (287.75M), increase the parameter count to accommodate 
more advanced features and capabilities. In contrast, the proposed 
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 Figure 5
Training and validation performance of loss and accuracy over epochs: (a) ClinicDB, (b) ColonDB, (c) Kvasir, (d) EndoScene, and 

(e) ETIS
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 Figure 6
Qualitative results of the polyp segmentation datasets. Ground 

truths and predicted masks are for better visualization

 Figure 7
Training and validation trends of loss and accuracy over epochs on 

DSB 2018

Model Year
Pre 
(%)

Rec 
(%)

mIoU 
(%)

mDice 
(%)

U-Net [8] 2015 - - 91.0 75.7
FANet [29] 2021 91.9 92.2 85.7 91.8
DoubleU-Net [2] 2020 95.0 64.1 84.1 91.3
Attention UNet [32] 2018 91.6 - 91.0 90.8
UNet++ [33] 2018 - - 92.6 89.7
TransUNet [34] 2021 89.7 92.3 83.6 90.7
SegFormer [35] 2021 91.2 93.1 85.5 91.9
Swin-Unet [30] 2021 91.5 92.4 85.1 91.6
DS-TransUNet-B [37] 2022 90.6 94.3 85.9 92.0
DS-TransUNet-L [37] 2022 91.2 93.8 86.1 92.2
DCRU-Net (Ours) - 95.6 92.5 86.7 92.4

The most promising outcomes are highlighted in bold for each column. “-” 
means that the result is not available in that respective research paper.

Table 5
Quantitative segmentation results on DSB 2018 dataset

 Figure 8
Qualitative segmentation results of DCRU-Net on DSB 2018 

dataset
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DCRU-Net has 48.30M parameters, which strikes a balance between 
traditional architectures and transformer-based models, resulting in an 
efficient yet powerful solution for segmentation tasks. This comparison 
demonstrates the trade-offs between model complexity and potential 
performance gains in segmentation research.

The parameter count of DCRU-Net (48.30M) strikes a balance 
between traditional U-Net-based architectures and computationally 
intensive transformer-based models. For example, DCRU-Net 
is significantly lighter than models such as TransFuse (115.59M 
parameters) and DS-TransUNet-L (287.75M parameters), ensuring its 
computational feasibility for practical use in clinical settings.

6. Conclusion
In this article, we introduce DCRU-Net to improve the 

segmentation quality of medical images. By incorporating the DCRB 
and SE block, DCRU-Net leverages the strengths of both components. 
The SE block enhances feature-capture performance by channel specific 
feature response adjustment, while DCRB ensures adaptability across 
various medical imaging modalities and segmentation challenges. 
Extensive testing on diverse medical image datasets shows that DCRU-
Net has superior performance in terms of Dice coefficients and IoU than 
existing methods. Moreover, its consistent performance across different 
datasets, even with limited annotated data, underscores its resilience 
and generalizability. Despite its efficiency in 2D segmentation, 
DCRU-Net requires high-performance hardware and relies heavily 
on data augmentation, which increases the computational costs. Its 
emphasis on 2D limits its applicability to volumetric medical imaging 
applications. Future work includes optimizing DCRU-Net for real-time 
2D segmentation on standard hardware and integrating semi-supervised 
learning to minimize the reliance on annotated datasets.

Ethical Statement
The polyp segmentation images presented in Figure 6 of this ar-

ticle are sourced from a public dataset available on Google Drive at 
https://drive.google.com/drive/folders/10QXjxBJqCf7PAXqbDvoce-
WmZ-qF07tFi?usp=share_link. The authors of this article did not di-
rectly collect these images.

Conflicts of Interest 
The authors declare that they have no conflict of interest in this 

work.

Data Availability Statement 
The data that support the findings of this study are openly 

available in Kaggle at https://www.kaggle.com/competitions/data-sci-
ence-bowl-2018. The data that support the findings of this study are 
openly available in Google Drive at https://drive.google.com/drive/
folders/10QXjxBJqCf7PAXqbDvoceWmZ-qF07tFi?usp=share_link. 
The data that support the findings of this study are openly available 
in Polyp DataSet at https://doi.org/10.6084/m9.figshare.21221579.v2.

Author Contribution Statement
Manoj Kumar Singh: Conceptualization, Methodology, Software, 

Validation, Formal analysis, Investigation, Resources, Data curation, 
Writing – original draft, Writing – review and editing, Visualization. 
Satish Chand: Validation, Formal analysis, Writing – review and editing, 
Visualization. Devender Kumar: Formal analysis, Writing – review and 
editing, Visualization, Supervision, Project administration.

References
[1]	 Moftah, H. M., Azar, A. T., Al-Shammari, E. T., Ghali, N. I., 

Hassanien, A. E., & Shoman, M. (2014). Adaptive k-means 
clustering algorithm for MR breast image segmentation. Neural 
Computing and Applications, 24, 1917–1928

[2]	 Jha, D., Riegler, M. A., Johansen, D., Halvorsen, P., & Dagenborg,, 
H. J. (2020, July). Doubleu-net: A deep convolutional neural 
network for medical image segmentation. In 2020 IEEE 33rd 
International Symposium on Computer-Based Medical Systems 
(CBMS), 558–564

[3]	 Yuanfeng, J. et al. (2021). Multi-compound transformer for accu-
rate biomedical image segmentation. Medical Image Computing 
and Computer Assisted Intervention–MICCAI 2021: 24th Interna-
tional Conference, Strasbourg, France, September 27–October 1, 
2021, Proceedings, Part I 24. Springer International Publishing. 

[4]	 Jiang, F., Grigorev, A., Rho, S., Tian, Z., Fu, Y., Jifara, W., Adil, 
K., & Liu, S. (2017). Medical image semantic segmentation based 
on deep learning. Neural Computing and Applications, 29, 1257–
1265.

[5]	 Azad, R., Asadi-Aghbolaghi, M., Fathy, M., & Escalera, S. (2019). 
Bi-directional ConvLSTM U-Net with densely connected convo-
lutions. In Proceedings of the IEEE/CVF International Conference 
on Computer Vision Workshops (pp. 0–0).

[6]	 Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., ... & 
Zhang, L. (2021). Rethinking semantic segmentation from 
a sequence-to-sequence perspective with transformers. In 
Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (pp. 6881–6890).

[7]	 Khan, S. D., Basalamah, S., & Lbath, A. (2024). Multi-module 
attention-guided deep learning framework for precise gastroin-
testinal disease identification in endoscopic imagery. Biomedical 
Signal Processing and Control, 95, 106396

[8]	 Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional 
networks for semantic segmentation. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition (pp. 
3431–3440).

10

Model Parameters (in millions)
U-Net [8] 24.56
UNet++ [33] 25.09
Attention U-Net [32] 25.09
Double U-Net [2] 29.30
MCTrans [3] 23.79
SegFormer [35] 84.59
TransUNet [34] 105.28
TransFuse [31] 115.59
Swin-Unet [30] 149.22
DS-TransUNet-B [37] 171.44
DS-TransUNet-L [37] 287.75
DCRU-Net (Ours) 48.30

Table 6
Parameters comparison of the models

https://drive.google.com/drive/folders/10QXjxBJqCf7PAXqbDvoceWmZ-qF07tFi?usp=share_link
https://drive.google.com/drive/folders/10QXjxBJqCf7PAXqbDvoceWmZ-qF07tFi?usp=share_link
https://www.kaggle.com/competitions/data-science-bowl-2018
https://www.kaggle.com/competitions/data-science-bowl-2018
https://drive.google.com/drive/folders/10QXjxBJqCf7PAXqbDvoceWmZ-qF07tFi?usp=share_link
https://drive.google.com/drive/folders/10QXjxBJqCf7PAXqbDvoceWmZ-qF07tFi?usp=share_link
https://doi.org/10.6084/m9.figshare.21221579.v2


Journal of Data Science and Intelligent Systems Vol. 00  Iss. 00  2025

[9]	 Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: convo-
lutional networks for biomedical image segmentation. Medical 
Image Computing and Computer-Assisted Intervention–MICCAI 
2015: 18th International Conference, Munich, Germany, October 
5-9, 2015, Proceedings, part III 18. Springer International 
Publishing. 

[10]	 Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A 
deep convolutional encoder-decoder architecture for image seg-
mentation. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 39(12), 2481–2495 

[11]	 Chen, L.-C. et al. (2017). DeepLab: Semantic image segmenta-
tion with deep convolutional nets, atrous convolution, and fully 
connected CRFS. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 40(4), 834–848

[12]	 Gite, S., Mishra, A., & Kotecha, K. (2023). Enhanced lung image 
segmentation using deep learning. Neural Computing and Appli-
cations, 35(31), 22839–22853

[13]	 Zhang, Y. et al. (2021). Deep multimodal fusion for semantic 
image segmentation: A survey. Image and Vision Computing, 
105, 104042 

[14]	 Nalepa, J., Marcinkiewicz, M., & Kawulok, K. (2019). Data aug-
mentation for brain-tumor segmentation: A review. Frontiers in 
Computational Neuroscience, 13, 83 

[15]	 Murugappan, M. et al. (2023). Automated semantic lung seg-
mentation in chest CT images using deep neural network. Neural 
Computing and Applications, 35(21), 15343–15364 

[16]	 Jha, D. et al. (2019). ResUNet++: An advanced architecture for 
medical image segmentation. 2019 IEEE International Sympo-
sium on Multimedia (ISM). IEEE 

[17]	 Wang, R. et al. (2022). Medical image segmentation using deep 
learning: A survey. IET Image Processing, 16(5), 1243–1267 

[18]	 Pare, S. et al. (2020). Image segmentation using multilevel 
thresholding: A research review. Iranian Journal of Science and 
Technology, Transactions of Electrical Engineering, 44(1), 1–29 

[19]	 Zhong, Q. et al. (2023). Joint image and feature adaptative atten-
tion-aware networks for cross-modality semantic segmentation. 
Neural Computing and Applications, 35(5), 3665–3676 

[20]	 Aquino, A., Gegúndez-Arias, M. E., & Marín, D. (2010). De-
tecting the optic disc boundary in digital fundus images using 
morphological, edge detection, and feature extraction techniques. 
IEEE Transactions on Medical Imaging, 29(11), 1860–1869 

[21]	 Alom, M. Z. et al. (2018). Nuclei segmentation with recurrent 
residual convolutional neural networks based U-Net (R2U-Net). 
NAECON 2018-IEEE National Aerospace and Electronics Con-
ference. IEEE.

[22]	 Kaur, A., Kaur, L., & Singh, A. (2021). GA-Unet: UNet-based 
framework for segmentation of 2D and 3D medical images appli-
cable on heterogeneous datasets. Neural Computing and Applica-
tions, 33(21), 14991–15025 

[23]	 Chaitanya, K. et al. (2021), Semi-supervised task-driven data 
augmentation for medical image sgmentation. Medical Image 
Analysis, 68, 101934 

[24]	 Shi, F. et al. (2020). Review of artificial intelligence techniques 
in imaging data acquisition, segmentation, and diagnosis for 
COVID-19. IEEE Reviews in Biomedical Engineering, 14, 4–15

[25]	 Hesamian, M. H. et al. (2019). Deep learning techniques for med-
ical image segmentation: Achievements and challenges. Journal 
of Digital Imaging, 32, 582–596 

[26]	 Peng, D. et al. (2021). DGFAU-Net: Global feature attention up-
sampling network for medical image segmentation. Neural Com-
puting and Applications, 33, 12023–12037 

[27]	 Avalos, O. et al. (2021). An accurate cluster chaotic optimization 
approach for digital medical image segmentation. Neural Com-
puting and Applications, 33, 10057–10091 

[28]	 Wu, Y. et al. (2023). D-former: A U-shaped dilated transform-
er for 3D medical image segmentation. Neural Computing and 
Applications, 35(2), 1931-1944 

[29]	 Tomar, N. K. et al. (2022). FANet: A feedback attention network 
for improved biomedical image segmentation. IEEE Transactions 
on Neural Networks and Learning Systems, 34(11), 9375–9388 

[30]	 Cao, H. et al. (2022). Swin-UNet: UNet-like pure transformer for 
medical image segmentation. European Conference on Computer 
Vision. Cham: Springer Nature Switzerland

[31]	 Zhang, Y., Liu, H., & Hu, Q. (2021). TransFuse: Fusing trans-
formers and CNNs for medical image segmentation. Medical 
Image Computing and Computer Assisted Intervention–MIC-
CAI 2021: 24th International Conference, Strasbourg, France, 
September 27–October 1, 2021, Proceedings, Part I 24. Springer 
International Publishing 

[32]	 Oktay, O. et al. (2018). Attention u-net: Learning where to look 
for the pancreas. arXiv preprint arXiv:1804.03999.

[33]	 Zhou, Z. et al. (2018). UNet++: A nested U-net architecture for 
medical image segmentation. Deep Learning in Medical Image 
Analysis and Multimodal Learning for Clinical Decision Support: 
4th International Workshop, DLMIA 2018, and 8th International 
Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 
2018, Granada, Spain, September 20, 2018, Proceedings 4. 
Springer International Publishing 

[34]	 Chen, J. et al. (2021). Transunet: Transformers make strong 
encoders for medical image segmentation. arXiv preprint 
arXiv:2102.04306. 

[35]	 Xie, E. et al. (2021). SegFormer: Simple and efficient design for 
semantic segmentation with transformers. Advances in Neural 
Information Processing Systems, 34, 12077–12090 

[36]	 Fan, D.-P. et al. (2020). PraNet: Parallel reverse attention network 
for polyp segmentation. International Conference on Medical 
Image Computing and Computer-Assisted Intervention. Cham: 
Springer International Publishing 

[37]	 Lin, A. et al. (2022). DS-TransUNet: Dual Swin transformer 
U-net for medical image segmentation. IEEE Transactions on In-
strumentation and Measurement, 71, 1–15 

[38]	 Azad, R. et al. (2024). Medical image segmentation review: The 
success of U-net. IEEE Transactions on Pattern Analysis and 
Machine Intelligence. 

[39]	 Huang, C.-H., Wu, H.-Y., & Lin, Y.-L. (2021). HarDNet-MSEG: 
A simple encoder-decoder polyp segmentation neural network 
that achieves over 0.9 mean Dice and 86 fps. arXiv preprint 
arXiv:2101.07172  

[40]	 Jin, Y. et al. (2023). Polyp segmentation with convolutional MLP. 
The Visual Computer, 39(10), 4819-4837 

[41]	 Ta, N. et al. (2023). BLE-net: Boundary learning and enhance-
ment network for polyp segmentation. Multimedia Systems, 
29(5), 3041-3054 

[42]	 Yu, T. & Wu, Q. (2023). HarDNet-CPS: Colorectal polyp 
segmentation based on harmonic densely united network. 
Biomedical Signal Processing and Control, 85, 104953

[43]	 Xiao, B et al. (2024). CTNet: Contrastive transformer network for 
polyp segmentation.  IEEE Transactions on Cybernetics.

11

How to Cite: Singh, M. K., Chand S., & Kumar D. (2025). DCRU-Net: Dynamic 
Contextual Residual U-Net for Medical Image Segmentation. Journal of Data Science 
and Intelligent Systems, 00(00), 1-11. https://doi.org/10.47852/bonviewJDSIS52024977

https://doi.org/10.47852/bonviewJDSIS52024977

