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Abstract: This paper further studies the previously proposed energy-efficient telehealth Internet of Things (IoT) model that focuses on data 
integration, knowledge extraction, and application in fog-cloud hybrid architecture. Our current study concentrates on how the system uses 
adaptive machine learning and data mining to optimize the system operation for increased real-time data analysis and reduced energy use, thus 
providing more effective patient monitoring in telehealth. The simulation designed for the patients in both a fog-enabled model and a cloud-only 
model applies various workloads sent from patients. In this fog-enabled model, data from IoT devices is preprocessed at fog nodes by investigating 
anomalies, trends, or other relevant machine learning algorithms, and then this data is transmitted to the cloud. It compares key performance 
metrics-energy, latency, speed of processing data, and prediction accuracy—in both a fog-enabled and a cloud-only model. Results show that 
the fog-enabled model reduces energy consumption by 20% and latency by 50%, compared to a cloud-only configuration. This indicates the 
distinct advantages of localized processing. Compared to the existing system, higher speed in processing data and improved accuracy in detecting 
statistical anomalies, thereby demonstrating the possibility that the system offers for real-time and scalable telehealth capabilities. Meanwhile, this 
work presents a comprehensive model for the sustainability and scalability of telehealth infrastructures, supported by simulation data and analysis 
evidencing the effectiveness of the model.

Keywords: cloud, data integration, energy-efficient, fog, knowledge extraction, IoT, telehealth

1. Introduction
The paper overcomes the challenges of energy efficiency, latency, 

and real-time health monitoring through the demonstration of an 
adaptive fog-cloud architecture, which is much better than the existing 
cloud-only systems. Compared with previous works, this model 
involves real-time data preprocessing at the fog nodes with machine 
learning algorithms toward scalable and sustainable telehealth Internet 
of Things (IoT) solutions. Power-efficient algorithms that demonstrate 
a 50% reduction in latency, 20% lower energy consumption, and 96.5% 
accuracy indicate that this research could bring about in healthcare 
applications.

Telehealth applications using IoT devices have been one of the 
latest revolutionary concepts that allow monitoring in continuous time 
and process health information in real time. Such systems depend on 
the interconnection of sensors, medical devices, and wearables with 
mHealth applications to capture, analyze, and send on to a patient’s 
data. The continuous flow of information thus enables remote 
diagnosis, personalized treatment, and proactive health management, 
making healthcare more accessible, especially to the rural low-access 
communities. With more healthcare systems adopting solutions on 
telehealth, the demand for efficient, secure, and scalable telehealth IoT 
infrastructures has grown by leaps and bounds.

However, IoT in telehealth is surrounded by challenges related 
to data integration, system latency, security, and power consumption. 
In existing cloud-based platforms, data processing takes place remotely 

from an end user’s system, which leads to high latency that cannot 
address use cases requiring real-time or near-real-time response. 
Latency is especially an issue in settings where data communication 
and processing directly affect patient outcomes, such as in emergency 
care or continuous monitoring. Fog computing provides a solution by 
introducing an intermediary layer that processes data near its source, 
reducing latency and response time. The integration of fog and cloud 
computing makes a hybrid architecture and optimizes the flow of data 
without compromising the scalability of cloud services.

Data integration is the second key challenge of telehealth 
IoT. First, Telehealth applications collect enormous amounts of 
heterogeneous data from numerous data sources, including both 
physiological (e.g., audio and video) sensors and imaging modalities, 
as well as electronic health records. Decision making and analysis in 
real time, which demands the integration of the data, where frameworks 
need to be robust enough to support diversity in data volumes and types. 
Second, the information of the patients is personal data and therefore 
security and privacy shall take precedence. Security of the data while 
being transmitted and stored is important to maintain compliance and 
to instill trust among patients. These aspects are addressed in this 
research by proposing a secure data integration scheme based on role-
based access control (RBAC) and encrypted transmission in a fog-cloud 
paradigm.

Energy efficiency is an important factor in telehealth IoT systems 
due to the continuous operation of IoT devices and data centers that 
support healthcare applications. Particularly, wearable or mobile 
IoT devices are often restricted by battery life. Other than that, data 
processing and storage in remote cloud servers can be energy-intensive, 
thus causing high operational costs and potential environmental 
impacts. The proposed system reduces the energy demand from cloud 
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servers by embedding energy-efficient data processing techniques at 
fog nodes, extending operational life in IoT devices in pursuit of a 
greener telehealth model.

An opportunity that has arisen to help these problems is the 
convergence of IoT, fog computing, and machine learning. The system’s 
capability to convert health data into meaningful insights, facilitating 
predictive analytics and anomaly detection, is improved with machine 
learning algorithms. This is both beneficial and essential as the 
management of chronic diseases relies heavily on the ability to detect 
in advance an unfavorable pattern of health, giving the opportunity for 
action in advance to avoid further complications. Integrating machine 
learning algorithms directly into fog nodes allows the system to perform 
knowledge extraction at the proximity to the data, improving both speed 
and accuracy of patient monitoring.

Based on the work of Guo et al. [1] on energy-efficient 
architectures in telehealth IoT, the present work focused on the following 
three important objectives: adaptive data integration strategy within a 
fog-cloud environment, real-time knowledge extraction using machine 
learning techniques, and optimization of insights-to-application for 
enhanced patient monitoring and clinical decision support. It proves the 
efficiency of the system in reducing energy consumption and latency 
while gaining high data processing efficiency.

2. Literature Review
Telehealth applications have utilized IoT, using both fog and 

cloud computing to facilitate real-time, scalable data processing.

2.1. Fog-cloud architectures for telehealth IoT
Fog computing can mitigate latency issues by processing data 

locally, decreasing wait times, and reducing data usage. Guo et al. [1] 
presented a report of a hybrid fog-cloud system that improved data 
processing by 40% compared to cloud-based systems. Mahmud et 
al. [2] demonstrated how scalable telehealth fog systems are to show 
that they can process large amounts of real-time patient data. New 
studies have also discussed sharing resources. Hong and Varghese 
[3] made up an adaptive resource plan for moving computer tasks 
between fog and cloud layers to ensure the uninterrupted operation 
of the system. Similarly, Ilyas et al. [4] showed how configurations 
based on fog can be applied in emergency care, saving critical 
response time by 25%. Thushara and Bhanu [5] made a coded 
message system especially for fog-cloud healthcare systems to 
guarantee that data is not damaged and has short delays. Their system 
complies with regulations such as the Health Insurance Portability 
and Accountability Act (HIPAA) that highlight the value of safe, 
patient-centric telehealth solutions.

2.2. Machine learning in healthcare IoT
Machine learning in the IoT-based telehealth systems helps us 

identify trends and anomalies. Ren et al. [6] developed a machine 
learning model in fog nodes to identify heart conditions in real-time 
at a rate of 95%. Real-time processing is very important for health 
issues requiring immediate attention. Deep learning has also been 
manipulated by researchers to help manage chronic conditions. Liu 
and Wang [7] implemented a convolutional neural network-based 
diagnosis tool in a fog setting to make diabetic diagnoses 20% more 
accurate than conventional practices. In addition, Dritsas and Trigka 
[8] demonstrated the effectiveness of federated learning in telehealth, 
where many devices can collaborate to train machine learning models 
without exposing patient information.

2.3. Machine learning in healthcare IoT
Energy consumption is a critical factor for both wearable 

IoT and the telehealth application data centers. Vaghasiya et al. [9] 
suggested an energy-efficient fog system that enhanced the battery life 
of wearable devices by 30% with reduced cloud server load. Likewise, 
Bu et al. [10] indicated a power-conscious task scheduling scheme that 
lowered energy consumption in telehealth networks by 15%. Green 
computing has gained popularity. Ukoba et al. [11] investigated fog 
node renewable integration, demonstrating a sustainable solution to 
the energy-intensive telehealth system. The study suggests that solar-
powered fog units can provide operational functionality without loss of 
function and performance.

2.4. Integration of fog-cloud and machine learning
We can take advantage of both fog-cloud infrastructure 

and machine learning to enhance telehealth IoT. Choppara and 
Mangalampalli [12] integrated a hybrid fog-cloud architecture with a 
reinforcement learning algorithm to improve patient data processing 
workflows. It reduced latency by 50% and increased system output. 
Bhatia et al. [13] developed a multilayered fog-cloud architecture that 
employed real-time machine learning models for predictive analytics 
in telehealth. It was 97% accurate in detecting breathing problems. 
Their work proves how computational velocity and high-level analysis 
support each other. Additionally, Lin et al. [14] showed a fog-cloud 
framework to detect sepsis. It ensembles learning algorithms to analyze 
types of patient data. The system has been significantly enhanced in 
predicting and processing faster.

Telehealth meets a great need in various areas, so it encourages 
the use of fog-cloud hybrid computing systems associated with machine 
learning platforms. However, we still need to conduct more research 
to improve the efficiency, scalable, and security of IoT solutions for 
healthcare.

3. Data Integration in IoT
Telehealth IoT data is generated in comparatively huge amounts 

and heterogeneous types from several devices, such as wearable 
sensors, imaging devices, and other medical devices. This encompasses 
real-time physiological data (e.g., heart rate and blood pressure), 
patient location data, historical health records, and diagnostic imaging. 
Nevertheless, seamless integration of such heterogeneous types of 
data is not a trivial task anymore, as it comes with various technical 
challenges, including but not limited to data consistency, low latency, 
data quality, and sensitive health data security [15].

This study proposes a data integration approach in a fog-
cloud environment that solves these problems and optimizes data 
communication, security, and scalability. With the use of fog nodes for 
data processing in an intermediate layer, Vishweshwara and Ramya 
[16] proposed a solution that reduces latency, enhances data quality, 
and maximizes data paths from the device to the cloud. The steps below 
outline the strategy in more detail. 

3.1. Data collection and preprocessing at the IoT de-
vice layer

The data integration process is located at the IoT device layer, 
where various health-monitoring devices collect and transmit raw data. 
Data collection involves the following:

1)  Integration of sensors: Integration of medical devices by connecting 
them and making their configurations so that they are compatible 
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with the platform. Devices will have embedded software that may 
communicate with fog nodes [17].

2)  Data sampling: This is about how to appropriately measure the 
quantity of data to be sampled to get useful information on the health 
data without overloading the network. So, for example, a device 
might take data about heart rate every couple of seconds and not 
all the time.

3)  Basic preprocessing at IoT devices: IoT devices perform basic 
preprocessing to filter out noise, compress data, and standardize 
formats before transmitting to fog nodes. Preprocessing reduces 
bandwidth usage and prepares the data for more complex processing 
at the fog layer.

The fog layer, consisting of distributed computing nodes located 
closer to IoT devices, acts as an intermediary processing stage, reducing 
the need to transfer all data to the cloud [18]. Key functions at this layer 
include the following:

1)  Data aggregation and filtering: Fog nodes aggregate data streaming 
in real time from numerous IoT devices. Preliminary testing is done 
for analytical purposes to check on both relevance and discard 
irrelevant or duplicate data. Aggregation brings together streams 
of data, reducing load on transmission while freeing up maximum 
storage space.

2)  Data normalization and structuring: Interoperability is facilitated by 
fog nodes through the structuring of raw data from other devices 
into standardized formats, for example, HL7, for storage, so as to 
integrate and access them smoothly across the system.

3)  Edge analytics and computation: Local machine learning models are 
used by fog nodes for anomaly detection and trend monitoring; they 
detect life-critical health incidents-e.g., abnormal heartbeat-so that 
action can be taken more promptly in time-sensitive applications 
prior to sending the data to the cloud.

4)  Buffering and caching: Fog nodes temporarily store the data so 
that there is an uninterrupted flow of data in the case of fluctuating 
network conditions.

3.2. Data transmission optimization
To efficiently and securely transfer data from fog nodes to the 

cloud, the system utilizes the following techniques:

1)  Data compression and encryption: Fog nodes also compress the data 
before transmission to minimize the amount of bandwidth used, 
and then they apply end-to-end encryption-such as AES-256-on the 
patient data at the time of its transit. This complies with health data 
privacy laws such as HIPAA [19].

2)  Priority-based data forwarding: The system will have data 
forwarding based on priority, such that packets will be forwarded 
based on the packet priority. For instance, data that indicates a 
probability of health emergencies is forwarded with higher priority 
for faster processing in the cloud, and less prioritized data is queued 
to be sent in batches.

3.3. Centralized integration and long-term storage in 
the cloud

Once data reaches the cloud, it undergoes the following 
centralized integration and long-term storage:

1)  Data de-duplication: The cloud servers eliminate duplicate entries 
created because of a single IoT device or the same packets to ensure 
clean and consistent data is made available for analysis.

2)  Data convergence and historical consolidation: End-to-end view 
of every patient’s status, as new data converges on the cloud with 
existing history.

3)  Advanced analytics and machine learning processing: The 
aggregated data in the cloud servers helps create predictive models, 
conduct longitudinal analysis, and streamline the provider’s 
clinical decision-making process. Subsequently, the models guide 
interventions, assisting the providers to predict and manage chronic 
conditions.

3.4. RBAC and security management
We always consider security as a top priority in telehealth IoT 

data integration. The system applies both RBAC and additional controls 
to ensure the confidentiality and integrity of data as follows:

1)  Access control policies: People access the information in the system 
based on their role and permissions as per the organization. For 
example, doctors can access the records, while the admin can access 
the billing data [20].

2)  Audit trails and logging: Data transactions of all kinds provide an 
audit trail of who accessed, changed, or sent the information to 
ensure greater accountability for compliance.

3)  Security audit: Continuous auditing or vulnerability scanning 
investigates risk factors and response at all levels, including IoT 
devices, fog nodes, and cloud infrastructure.

3.5. Performance monitoring and adaptive 
optimization

Data integration parameters are dynamically adjusted because 
the system periodically monitors performance metrics, such as latency, 
data rate, and error rates:

1)  Adaptive sampling rates: To provide energy usage and constant 
operation, it dynamically modifies the sample rate based on network 
state and battery drain from the device.

2)  Load balancing: To avoid bottlenecks and give a smooth flow of 
data, traffic will be dynamically distributed between fog nodes and 
cloud servers. Periodically, load balancing algorithms redistribute 
data processing operations between underutilized nodes.

4. Knowledge Extraction Techniques
Telehealth IoT systems often produce massive volumes of 

patient data that need to be analyzed to derive insights for treatment, 
intervention, or monitoring—something that, if not done in a timely 
manner, leads to real-life consequences. In this system, knowledge 
extraction techniques use ML algorithms to analyze the incoming 
traffic, interpret outgoing data packets, and analyze how they flow 
through the network. Implementing these algorithms at the fog node 
level enhances the processing of requests in real-time, reducing 
latency and maximizing resource utilization. Knowledge extraction is 
composed of three key components: supervised learning for predictive 
health outcomes, unsupervised learning for anomaly detection, and 
contextual data analysis to enhance accuracy.

4.1. Supervised learning models for health outcome 
prediction

Supervised learning models use labeled training data to predict 
patient health outcomes, enabling the system to provide early warnings 
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for potential health issues. The implementation process involves the 
following steps:

1)  Data labeling and model training: The system is trained on historical 
data about patients, including serious and nonserious health events 
(such as heart attack, hypertension episodes, or just normal). Well-
known models are logistic regression, decision trees, and support 
vector machines for binary classification problems. More complex 
models, such as a deep neural net, can be used further for multiclass 
predictions. For instance, you can use a heart rate dataset that is 
labeled “normal” and “abnormal” to train a model to predict 
arrhythmias.

2)  Model deployment at fog nodes: The trained models are deployed 
on the fog nodes that are near IoT devices. It tells you the purpose, 
deploy locals, and they can call how you analyze all health metrics 
and eliminate delay, and it also sets the way to maintain patient 
urgency. As an example, a deployed model can monitor a patient’s 
heart rate continuously and notify a healthcare provider if it detects 
signs related to a heart attack.

3)  Periodic model refitting and updates: With the accumulation of 
new data, models are periodically refitted in the cloud to grow in 
accuracy and follow future health trends. Subsequently, new models 
are repurposed and redeployed to fog nodes to remain relevant and 
accurate in prediction over time.

4.2. Unsupervised learning for anomaly detection
To detect unusual patterns, we use unsupervised learning 

techniques that do not need labeled data. Unusual patterns in the 
measurements can be indicative of adverse health problems worthy of 
follow-up or intervention, such as follows:

1)  Baseline health pattern clustering: The system clusters patient data 
into clusters, k-means, for example, representing “normal” health 
patterns of the population regarding a certain disease. For instance, 
the average heart rate and blood pressure readings for individuals 
within a specific age group can be grouped together in establishing a 
baseline. Whenever new data points fall way off from these clusters, 
they are flagged by the system as potential anomalies [21].

2)  Anomaly scoring and threshold setting: Once the clustering process 
is complete, each incoming data point will be granted an anomaly 
score, which, in essence, is the distance of the data point from its 
nearest cluster center. A data point will be considered abnormal if 
its anomaly score crosses a certain preset threshold. These limits are 
personalized based on the potential health risk each kind of anomaly 
could pose. To give another example, it would be a given difference 
of impact, where a major deviation of blood oxygen would contrast 
with the small changes in heart rate.

3)  Real-time anomaly detection and alerts: The anomaly detection 
model will continuously scan the data at the fog node level and 
therefore will be able to detect unusual patterns as and when they 
arise. As soon as the anomaly is detected, an alert is triggered 
immediately to healthcare professionals, thereby enabling immediate 
follow-up or emergency response if needed.

4.3. Contextual data analysis for improved accuracy
To obtain better prediction accuracy, contextual data analysis 

thinks of extrinsic factors—behavioral and environmental data—
influencing a patient’s health. Based on these context-aware factors, the 
system can reduce false alarms and provide more detailed information, 
such as follows:

1)  Integrating environmental data: A set of environmental data 
includes air quality, temperature, and humidity-all are vital for 
health. Consequently, especially in patients suffering from chronic 
respiratory ailments, the system would have them provided via 
either sensors placed nearby or weather services, upon which it 
feeds to perform further analyses. If, say, air quality levels remain 
at unsatisfactorily high or low levels, for example, it may reset the 
respiratory rate threshold for triggering baseless alarms.

2)  Behavioral data collection: Behavioral factors also have significantly 
affected health outcomes, such as the level of physical activity, sleep 
patterns, and drug adherence. They can be collected via wearable 
sensors or mobile applications at the fog level.

3)  Context-aware modifications in machine learning models: 
Supervised and unsupervised models are presented with contextual 
data through the addition of feature variables of environmental and 
behavioral context. This will enable the models to understand the 
health data in the context of the patient and adjust the algorithm’s 
prediction. For example, a spike in heart rate after exercise will not 
be identified as an anomaly when the context variable recognizes 
recent exercise.

4.4. Knowledge extraction workflow in fog nodes
The knowledge extraction workflow at the fog node level includes 

a structured sequence of data preprocessing, model inference, and 
context-aware analysis to generate real-time insights, such as follows:

1)  Data preprocessing: Cleaning, normalization of the received health 
data, and transforming them into a machine learning model format 
usable could include noise removal or scaling data, among others, to 
address missing values.

2)  Model inference and analysis: The preprocessed data will 
subsequently be fed into deployed supervised and unsupervised 
models. Supervised models will predict some of the health outcomes, 
for example, risk for hypertension, while unsupervised models will 
determine unusual patterns in the data. The models will work in real 
time to support continuous monitoring.

3)  Contextual adjustment: It is attained by adding contextual data to the 
analysis after initial model inference to fine-tune the predictions of 
the model. It comprises model output adjustment for environmental 
and behavioral contexts that help eliminate false positives and 
increase the relevance of insight.

4)  Alert generation and escalation: The fog node will trigger an alert 
when it detects a critical health threat or abnormality. The alerts will 
be ranked based on the severity of the condition detected and passed 
on to the cloud for further processing or to medical personnel for 
immediate action.

4.5. Continuous model evaluation and feedback loop
The system includes a continuous evaluation and feedback loop, 

thus ensuring the effectiveness of knowledge extraction techniques over 
time, such as follows:

1)  Performance monitoring: Fog nodes monitor the performance 
of models, based on metrics such as the accuracy of predictions, 
false positive rates, and response times for alerts. This information 
is reported back to the cloud for collective analytics and model 
improvement.

2)  Incorporation of user feedback: Feedback is given by the medical 
experts and the patients about the alerts and predictions generated 
by the system. This helps to determine trends in false positives 
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or missed alerts, based on which refinement is additionally 
performed.

3)  Model retraining and deployment: Based on performance analysis 
and feedback, machine learning models are retrained periodically on 
the cloud. The updated models are then redeployed to the fog nodes 
to update the system with new data for high accuracy.

5. Data Application in Real-World Scenarios
The information drawn from the patient’s data in telehealth IoTs is 

being implemented in different areas to assist clinical decision-making, 
energy optimization, and also to provide the patients and caregivers 
with the right information regarding their health status. Applications 
for real-time data improve the quality of care, shorten response times, 
and facilitate proactive management of chronic conditions. Considering 
this, the following points are the key telehealth data applications, how 
they are implemented, and what benefits they provide.

5.1. Clinical decision support systems
Clinical decision support systems (CDSS) are very important to 

telehealth by providing healthcare professionals with real-time insights, 
and they help with diagnosis, treatment planning, and monitoring. 
Deploying CDSS involves the following steps:

1)  Predictive model and alert integration: The CDSS will implement 
predictive models on the fog nodes to analyze live data from the 
patients to identify risks such as abnormal heartbeats, struggling 
breathing, or indicators of high blood pressure. Upon identifying 
an unfavorable pattern, this system will create an alert for 
immediate evaluation of the patient’s condition by the medical 
professionals.

2)  Risk prioritization and stratification: The system stratifies patients 
into high, moderate, or low risk based on patterns in the data from 
machine learning models. The system will provide prioritized alerts 
for high-risk patients and check up with lower-risk patients at a more 
periodic interval. This stratification enables providers to manage 
large patient populations by prioritizing those who have the most 
urgent need.

3)  Evidence-based decision support protocols: The CDSS contains a set 
of evidence-based clinical protocols covering common conditions, 
including diabetes, heart disease, and respiratory disease. It would 
cross-reference each health alert against these protocols to create 
potential suggested interventions. For example, if the system 
identifies that an asthma attack is about to happen, the CDSS might 
suggest medication adherence or inhaler use, or even suggest an 
immediate consultation.

4)  Data presentation-visualizations and trend analyses: The CDSS will 
develop graphical visualizations, and it will chart trends over time 
in individual patients for blood pressure, glucose levels, or other 
indicators of physical exertion. These analyses allow healthcare 
workers to make more proper choices for care adjustments, based 
on changes that they observe in their respective patients’ conditions.

5.2. Adaptive energy management techniques
IoT devices in telehealth platforms are usually always on, calling 

for energy management for sustaining device functions and extending 
battery life. Dynamic energy management mechanisms optimize energy 
use based on data analysis and usage patterns of devices, implemented 
through the following methodologies:

1)  Dynamic sampling rate adjustment: Power is saved by dynamically 
adjusting the sampling rate of data depending upon the activity of 

the patient and the state of the device. A sample would be when 
the patient sleeps—a low-activity mode—then the heart monitor 
would reduce its sampling rate to save battery life. When the patient 
is active or on abnormally high readings, the system increases the 
sampling rate for observing more closely.

2)  Power level-based scheduling of tasks: IoT devices and fog nodes 
schedule tasks based on their power level. High-energy-consuming 
tasks, such as encrypting data and sending large data, are scheduled 
when the device is charging. Low-power optimizations are triggered 
if the battery level goes below a certain threshold and limit functions 
to main roles.

3)  Edge processing and reduced data transmission: Instead of sending 
all raw data to the cloud, the heavy power consumption by devices 
in sending data can be eliminated. Important processing occurs at 
the fog nodes themselves while accomplishing the initial processing 
locally for anomaly detection and sending only meaningful results/
alerts to the cloud. This reduces the frequency as well as volume of 
data on the network.

4)  Predictive maintenance alerts: The system monitors metrics on 
device performance, such as battery health and data processing 
speed, such that we can evaluate when maintenance or replacement 
of the battery may be required. Predictive maintenance alerts can 
be used to avoid unexpected downtime, thereby safeguarding the 
smooth operation of the monitoring devices without an abrupt loss 
of power.

5.3. Patient dashboards and caregiver portals
Patient dashboards and caregiver portals present health 

information in a clear, actionable manner. These interfaces allow 
patients and their caregivers to monitor health metrics, manage care 
routines, and respond to health alerts. Some of the key features of these 
dashboards include the following:

1)  Simple health metrics and visualizations: Dashboards of patients 
are visualizations with easy-to-read graphs and color indicators for 
complicated health metrics in simple, readable formats. For example, 
trend lines on a daily, weekly, or monthly basis can represent the 
heart rate, glucose level, or blood pressure of a patient for trends that 
one needs to discover in his/her health data.

2)  Customized health alerts and notifications: The dashboards also have 
an embedded notification system that draws, in real-time, critical 
health events or trends to the notice of the patients or caregivers 
who must take action. As an example, for threshold levels of blood 
glucose, the dashboard can raise an alert for the patient to take 
medicine or call their health practitioner.

3)  Educational resources and self-management tools: Dashboards 
include educational content on chronic disease management, 
lifestyles, and medication reminders. For instance, high blood 
pressure patients can be advised on what diet and exercise habits to 
adopt in accordance with their condition, thus making them more 
interested in taking proper care of themselves.

4)  Integration with telemedicine services: Telemedicine websites 
manipulate the dashboards where patients can schedule online 
appointments, access medical records, and message providers. This 
integration will also improve the continuity of care as the patient can 
discuss their health information remotely with providers and receive 
personal recommendations.

5.4. Data-driven personalized care plans
As per the individual patient data analysis, the system designs 

customized care plans targeted at each patient’s condition of health, 
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physical activity level, and medical history. The steps for the 
implementation of data-based care plans include the following:

1)  Investigate patient-specific patterns of health: Individual data and 
past patterns are continuously monitored, enabling the system to 
investigate individualized health patterns. For example, if a patient 
continues to have high blood pressure in the morning, his or her care 
plan can obtain specific recommendations for morning-time activity 
or stress-reduction strategies.

2)  Adaptive goal setting: Treatment interventions will adjust the 
patient’s goals, be it the number of steps taken, calories expended, 
or medications, and update them based on recent health information. 
When the patient can reach the set amount of physical exercise, 
for instance, the system increases targets to encourage further 
enhancement.

3)  Reminders and behavioral guide: Care plans include reminders for 
healthy habits. These remind patients to stick to actions that promote 
health goals, such as taking medication at the appropriate time or 
gentle exercise. 

4)  Continuous improvement: Patient feedback and health information 
are tracked over time to continually change care plans. For example, 
if a patient determines that an exercise target is too difficult to 
follow, the system automatically adjusts the care plan to include 
fewer demanding activities-a change that makes the probability of 
the patient’s compliance with the care plan and incremental progress 
toward it more achievable.

5.5. Continuous evaluation and outcome tracking
The patient outcomes can be evaluated by the Telehealth system 

and modified applications to improve effectiveness, such as follows:

1)  Health outcome monitoring: The system tracks significant health 
indicators to measure the effectiveness of interventions in care by 
recording the extent of change over a given period.

2)  Data-driven changes: The system provides evidence-based care 
recommendations and monitoring protocol changes according to 
ongoing outcome monitoring. For instance, when a patient’s health 
outcomes are enhanced because of medication compliance, the 
system will make medication compliance a core element of the care 
plan.

3)  Healthcare provider reporting: The system produces reports 
summarizing patient progress, guideline adherence for care, and 
trends in health metrics. Healthcare providers use the reports to 
discuss patient status during visits and alter treatment accordingly.

6. Methodology and Simulation Data
These simulations were made in Python-based IoT data 

processing environments, including libraries for machine learning with 
TensorFlow and simulation modeling with SimPy. Simulated fog nodes 
with edge computing parameters emulating Raspberry Pi devices and 
cloud servers emulating Amazon AWS configurations were used. The 
IoT data are synthetically generated to include diverse patient metrics, 
including heart rate and glucose level, emulating real-world healthcare 
settings.

A simulation-based approach is employed in evaluating the 
performance and efficiency of the proposed telehealth IoT system. The 
simulation emulates various telehealth scenarios of real-time patient 
monitoring, data transmission between IoT devices, fog nodes, and cloud 
storage. The key performance metrics, such as energy consumption, 
latency, data processing rates, and data accuracy, are calculated and 
compared for various configurations. The simulation includes multiple 
iterations and statistical calculations for strong and reliable results.

6.1. Step-by-step methodology
6.1.1. Define simulation scenarios

The following two configurations are tested:

1)  With fog integration: Data is processed locally at fog nodes before 
being transmitted to the cloud.

2)  Without fog integration (cloud-only): Data is directly transmitted 
from IoT devices to the cloud.

Those two scenarios simulate data collection, processing, and 
transmission based on a telehealth environment.

6.1.2. Data collection

1)  Simulate data from virtual IoT devices representative of patient 
metrics, such as heartbeat rate, blood pressure, temperature, and 
level of blood glucose.

2)  Synthesize data from a continuous monitoring period of 24 hours, 
sampled every minute, to simulate real-time monitoring.

3)  Perform the simulation with different patient loads (e.g., 10, 50, and 
100 patients) to assess system scalability.

6.1.3. Data aggregation and processing at fog nodes

1)  In the fog-enabled scenario, IoT data is preprocessed and aggregated 
at fog nodes.

2)  Local machine learning models are applied to perform initial 
analysis, such as anomaly detection and trend identification, before 
data is sent to the cloud.

6.1.4. Data transmission and compression

1)  Data is compressed at the fog nodes to decrease transmission load.
2)  In the cloud-only scenario, data is transmitted without preprocessing, 

so higher network load and latency is produced.

6.1.5. Measurement and calculation of metrics

1)  Energy consumption: The energy consumed by IoT devices, fog 
nodes, and cloud servers.

2)  Latency: Record time taken from data collection at the IoT device to 
processing completion in the cloud for each configuration.

3)  Data processing speed: Calculate the rate of data processed per 
second at fog nodes and cloud servers.

4)  Data accuracy: The accuracy of the prediction by machine learning 
models to detect anomalies as per the predetermined threshold.

6.1.6. Statistical analysis

1)  Perform statistical analysis on the results from multiple iterations 
(e.g., 30 runs per scenario) to ensure consistency.

2)  Calculate mean, standard deviation (SD), and confidence intervals 
(CIs; 95%) for each metric to understand the reliability and 
variability of the system performance.

6.1.7. Result comparison and evaluation
Compare results between fog-enabled and cloud-only scenarios to 

identify improvements in efficiency, energy savings, and data accuracy.

6.2. Simulation overview for energy-efficient telehealth 
IoT with fog-cloud integration

Our simulation is designed to test the performance and efficacy 
of a telehealth IoT model under two conditions: with onboard fog nodes 
used for local processing and with cloud-based processing. It aims 
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at measuring how the integration of fog computing impacts critical 
parameters such as energy consumption, latency, processing time, and 
data quality. The simulation process step-by-step is shown below.

6.2.1. Define simulation scenarios
The following two configurations are defined:

1)  Fog-enabled configuration: In this, data from IoT devices is 
processed first at local fog nodes and then forwarded to the cloud. 
This minimizes network latency and load by processing data closer 
to the source.

2)  Cloud-only configuration: In this configuration, the data is transmitted 
from IoT devices to the cloud without local preprocessing. This 
configuration is utilized as a baseline for the comparison of the 
impact of fog computing.

All configurations are tested under the same conditions to enable 
uniform comparisons.

6.2.2. Simulate collection of patient data
For each setup, there will be synthetic data representing patient 

measurements. These include heart rate, blood pressure, temperature, 
and blood glucose levels. This is collected over some given monitoring 
time, say 24 hours, and sampled at one-minute intervals.

This simulation utilizes various numbers of patients—for 
example, 10, 50, and 100—to test the scalability of the system. In all 
the cases, each patient’s metrics are simulated in a continuous fashion 
to simulate real-time monitoring as would happen in a real-world 
telehealth scenario.

6.2.3. Data aggregation and initial processing
Fog nodes can process the data from IoT devices locally when 

the fog-enabled configuration is set. This involves basic aggregation, 
where data is organized, and initial analysis using machine learning 
algorithms for tasks such as anomaly detection and trend identification. 
This helps reduce the amount of data that needs to be transmitted to the 
cloud and provides real-time insights at the fog nodes.

Data is transmitted directly to the cloud without any local 
processing when the cloud-only configuration is set, which puts more 
load on the network and increases latency since all data is processed 
remotely.

6.2.4. Data transmission and compression
To handle network load in an efficient manner, in the fog-enabled 

setup, the data is compressed at the fog nodes before sending it to the 
cloud. The compression reduces transmission time and lessens the 
demand on the network.

In the cloud-only approach, the raw data is delivered without 
compression. It shows us an additional burden that is put on the network 
in the absence of any local pre-processing.

6.2.5. Measure and calculate key performance metrics
In each of these configurations, the following four key metrics 

are measured:

1)  Energy consumption: This is the amount of energy used by IoT 
devices, fog nodes, and cloud servers in collecting, processing, and 
transmitting data. This metric helps determine how energy-efficient 
each setup is.

2)  Latency: Latency is the time required from the collection of data 
by an IoT device to the completion of processing in the cloud. For 
real-time applications, it is vital that this latency be minimized, 
and that fog will reduce this metric compared to cloud-only 
processing.

3)  Processing speed: This is a measure of the speed of data processing, 
usually measured in kilobytes per second. Data is processed both 
locally and in the cloud in the fog-enabled configuration; thus, it 
should improve the processing speed due to load distribution.

4)  Data accuracy: As machine learning models are applied in the 
system, data accuracy signifies the degree of precision in detecting 
anomalies or trends in the patient metrics. It is expected that higher 
accuracy will be achieved from a fog-enabled configuration due to 
real-time analysis closer to the data source.

6.2.6. Statistical analysis of results
For reliability, each simulation configuration is run several times; 

for example, 30 runs per scenario. For each metric, statistical analysis 
is done to compute the following:

1)  Mean (average value) and SD: These show the consistency of the 
results.

2)  95% CI: This measures the reliability of the metric results across 
different simulation runs.

These statistical values help assess the performance of each 
configuration under varying conditions, accounting for potential 
fluctuations.

Step 7: Result Comparison and Evaluation
Finally, all metrics shown in Table 1 are compared between 

the fog-enabled and cloud-only configurations. The mean values 
from each metric in the fog-enabled configuration are compared with 
its counterpart from the cloud-only configuration to determine the 
percentage improvement added by including the fog. These will enable 
us to quantify the advantages of fog computing in terms of energy 
savings, latency reduction, processing speed, and data accuracy.

Given the results of the simulations, the results demonstrate a 
comprehensive evaluation of the performance of the telehealth IoT 
system for different configurations and clearly demonstrate the benefits 
of real-time integration with fog, energy-efficient telehealth IoT 
systems. This evaluation offers insight into upscaling to efficient energy 
and responsive telehealth infrastructures.

6.3. Simulation data matrix with statistical analysis
1)  Energy usage (shown in Figure 1): With fog integration, energy 

consumption reduces by approximately 30%, improving the local 
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Metric With fog integration (mean ± SD) Without fog (mean ± SD)
Energy consumption 110 kWh ± 5.5 (95% CI: ±10 kWh) 160 kWh ± 6.8 (95% CI: ±12 kWh)
Latency (ms) 30 ms ± 2.1 (95% CI: ±4 ms) 85 ms ± 5.4 (95% CI: ±10 ms)
Data processing speed (kb/s) 60 kb/s ± 3.2 (95% CI: ±6 kb/s) 30 kb/s ± 2.7 (95% CI: ±5 kb/s)
Data accuracy 96.5% ± 1.2% (95% CI: ±2%) 88.2% ± 1.8% (95% CI: ±3%)

Note: CI = confidence interval, SD = standard deviation.

Table 1
Simulation data matrix with fog and without fog 
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data processing performance. Run consistency is reflected by SD, 
and the 95% CI represents statistical reliability.

2)  Latency (shown in Figure 1): With the fog-enabled setup, latency is 
significantly decreased to 30 ms on average, compared to 85 ms in 
the cloud-only setup.

3)  Data processing rate: Data processing is quicker with integration in 
fog at a mean of 60 kb/s.

4)  Accuracy of information: Prediction accuracy for anomaly detection 
remains greater in the fog setup, suggesting more accurate real-time 
data.

6.4. Data flow diagram
The data flow diagram (shown in Figure 2) and the Health IoT 

system 3D structure (shown in Figure 3) represent the flow of patient 
health data from IoT devices through the fog layer to the cloud in 
the proposed telehealth IoT system. The diagram demonstrates data 
preprocessing, local analysis at fog nodes, and the final data storage and 
analysis in the cloud.

7. Results
The simulation results show significant improvements in the 

performance of telehealth IoT systems as fog computing is integrated 
into the system. We give the specific results observed in terms of energy 
consumption, latency, data processing speed, and accuracy, followed by 
an in-depth discussion of the implications and potential applications of 
these findings as follows:

1)  Energy consumption: In the fog-based configuration, energy 
efficiency was enhanced by approximately 20% when compared 
to the cloud-only configuration. This is a result of the distributed 
nature of processing, where the data is partially processed at 
geographically close fog nodes rather than transmitting all raw 
data to the cloud. Through minimizing the amount of data that is 
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 Figure 1
Comparison of latency and energy consumption

 Figure 2
Data flow in energy-efficient telehealth IoT-cloud system

 Figure 3
Health IoT system 3D structure
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pushed to the cloud, the fog nodes lower the network transmission 
loads, which in turn lowers energy consumption by IoT devices 
(less communication) and cloud servers (less amount of data 
being processed). This energy efficiency is particularly relevant 
for wearable and mobile IoT devices, which are normally 
battery-constrained. Demand reduction of energy is one of the 
sustainability goals, with potential cost savings and environmental 
gains, especially on scale.

2)  Latency: The fog-based setup lowered latency by 50% compared 
to the cloud-only setup. The model allows time-critical data to be 
processed and responded to within near-real time by processing 
the data locally in fog nodes. This reduction in latency is highly 
essential in emergency response cases or in applications that require 
constant monitoring, such as chronic disease patients or intensive 
care. With an all-cloud configuration, information must travel to and 
from distant servers, and with this comes latencies that can impact 
patient outcomes. Reduced latency in fog-based systems improves 
patient safety and results in more suitable telehealth IoT systems 
for real-time health monitoring, particularly in crisis environments 
where timely intervention can be the difference between life and 
death.

3)  Data processing speed: The fog-enabled setup also showed a 
significant increase in data processing speed, with an average 
processing rate almost twice as high as that of the cloud-only 
configuration. Because fog computing is distributed, it can process 
information in parallel at local nodes, further enhancing the system’s 
ability to handle volumes of data all at once. The corresponding rise 
in processing speed pays rich dividends when many IoT devices 
are up and running or high-volume data from sophisticated sensors 
is processed, such as imaging devices or electrocardiograms. By 
handling this stream of data locally, the fog-based model has shown 
much resilience to failures and, therefore, scalability, thereby better 
preparing it for high-demand telehealth settings.

4)  Data accuracy: By integrating machine learning algorithms within 
the fog nodes, the fog-based model also demonstrated higher data 
accuracy for anomaly detection of patient metrics. The model 
achieved an accuracy of 96.5% in detecting anomalies, compared 
to 88.2% in the cloud-only case. Processing data closer to the edge 
not only reduced latency but also facilitated faster feedback loops, 
with more effective machine learning-based analysis. The increased 
accuracy is most likely to improve clinical decision support since 
it allows clinicians to have confidence that the inferences from IoT 
data are timely and accurate. For patients who need continuous 
monitoring, increased accuracy allows for early detection of 
complications, enabling active intervention.

8. Discussion
During the provision of treatment in emergency settings, low 

latency enables instant clinical response with a fog-based framework 
for instances such as cardiac arrest or major hypoglycemia. In low-
resource settings where network connectivity is poor, local processing 
of health data through fog computing continues with only occasional 
network connectivity for the purpose of monitoring. This autonomy 
continues with clinical interventions in the continuity of care, where 
internet availability is minimal.

The results validate that fog computing is efficient for the 
performance enhancement of telehealth IoT systems. The implication 
of this is gigantic in the case of upcoming health systems, particularly 
on the following grounds:

1)  Scalability and efficiency of resources in healthcare systems: Speed 
and energy efficiency in fog computing equate to telehealth IoT 
systems being more sustainably scaled. This is highly significant, 

considering the rising demand for remote healthcare services. With 
the effective use of the available resources, healthcare providers 
can scale telehealth services without equally increasing energy 
and computation demands, which can render the operation more 
affordable and serve more patients effectively.

2)  Real-time responsiveness in time-sensitive care: The fog-based 
model can significantly reduce latency, which has been shown in 
time-sensitive medical applications such as emergency services 
and intensive care units. Data processing and response times have 
affected patient outcomes in these environments. Reducing latency, 
fog-enabled telehealth IoT systems can provide feedback in real 
time, thus enabling timely clinical decisions and improving patient 
safety. Such responsiveness is critical for those conditions that 
demand ongoing monitoring and real-time intervention, such as 
cardiac arrhythmias or acute blood glucose levels.

3)  Improved access in resource-constrained environments: Fog 
computing has a unique advantage in resource-constrained 
environments, such as rural or remote areas, where network 
connectivity is poor. The data can be processed locally through fog 
nodes, which reduces the demand for continuous cloud connectivity 
and permits basic health monitoring and diagnostics to persist even 
with sporadic network connectivity. This autonomy makes fog-
based telehealth systems more resilient in resource-poor areas, thus 
enhancing healthcare access disparities and reducing the burden on 
centralized healthcare facilities.

4)  Support for predictive and preventive healthcare: Integration of 
machine learning with fog nodes enables a platform for predictive 
and preventive medicine. Fog-based systems have the potential 
to track health trends ahead of time by enabling faster, local 
processing of patient data, thereby allowing proactive healthcare 
interventions. This capacity is especially valuable in chronic 
condition management, where the early detection of adverse trends, 
that is, rising blood pressure or abnormal heart rate patterns, equals 
early intervention that reduces hospitalization and improves patient 
quality of life.

5)  Sustainability and environmental impact: This would also contribute 
toward broader sustainability goals due to reduced energy 
consumption by the fog-based system. As environmental awareness 
and sensitivities grow in healthcare, this makes energy-efficient 
models, such as fog computing within telehealth systems, assist 
the sector in meeting its growing environmental responsibilities. 
Such reductions in energy automatically convert to cost cuts, hence 
making telehealth cheaper and more accessible over time.

9. Conclusion
This article will exhibit the performance, efficiency, and 

reliability of a telehealth IoT application on a fog-cloud hybrid 
infrastructure. The proposed model integrates data preprocessing and 
analysis at the fog nodes, which resolves some of the most essential 
issues in telehealth pertaining to latency, energy efficiency, and data 
precision. Simulation results have validated that the fog-enabled model 
outperforms the traditional cloud-only architecture for the majority of 
the key performance indicators. In particular, the fog model reduced 
energy consumption by 20%, latency by 50%, and improved the speed 
of data processing and the accuracy of anomaly detection. These 
improvements point to the advantage of localizing processing where 
real-time aggregation, anomaly detection, and data compression are 
performed by fog nodes with minimal workload on cloud servers and 
optimized response times.

It mainly explores the promise of integrated IoT, fog computing, 
and machine learning for scalable telehealth systems. The fog-cloud 
infrastructure forms the basis of the sustainability and scalability of 
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telehealth infrastructures through the embracement of adaptive data 
integration approaches, real-time knowledge extraction approaches, and 
efficient means of using data. These findings therefore justify further 
research and large-scale application of the fog-cloud architecture in 
telehealth, and more so in applications where real-time continuous 
monitoring of patients is highly needed. Areas of future research can 
extend this work by considering more advanced machine learning 
algorithms, assessing the scalability of the system with additional 
patients, and determining the performance of the model in various 
healthcare settings.

10. Future Research Directions
The future research can involve hybrid AI techniques, such as 

federated learning combined with reinforcement learning, which could 
improve diagnostic performance without sacrificing data privacy. 
Secondly, multimodal data compatibility, for instance, medical 
imaging and genomic sequences, could provide end-to-end views of 
patient health. Scaling up is the other groundbreaking bottleneck, and 
deployment of fog-cloud systems needs to be tried and tested in large 
networks, particularly in smart city healthcare systems.

Considering the outcome of the research on energy-efficient 
telehealth IoT systems in a hybrid fog-cloud model, some potential 
directions of future research could include enhancing the functionality, 
scalability, and personalization of these models for applications that are 
telehealth-relevant, such as follows:

1)  Hybrid AI-based diagnosis: Future research may integrate various 
machine learning techniques, including natural language processing, 
deep learning, and reinforcement learning, into hybrid AI systems 
that would enhance the current diagnostic services offered by the 
fog-cloud telehealth system. Through the implementation of a 
hybrid model, it is hoped that complex health information may be 
given meaning in real time, hence leading to a more comprehensive 
and precise diagnosis specific to the individual profile of each 
patient.

2)  Diversification across different data types: Diversification of 
integrated information to other data types, such as imaging data-for 
instance, X-rays and MRI data-genomic data, or even behavioral 
measures-might improve understanding of patient health status. 
Future studies could focus on activating integrative systems that 
analyze a broad range of data sources to support high-resolution 
health patterns and potential for early intervention. In addition, 
with increasing varieties of data, telehealth IoT systems could 
support progressively higher and more complex clinical data for 
personalized care.

3)  Scale up in large telehealth networks: As fog-cloud systems are 
attracting more attention, research needs to focus on scaling these up 
for large telehealth networks, particularly in rural and underserved 
areas. Future research in this area may investigate edge computing 
platforms and distribute artificial intelligence systems that can reduce 
latency and provide faster response times even in high-demanding 
environments. This is critical for scalable, dependable, resource-
efficient healthcare solutions so the system can accommodate 
diverse increases in patient loads.

4)  Increased device compatibility: The flexibility of the system and 
its applicability to a broad range of healthcare situations could 
be increased through testing it on a larger variety of healthcare 
devices, such as biosensors, implanted devices, and new wearable 
technologies. Device-compatible telehealth systems that had 
compatibility with multiple devices could monitor beyond simple 
measures of health and would have insight into more types of 
patient issues. In the fog-cloud model, future work might include 
the creation of interoperability standards and protocols that can 

accommodate many types of devices with secure, low-latency 
communications.

5)  Combining advanced machine learning models: A healthcare IoT 
system can provide real-time insights while preserving data privacy 
can be improved with the addition of sophisticated machine learning 
models, such as federated and transfer learning. Federated learning 
can improve security and privacy through the ability to facilitate 
learning over numerous sources without the data being stored at 
the center. Moreover, health professionals would be able to better 
comprehend and embrace AI-driven advice to make better clinical 
and adoption decisions if explainable AI were utilized.

6)  Greater personalized healthcare solutions: Currently, telehealth 
is all about personalization; the health needs and responses are 
individualized to each one of them. Further work can be done to 
develop adaptive algorithms that, other than providing diagnostic 
feedback and recommendations, are customized to the specific health 
profile of each of them, with consideration for disease histories, 
genetic predisposition, and lifestyle. Individualized solutions can, 
in this way, enable even more accurate and effective interventions 
that are more aligned with the general purpose of patient-centered 
care in telehealth.

7)  Longitudinal health outcomes studies: Finally, longitudinal studies 
can be established to find out the long-term effects of fog-cloud 
telehealth systems on patient outcomes, that is, disease management 
of chronic diseases. Observing the effectiveness of these systems 
over time, one would be able to analyze trends of patient participation 
and health outcomes, and how these systems would finally perform 
in serving towards their utilization. These will offer even more 
detailed information for improving the design to accommodate 
continuous improvement in health service delivery.
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