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Abstract: This paper further studies the previously proposed energy-efficient telehealth Internet of Things (IoT) model that focuses on data
integration, knowledge extraction, and application in fog-cloud hybrid architecture. Our current study concentrates on how the system uses
adaptive machine learning and data mining to optimize the system operation for increased real-time data analysis and reduced energy use, thus
providing more effective patient monitoring in telehealth. The simulation designed for the patients in both a fog-enabled model and a cloud-only
model applies various workloads sent from patients. In this fog-enabled model, data from IoT devices is preprocessed at fog nodes by investigating
anomalies, trends, or other relevant machine learning algorithms, and then this data is transmitted to the cloud. It compares key performance
metrics-energy, latency, speed of processing data, and prediction accuracy—in both a fog-enabled and a cloud-only model. Results show that
the fog-enabled model reduces energy consumption by 20% and latency by 50%, compared to a cloud-only configuration. This indicates the
distinct advantages of localized processing. Compared to the existing system, higher speed in processing data and improved accuracy in detecting
statistical anomalies, thereby demonstrating the possibility that the system offers for real-time and scalable telehealth capabilities. Meanwhile, this
work presents a comprehensive model for the sustainability and scalability of telehealth infrastructures, supported by simulation data and analysis
evidencing the effectiveness of the model.
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1. Introduction from an end user’s system, which leads to high latency that cannot
address use cases requiring real-time or near-real-time response.
Latency is especially an issue in settings where data communication
and processing directly affect patient outcomes, such as in emergency
care or continuous monitoring. Fog computing provides a solution by
introducing an intermediary layer that processes data near its source,
reducing latency and response time. The integration of fog and cloud
computing makes a hybrid architecture and optimizes the flow of data
without compromising the scalability of cloud services.

Data integration is the second key challenge of telehealth
IoT. First, Telehealth applications collect enormous amounts of
heterogeneous data from numerous data sources, including both
physiological (e.g., audio and video) sensors and imaging modalities,
as well as electronic health records. Decision making and analysis in
real time, which demands the integration of the data, where frameworks
need to be robust enough to support diversity in data volumes and types.
Second, the information of the patients is personal data and therefore
security and privacy shall take precedence. Security of the data while
being transmitted and stored is important to maintain compliance and
to instill trust among patients. These aspects are addressed in this
research by proposing a secure data integration scheme based on role-
based access control (RBAC) and encrypted transmission in a fog-cloud
paradigm.

Energy efficiency is an important factor in telehealth [oT systems
due to the continuous operation of IoT devices and data centers that
support healthcare applications. Particularly, wearable or mobile
10T devices are often restricted by battery life. Other than that, data
processing and storage in remote cloud servers can be energy-intensive,
“Corresponding author: Yunyong Guo, Department of Computer Science, University thus causing high operational costs and potential environmental
of Victoria, Canada. Email: yunyong@uvic.ca impacts. The proposed system reduces the energy demand from cloud

The paper overcomes the challenges of energy efficiency, latency,
and real-time health monitoring through the demonstration of an
adaptive fog-cloud architecture, which is much better than the existing
cloud-only systems. Compared with previous works, this model
involves real-time data preprocessing at the fog nodes with machine
learning algorithms toward scalable and sustainable telehealth Internet
of Things (IoT) solutions. Power-efficient algorithms that demonstrate
a 50% reduction in latency, 20% lower energy consumption, and 96.5%
accuracy indicate that this research could bring about in healthcare
applications.

Telehealth applications using IoT devices have been one of the
latest revolutionary concepts that allow monitoring in continuous time
and process health information in real time. Such systems depend on
the interconnection of sensors, medical devices, and wearables with
mHealth applications to capture, analyze, and send on to a patient’s
data. The continuous flow of information thus enables remote
diagnosis, personalized treatment, and proactive health management,
making healthcare more accessible, especially to the rural low-access
communities. With more healthcare systems adopting solutions on
telehealth, the demand for efficient, secure, and scalable telehealth IoT
infrastructures has grown by leaps and bounds.

However, 10T in telehealth is surrounded by challenges related
to data integration, system latency, security, and power consumption.
In existing cloud-based platforms, data processing takes place remotely
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servers by embedding energy-efficient data processing techniques at
fog nodes, extending operational life in IoT devices in pursuit of a
greener telehealth model.

An opportunity that has arisen to help these problems is the
convergence of loT, fog computing, and machine learning. The system’s
capability to convert health data into meaningful insights, facilitating
predictive analytics and anomaly detection, is improved with machine
learning algorithms. This is both beneficial and essential as the
management of chronic diseases relies heavily on the ability to detect
in advance an unfavorable pattern of health, giving the opportunity for
action in advance to avoid further complications. Integrating machine
learning algorithms directly into fog nodes allows the system to perform
knowledge extraction at the proximity to the data, improving both speed
and accuracy of patient monitoring.

Based on the work of Guo et al. [1] on energy-efficient
architectures in telehealth IoT, the present work focused on the following
three important objectives: adaptive data integration strategy within a
fog-cloud environment, real-time knowledge extraction using machine
learning techniques, and optimization of insights-to-application for
enhanced patient monitoring and clinical decision support. It proves the
efficiency of the system in reducing energy consumption and latency
while gaining high data processing efficiency.

2. Literature Review

Telehealth applications have utilized IoT, using both fog and
cloud computing to facilitate real-time, scalable data processing.

2.1. Fog-cloud architectures for telehealth IoT

Fog computing can mitigate latency issues by processing data
locally, decreasing wait times, and reducing data usage. Guo et al. [1]
presented a report of a hybrid fog-cloud system that improved data
processing by 40% compared to cloud-based systems. Mahmud et
al. [2] demonstrated how scalable telehealth fog systems are to show
that they can process large amounts of real-time patient data. New
studies have also discussed sharing resources. Hong and Varghese
[3] made up an adaptive resource plan for moving computer tasks
between fog and cloud layers to ensure the uninterrupted operation
of the system. Similarly, Ilyas et al. [4] showed how configurations
based on fog can be applied in emergency care, saving critical
response time by 25%. Thushara and Bhanu [5] made a coded
message system especially for fog-cloud healthcare systems to
guarantee that data is not damaged and has short delays. Their system
complies with regulations such as the Health Insurance Portability
and Accountability Act (HIPAA) that highlight the value of safe,
patient-centric telehealth solutions.

2.2. Machine learning in healthcare IoT

Machine learning in the IoT-based telehealth systems helps us
identify trends and anomalies. Ren et al. [6] developed a machine
learning model in fog nodes to identify heart conditions in real-time
at a rate of 95%. Real-time processing is very important for health
issues requiring immediate attention. Deep learning has also been
manipulated by researchers to help manage chronic conditions. Liu
and Wang [7] implemented a convolutional neural network-based
diagnosis tool in a fog setting to make diabetic diagnoses 20% more
accurate than conventional practices. In addition, Dritsas and Trigka
[8] demonstrated the effectiveness of federated learning in telehealth,
where many devices can collaborate to train machine learning models
without exposing patient information.

2.3. Machine learning in healthcare loT

Energy consumption is a critical factor for both wearable
IoT and the telehealth application data centers. Vaghasiya et al. [9]
suggested an energy-efficient fog system that enhanced the battery life
of wearable devices by 30% with reduced cloud server load. Likewise,
Bu et al. [10] indicated a power-conscious task scheduling scheme that
lowered energy consumption in telehealth networks by 15%. Green
computing has gained popularity. Ukoba et al. [11] investigated fog
node renewable integration, demonstrating a sustainable solution to
the energy-intensive telehealth system. The study suggests that solar-
powered fog units can provide operational functionality without loss of
function and performance.

2.4. Integration of fog-cloud and machine learning

We can take advantage of both fog-cloud infrastructure
and machine learning to enhance telehealth IoT. Choppara and
Mangalampalli [12] integrated a hybrid fog-cloud architecture with a
reinforcement learning algorithm to improve patient data processing
workflows. It reduced latency by 50% and increased system output.
Bhatia et al. [13] developed a multilayered fog-cloud architecture that
employed real-time machine learning models for predictive analytics
in telehealth. It was 97% accurate in detecting breathing problems.
Their work proves how computational velocity and high-level analysis
support each other. Additionally, Lin et al. [14] showed a fog-cloud
framework to detect sepsis. It ensembles learning algorithms to analyze
types of patient data. The system has been significantly enhanced in
predicting and processing faster.

Telehealth meets a great need in various areas, so it encourages
the use of fog-cloud hybrid computing systems associated with machine
learning platforms. However, we still need to conduct more research
to improve the efficiency, scalable, and security of IoT solutions for
healthcare.

3. Data Integration in IoT

Telehealth IoT data is generated in comparatively huge amounts
and heterogeneous types from several devices, such as wearable
sensors, imaging devices, and other medical devices. This encompasses
real-time physiological data (e.g., heart rate and blood pressure),
patient location data, historical health records, and diagnostic imaging.
Nevertheless, seamless integration of such heterogeneous types of
data is not a trivial task anymore, as it comes with various technical
challenges, including but not limited to data consistency, low latency,
data quality, and sensitive health data security [15].

This study proposes a data integration approach in a fog-
cloud environment that solves these problems and optimizes data
communication, security, and scalability. With the use of fog nodes for
data processing in an intermediate layer, Vishweshwara and Ramya
[16] proposed a solution that reduces latency, enhances data quality,
and maximizes data paths from the device to the cloud. The steps below
outline the strategy in more detail.

3.1. Data collection and preprocessing at the IoT de-
vice layer

The data integration process is located at the IoT device layer,
where various health-monitoring devices collect and transmit raw data.
Data collection involves the following:

1) Integration of sensors: Integration of medical devices by connecting
them and making their configurations so that they are compatible
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with the platform. Devices will have embedded software that may
communicate with fog nodes [17].

2) Data sampling: This is about how to appropriately measure the
quantity of data to be sampled to get useful information on the health
data without overloading the network. So, for example, a device
might take data about heart rate every couple of seconds and not
all the time.

3) Basic preprocessing at IoT devices: IoT devices perform basic
preprocessing to filter out noise, compress data, and standardize
formats before transmitting to fog nodes. Preprocessing reduces
bandwidth usage and prepares the data for more complex processing
at the fog layer.

The fog layer, consisting of distributed computing nodes located
closer to IoT devices, acts as an intermediary processing stage, reducing
the need to transfer all data to the cloud [18]. Key functions at this layer
include the following:

1) Data aggregation and filtering: Fog nodes aggregate data streaming
in real time from numerous IoT devices. Preliminary testing is done
for analytical purposes to check on both relevance and discard
irrelevant or duplicate data. Aggregation brings together streams
of data, reducing load on transmission while freeing up maximum
storage space.

2) Data normalization and structuring: Interoperability is facilitated by
fog nodes through the structuring of raw data from other devices
into standardized formats, for example, HL7, for storage, so as to
integrate and access them smoothly across the system.

3) Edge analytics and computation: Local machine learning models are
used by fog nodes for anomaly detection and trend monitoring; they
detect life-critical health incidents-e.g., abnormal heartbeat-so that
action can be taken more promptly in time-sensitive applications
prior to sending the data to the cloud.

4) Buffering and caching: Fog nodes temporarily store the data so
that there is an uninterrupted flow of data in the case of fluctuating
network conditions.

3.2. Data transmission optimization

To efficiently and securely transfer data from fog nodes to the
cloud, the system utilizes the following techniques:

1) Data compression and encryption: Fog nodes also compress the data
before transmission to minimize the amount of bandwidth used,
and then they apply end-to-end encryption-such as AES-256-on the
patient data at the time of its transit. This complies with health data
privacy laws such as HIPAA [19].

2) Priority-based data forwarding: The system will have data
forwarding based on priority, such that packets will be forwarded
based on the packet priority. For instance, data that indicates a
probability of health emergencies is forwarded with higher priority
for faster processing in the cloud, and less prioritized data is queued
to be sent in batches.

3.3. Centralized integration and long-term storage in
the cloud

Once data reaches the cloud, it undergoes the following
centralized integration and long-term storage:

1) Data de-duplication: The cloud servers eliminate duplicate entries
created because of a single [oT device or the same packets to ensure
clean and consistent data is made available for analysis.
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2) Data convergence and historical consolidation: End-to-end view
of every patient’s status, as new data converges on the cloud with
existing history.

3) Advanced analytics and machine learning processing: The
aggregated data in the cloud servers helps create predictive models,
conduct longitudinal analysis, and streamline the provider’s
clinical decision-making process. Subsequently, the models guide
interventions, assisting the providers to predict and manage chronic
conditions.

3.4. RBAC and security management

We always consider security as a top priority in telehealth IoT
data integration. The system applies both RBAC and additional controls
to ensure the confidentiality and integrity of data as follows:

1) Access control policies: People access the information in the system
based on their role and permissions as per the organization. For
example, doctors can access the records, while the admin can access
the billing data [20].

2) Audit trails and logging: Data transactions of all kinds provide an
audit trail of who accessed, changed, or sent the information to
ensure greater accountability for compliance.

3) Security audit: Continuous auditing or vulnerability scanning
investigates risk factors and response at all levels, including [oT
devices, fog nodes, and cloud infrastructure.

3.5. Performance monitoring and adaptive
optimization

Data integration parameters are dynamically adjusted because
the system periodically monitors performance metrics, such as latency,
data rate, and error rates:

1) Adaptive sampling rates: To provide energy usage and constant
operation, it dynamically modifies the sample rate based on network
state and battery drain from the device.

2) Load balancing: To avoid bottlenecks and give a smooth flow of
data, traffic will be dynamically distributed between fog nodes and
cloud servers. Periodically, load balancing algorithms redistribute
data processing operations between underutilized nodes.

4. Knowledge Extraction Techniques

Telehealth IoT systems often produce massive volumes of
patient data that need to be analyzed to derive insights for treatment,
intervention, or monitoring—something that, if not done in a timely
manner, leads to real-life consequences. In this system, knowledge
extraction techniques use ML algorithms to analyze the incoming
traffic, interpret outgoing data packets, and analyze how they flow
through the network. Implementing these algorithms at the fog node
level enhances the processing of requests in real-time, reducing
latency and maximizing resource utilization. Knowledge extraction is
composed of three key components: supervised learning for predictive
health outcomes, unsupervised learning for anomaly detection, and
contextual data analysis to enhance accuracy.

4.1. Supervised learning models for health outcome
prediction

Supervised learning models use labeled training data to predict
patient health outcomes, enabling the system to provide early warnings
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for potential health issues. The implementation process involves the
following steps:

1) Data labeling and model training: The system is trained on historical
data about patients, including serious and nonserious health events
(such as heart attack, hypertension episodes, or just normal). Well-
known models are logistic regression, decision trees, and support
vector machines for binary classification problems. More complex
models, such as a deep neural net, can be used further for multiclass
predictions. For instance, you can use a heart rate dataset that is
labeled “normal” and “abnormal” to train a model to predict
arrhythmias.

2) Model deployment at fog nodes: The trained models are deployed
on the fog nodes that are near IoT devices. It tells you the purpose,
deploy locals, and they can call how you analyze all health metrics
and eliminate delay, and it also sets the way to maintain patient
urgency. As an example, a deployed model can monitor a patient’s
heart rate continuously and notify a healthcare provider if it detects
signs related to a heart attack.

3) Periodic model refitting and updates: With the accumulation of
new data, models are periodically refitted in the cloud to grow in
accuracy and follow future health trends. Subsequently, new models
are repurposed and redeployed to fog nodes to remain relevant and
accurate in prediction over time.

4.2. Unsupervised learning for anomaly detection

To detect unusual patterns, we use unsupervised learning
techniques that do not need labeled data. Unusual patterns in the
measurements can be indicative of adverse health problems worthy of
follow-up or intervention, such as follows:

1) Baseline health pattern clustering: The system clusters patient data
into clusters, k-means, for example, representing “normal” health
patterns of the population regarding a certain disease. For instance,
the average heart rate and blood pressure readings for individuals
within a specific age group can be grouped together in establishing a
baseline. Whenever new data points fall way off from these clusters,
they are flagged by the system as potential anomalies [21].

2) Anomaly scoring and threshold setting: Once the clustering process
is complete, each incoming data point will be granted an anomaly
score, which, in essence, is the distance of the data point from its
nearest cluster center. A data point will be considered abnormal if
its anomaly score crosses a certain preset threshold. These limits are
personalized based on the potential health risk each kind of anomaly
could pose. To give another example, it would be a given difference
of impact, where a major deviation of blood oxygen would contrast
with the small changes in heart rate.

3) Real-time anomaly detection and alerts: The anomaly detection
model will continuously scan the data at the fog node level and
therefore will be able to detect unusual patterns as and when they
arise. As soon as the anomaly is detected, an alert is triggered
immediately to healthcare professionals, thereby enabling immediate
follow-up or emergency response if needed.

4.3. Contextual data analysis for improved accuracy

To obtain better prediction accuracy, contextual data analysis
thinks of extrinsic factors—behavioral and environmental data—
influencing a patient’s health. Based on these context-aware factors, the
system can reduce false alarms and provide more detailed information,
such as follows:

1) Integrating environmental data: A set of environmental data
includes air quality, temperature, and humidity-all are vital for
health. Consequently, especially in patients suffering from chronic
respiratory ailments, the system would have them provided via
either sensors placed nearby or weather services, upon which it
feeds to perform further analyses. If, say, air quality levels remain
at unsatisfactorily high or low levels, for example, it may reset the
respiratory rate threshold for triggering baseless alarms.

2) Behavioral data collection: Behavioral factors also have significantly
affected health outcomes, such as the level of physical activity, sleep
patterns, and drug adherence. They can be collected via wearable
sensors or mobile applications at the fog level.

3) Context-aware modifications in machine learning models:
Supervised and unsupervised models are presented with contextual
data through the addition of feature variables of environmental and
behavioral context. This will enable the models to understand the
health data in the context of the patient and adjust the algorithm’s
prediction. For example, a spike in heart rate after exercise will not
be identified as an anomaly when the context variable recognizes
recent exercise.

4.4. Knowledge extraction workflow in fog nodes

The knowledge extraction workflow at the fog node level includes
a structured sequence of data preprocessing, model inference, and
context-aware analysis to generate real-time insights, such as follows:

1) Data preprocessing: Cleaning, normalization of the received health
data, and transforming them into a machine learning model format
usable could include noise removal or scaling data, among others, to
address missing values.

2) Model inference and analysis: The preprocessed data will
subsequently be fed into deployed supervised and unsupervised
models. Supervised models will predict some of the health outcomes,
for example, risk for hypertension, while unsupervised models will
determine unusual patterns in the data. The models will work in real
time to support continuous monitoring.

3) Contextual adjustment: It is attained by adding contextual data to the
analysis after initial model inference to fine-tune the predictions of
the model. It comprises model output adjustment for environmental
and behavioral contexts that help eliminate false positives and
increase the relevance of insight.

4) Alert generation and escalation: The fog node will trigger an alert
when it detects a critical health threat or abnormality. The alerts will
be ranked based on the severity of the condition detected and passed
on to the cloud for further processing or to medical personnel for
immediate action.

4.5. Continuous model evaluation and feedback loop

The system includes a continuous evaluation and feedback loop,
thus ensuring the effectiveness of knowledge extraction techniques over
time, such as follows:

1) Performance monitoring: Fog nodes monitor the performance
of models, based on metrics such as the accuracy of predictions,
false positive rates, and response times for alerts. This information
is reported back to the cloud for collective analytics and model
improvement.

2) Incorporation of user feedback: Feedback is given by the medical
experts and the patients about the alerts and predictions generated
by the system. This helps to determine trends in false positives
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or missed alerts, based on which refinement is additionally
performed.

3) Model retraining and deployment: Based on performance analysis
and feedback, machine learning models are retrained periodically on
the cloud. The updated models are then redeployed to the fog nodes
to update the system with new data for high accuracy.

5. Data Application in Real-World Scenarios

The information drawn from the patient’s data in telehealth IoTs is
being implemented in different areas to assist clinical decision-making,
energy optimization, and also to provide the patients and caregivers
with the right information regarding their health status. Applications
for real-time data improve the quality of care, shorten response times,
and facilitate proactive management of chronic conditions. Considering
this, the following points are the key telehealth data applications, how
they are implemented, and what benefits they provide.

5.1. Clinical decision support systems

Clinical decision support systems (CDSS) are very important to
telehealth by providing healthcare professionals with real-time insights,
and they help with diagnosis, treatment planning, and monitoring.
Deploying CDSS involves the following steps:

1) Predictive model and alert integration: The CDSS will implement
predictive models on the fog nodes to analyze live data from the
patients to identify risks such as abnormal heartbeats, struggling
breathing, or indicators of high blood pressure. Upon identifying
an unfavorable pattern, this system will create an alert for
immediate evaluation of the patient’s condition by the medical
professionals.

2) Risk prioritization and stratification: The system stratifies patients
into high, moderate, or low risk based on patterns in the data from
machine learning models. The system will provide prioritized alerts
for high-risk patients and check up with lower-risk patients at a more
periodic interval. This stratification enables providers to manage
large patient populations by prioritizing those who have the most
urgent need.

3) Evidence-based decision support protocols: The CDSS contains a set
of evidence-based clinical protocols covering common conditions,
including diabetes, heart disease, and respiratory disease. It would
cross-reference each health alert against these protocols to create
potential suggested interventions. For example, if the system
identifies that an asthma attack is about to happen, the CDSS might
suggest medication adherence or inhaler use, or even suggest an
immediate consultation.

4) Data presentation-visualizations and trend analyses: The CDSS will
develop graphical visualizations, and it will chart trends over time
in individual patients for blood pressure, glucose levels, or other
indicators of physical exertion. These analyses allow healthcare
workers to make more proper choices for care adjustments, based
on changes that they observe in their respective patients’ conditions.

5.2. Adaptive energy management techniques

IoT devices in telehealth platforms are usually always on, calling
for energy management for sustaining device functions and extending
battery life. Dynamic energy management mechanisms optimize energy
use based on data analysis and usage patterns of devices, implemented
through the following methodologies:

1) Dynamic sampling rate adjustment: Power is saved by dynamically
adjusting the sampling rate of data depending upon the activity of
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the patient and the state of the device. A sample would be when
the patient sleeps—a low-activity mode—then the heart monitor
would reduce its sampling rate to save battery life. When the patient
is active or on abnormally high readings, the system increases the
sampling rate for observing more closely.

2) Power level-based scheduling of tasks: IoT devices and fog nodes
schedule tasks based on their power level. High-energy-consuming
tasks, such as encrypting data and sending large data, are scheduled
when the device is charging. Low-power optimizations are triggered
if the battery level goes below a certain threshold and limit functions
to main roles.

3) Edge processing and reduced data transmission: Instead of sending
all raw data to the cloud, the heavy power consumption by devices
in sending data can be eliminated. Important processing occurs at
the fog nodes themselves while accomplishing the initial processing
locally for anomaly detection and sending only meaningful results/
alerts to the cloud. This reduces the frequency as well as volume of
data on the network.

4) Predictive maintenance alerts: The system monitors metrics on
device performance, such as battery health and data processing
speed, such that we can evaluate when maintenance or replacement
of the battery may be required. Predictive maintenance alerts can
be used to avoid unexpected downtime, thereby safeguarding the
smooth operation of the monitoring devices without an abrupt loss
of power.

5.3. Patient dashboards and caregiver portals

Patient dashboards and caregiver portals present health
information in a clear, actionable manner. These interfaces allow
patients and their caregivers to monitor health metrics, manage care
routines, and respond to health alerts. Some of the key features of these
dashboards include the following:

1) Simple health metrics and visualizations: Dashboards of patients
are visualizations with easy-to-read graphs and color indicators for
complicated health metrics in simple, readable formats. For example,
trend lines on a daily, weekly, or monthly basis can represent the
heart rate, glucose level, or blood pressure of a patient for trends that
one needs to discover in his/her health data.

2) Customized health alerts and notifications: The dashboards also have
an embedded notification system that draws, in real-time, critical
health events or trends to the notice of the patients or caregivers
who must take action. As an example, for threshold levels of blood
glucose, the dashboard can raise an alert for the patient to take
medicine or call their health practitioner.

3) Educational resources and self-management tools: Dashboards
include educational content on chronic disease management,
lifestyles, and medication reminders. For instance, high blood
pressure patients can be advised on what diet and exercise habits to
adopt in accordance with their condition, thus making them more
interested in taking proper care of themselves.

4) Integration with telemedicine services: Telemedicine websites
manipulate the dashboards where patients can schedule online
appointments, access medical records, and message providers. This
integration will also improve the continuity of care as the patient can
discuss their health information remotely with providers and receive
personal recommendations.

5.4. Data-driven personalized care plans

As per the individual patient data analysis, the system designs
customized care plans targeted at each patient’s condition of health,
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physical activity level, and medical history. The steps for the
implementation of data-based care plans include the following:

1) Investigate patient-specific patterns of health: Individual data and
past patterns are continuously monitored, enabling the system to
investigate individualized health patterns. For example, if a patient
continues to have high blood pressure in the morning, his or her care
plan can obtain specific recommendations for morning-time activity
or stress-reduction strategies.

2) Adaptive goal setting: Treatment interventions will adjust the
patient’s goals, be it the number of steps taken, calories expended,
or medications, and update them based on recent health information.
When the patient can reach the set amount of physical exercise,
for instance, the system increases targets to encourage further
enhancement.

3) Reminders and behavioral guide: Care plans include reminders for
healthy habits. These remind patients to stick to actions that promote
health goals, such as taking medication at the appropriate time or
gentle exercise.

4) Continuous improvement: Patient feedback and health information
are tracked over time to continually change care plans. For example,
if a patient determines that an exercise target is too difficult to
follow, the system automatically adjusts the care plan to include
fewer demanding activities-a change that makes the probability of
the patient’s compliance with the care plan and incremental progress
toward it more achievable.

5.5. Continuous evaluation and outcome tracking

The patient outcomes can be evaluated by the Telehealth system
and modified applications to improve effectiveness, such as follows:

1) Health outcome monitoring: The system tracks significant health
indicators to measure the effectiveness of interventions in care by
recording the extent of change over a given period.

2) Data-driven changes: The system provides evidence-based care
recommendations and monitoring protocol changes according to
ongoing outcome monitoring. For instance, when a patient’s health
outcomes are enhanced because of medication compliance, the
system will make medication compliance a core element of the care
plan.

3) Healthcare provider reporting: The system produces reports
summarizing patient progress, guideline adherence for care, and
trends in health metrics. Healthcare providers use the reports to
discuss patient status during visits and alter treatment accordingly.

6. Methodology and Simulation Data

These simulations were made in Python-based IoT data
processing environments, including libraries for machine learning with
TensorFlow and simulation modeling with SimPy. Simulated fog nodes
with edge computing parameters emulating Raspberry Pi devices and
cloud servers emulating Amazon AWS configurations were used. The
IoT data are synthetically generated to include diverse patient metrics,
including heart rate and glucose level, emulating real-world healthcare
settings.

A simulation-based approach is employed in evaluating the
performance and efficiency of the proposed telehealth IoT system. The
simulation emulates various telehealth scenarios of real-time patient
monitoring, data transmission between [oT devices, fog nodes, and cloud
storage. The key performance metrics, such as energy consumption,
latency, data processing rates, and data accuracy, are calculated and
compared for various configurations. The simulation includes multiple
iterations and statistical calculations for strong and reliable results.

6.1. Step-by-step methodology

6.1.1. Define simulation scenarios
The following two configurations are tested:

1) With fog integration: Data is processed locally at fog nodes before
being transmitted to the cloud.

2) Without fog integration (cloud-only): Data is directly transmitted
from IoT devices to the cloud.

Those two scenarios simulate data collection, processing, and
transmission based on a telehealth environment.

6.1.2. Data collection

1) Simulate data from virtual IoT devices representative of patient
metrics, such as heartbeat rate, blood pressure, temperature, and
level of blood glucose.

2) Synthesize data from a continuous monitoring period of 24 hours,
sampled every minute, to simulate real-time monitoring.

3) Perform the simulation with different patient loads (e.g., 10, 50, and
100 patients) to assess system scalability.

6.1.3. Data aggregation and processing at fog nodes

1) Inthe fog-enabled scenario, IoT data is preprocessed and aggregated
at fog nodes.

2) Local machine learning models are applied to perform initial
analysis, such as anomaly detection and trend identification, before
data is sent to the cloud.

6.1.4. Data transmission and compression

1) Data is compressed at the fog nodes to decrease transmission load.
2) Inthe cloud-only scenario, data is transmitted without preprocessing,
so higher network load and latency is produced.

6.1.5. Measurement and calculation of metrics

1) Energy consumption: The energy consumed by IoT devices, fog
nodes, and cloud servers.

2) Latency: Record time taken from data collection at the IoT device to
processing completion in the cloud for each configuration.

3) Data processing speed: Calculate the rate of data processed per
second at fog nodes and cloud servers.

4) Data accuracy: The accuracy of the prediction by machine learning
models to detect anomalies as per the predetermined threshold.

6.1.6. Statistical analysis

1) Perform statistical analysis on the results from multiple iterations
(e.g., 30 runs per scenario) to ensure consistency.

2) Calculate mean, standard deviation (SD), and confidence intervals
(CIs; 95%) for each metric to understand the reliability and
variability of the system performance.

6.1.7. Result comparison and evaluation
Compare results between fog-enabled and cloud-only scenarios to
identify improvements in efficiency, energy savings, and data accuracy.

6.2. Simulation overview for energy-efficient telehealth
IoT with fog-cloud integration

Our simulation is designed to test the performance and efficacy
of a telehealth IoT model under two conditions: with onboard fog nodes
used for local processing and with cloud-based processing. It aims
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at measuring how the integration of fog computing impacts critical
parameters such as energy consumption, latency, processing time, and
data quality. The simulation process step-by-step is shown below.

6.2.1. Define simulation scenarios
The following two configurations are defined:

1) Fog-enabled configuration: In this, data from IoT devices is
processed first at local fog nodes and then forwarded to the cloud.
This minimizes network latency and load by processing data closer
to the source.

2) Cloud-only configuration: In this configuration, the data is transmitted
from IoT devices to the cloud without local preprocessing. This
configuration is utilized as a baseline for the comparison of the
impact of fog computing.

All configurations are tested under the same conditions to enable
uniform comparisons.

6.2.2. Simulate collection of patient data

For each setup, there will be synthetic data representing patient
measurements. These include heart rate, blood pressure, temperature,
and blood glucose levels. This is collected over some given monitoring
time, say 24 hours, and sampled at one-minute intervals.

This simulation utilizes various numbers of patients—for
example, 10, 50, and 100—to test the scalability of the system. In all
the cases, each patient’s metrics are simulated in a continuous fashion
to simulate real-time monitoring as would happen in a real-world
telehealth scenario.

6.2.3. Data aggregation and initial processing

Fog nodes can process the data from IoT devices locally when
the fog-enabled configuration is set. This involves basic aggregation,
where data is organized, and initial analysis using machine learning
algorithms for tasks such as anomaly detection and trend identification.
This helps reduce the amount of data that needs to be transmitted to the
cloud and provides real-time insights at the fog nodes.

Data is transmitted directly to the cloud without any local
processing when the cloud-only configuration is set, which puts more
load on the network and increases latency since all data is processed
remotely.

6.2.4. Data transmission and compression

To handle network load in an efficient manner, in the fog-enabled
setup, the data is compressed at the fog nodes before sending it to the
cloud. The compression reduces transmission time and lessens the
demand on the network.

In the cloud-only approach, the raw data is delivered without
compression. It shows us an additional burden that is put on the network
in the absence of any local pre-processing.

6.2.5. Measure and calculate key performance metrics
In each of these configurations, the following four key metrics
are measured:

1) Energy consumption: This is the amount of energy used by loT
devices, fog nodes, and cloud servers in collecting, processing, and
transmitting data. This metric helps determine how energy-efficient
each setup is.

2) Latency: Latency is the time required from the collection of data
by an [oT device to the completion of processing in the cloud. For
real-time applications, it is vital that this latency be minimized,
and that fog will reduce this metric compared to cloud-only
processing.

3) Processing speed: This is a measure of the speed of data processing,
usually measured in kilobytes per second. Data is processed both
locally and in the cloud in the fog-enabled configuration; thus, it
should improve the processing speed due to load distribution.

4) Data accuracy: As machine learning models are applied in the
system, data accuracy signifies the degree of precision in detecting
anomalies or trends in the patient metrics. It is expected that higher
accuracy will be achieved from a fog-enabled configuration due to
real-time analysis closer to the data source.

6.2.6. Statistical analysis of results

For reliability, each simulation configuration is run several times;
for example, 30 runs per scenario. For each metric, statistical analysis
is done to compute the following:

1) Mean (average value) and SD: These show the consistency of the
results.

2) 95% CI: This measures the reliability of the metric results across
different simulation runs.

These statistical values help assess the performance of each
configuration under varying conditions, accounting for potential
fluctuations.

Step 7: Result Comparison and Evaluation

Finally, all metrics shown in Table 1 are compared between
the fog-enabled and cloud-only configurations. The mean values
from each metric in the fog-enabled configuration are compared with
its counterpart from the cloud-only configuration to determine the
percentage improvement added by including the fog. These will enable
us to quantify the advantages of fog computing in terms of energy
savings, latency reduction, processing speed, and data accuracy.

Given the results of the simulations, the results demonstrate a
comprehensive evaluation of the performance of the telehealth IoT
system for different configurations and clearly demonstrate the benefits
of real-time integration with fog, energy-efficient telehealth IoT
systems. This evaluation offers insight into upscaling to efficient energy
and responsive telehealth infrastructures.

6.3. Simulation data matrix with statistical analysis

1) Energy usage (shown in Figure 1): With fog integration, energy
consumption reduces by approximately 30%, improving the local

Table 1
Simulation data matrix with fog and without fog

Metric

With fog integration (mean + SD)

Without fog (mean = SD)

Energy consumption
Latency (ms)
Data processing speed (kb/s)

Data accuracy

110 kWh £ 5.5 (95% CI: £10 kWh)
30 ms + 2.1 (95% CI: £4 ms)

60 kb/s + 3.2 (95% CI: +6 kb/s)
96.5% + 1.2% (95% CI: £2%)

160 kWh + 6.8 (95% CI: £12 kWh)
85 ms + 5.4 (95% CI: £10 ms)

30 kb/s 2.7 (95% CI: £5 kb/s)
88.2% + 1.8% (95% CI: +3%)

Note: CI = confidence interval, SD = standard deviation.
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Figure 1
Comparison of latency and energy consumption
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2) Latency (shown in Figure 1): With the fog-enabled setup, latency is
significantly decreased to 30 ms on average, compared to 85 ms in
the cloud-only setup.

3) Data processing rate: Data processing is quicker with integration in
fog at a mean of 60 kb/s.

4) Accuracy of information: Prediction accuracy for anomaly detection
remains greater in the fog setup, suggesting more accurate real-time
data.

6.4. Data flow diagram

The data flow diagram (shown in Figure 2) and the Health [oT
system 3D structure (shown in Figure 3) represent the flow of patient
health data from IoT devices through the fog layer to the cloud in
the proposed telehealth IoT system. The diagram demonstrates data
preprocessing, local analysis at fog nodes, and the final data storage and
analysis in the cloud.

7. Results

The simulation results show significant improvements in the
performance of telehealth IoT systems as fog computing is integrated
into the system. We give the specific results observed in terms of energy
consumption, latency, data processing speed, and accuracy, followed by
an in-depth discussion of the implications and potential applications of
these findings as follows:

1) Energy consumption: In the fog-based configuration, energy
efficiency was enhanced by approximately 20% when compared
to the cloud-only configuration. This is a result of the distributed
nature of processing, where the data is partially processed at
geographically close fog nodes rather than transmitting all raw
data to the cloud. Through minimizing the amount of data that is

Figure 2
Data flow in energy-efficient telehealth IoT-cloud system
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pushed to the cloud, the fog nodes lower the network transmission
loads, which in turn lowers energy consumption by IoT devices
(less communication) and cloud servers (less amount of data
being processed). This energy efficiency is particularly relevant
for wearable and mobile IoT devices, which are normally
battery-constrained. Demand reduction of energy is one of the
sustainability goals, with potential cost savings and environmental
gains, especially on scale.

2) Latency: The fog-based setup lowered latency by 50% compared
to the cloud-only setup. The model allows time-critical data to be
processed and responded to within near-real time by processing
the data locally in fog nodes. This reduction in latency is highly
essential in emergency response cases or in applications that require
constant monitoring, such as chronic disease patients or intensive
care. With an all-cloud configuration, information must travel to and
from distant servers, and with this comes latencies that can impact
patient outcomes. Reduced latency in fog-based systems improves
patient safety and results in more suitable telehealth IoT systems
for real-time health monitoring, particularly in crisis environments
where timely intervention can be the difference between life and
death.

3) Data processing speed: The fog-enabled setup also showed a
significant increase in data processing speed, with an average
processing rate almost twice as high as that of the cloud-only
configuration. Because fog computing is distributed, it can process
information in parallel at local nodes, further enhancing the system’s
ability to handle volumes of data all at once. The corresponding rise
in processing speed pays rich dividends when many IoT devices
are up and running or high-volume data from sophisticated sensors
is processed, such as imaging devices or electrocardiograms. By
handling this stream of data locally, the fog-based model has shown
much resilience to failures and, therefore, scalability, thereby better
preparing it for high-demand telehealth settings.

4) Data accuracy: By integrating machine learning algorithms within
the fog nodes, the fog-based model also demonstrated higher data
accuracy for anomaly detection of patient metrics. The model
achieved an accuracy of 96.5% in detecting anomalies, compared
to 88.2% in the cloud-only case. Processing data closer to the edge
not only reduced latency but also facilitated faster feedback loops,
with more effective machine learning-based analysis. The increased
accuracy is most likely to improve clinical decision support since
it allows clinicians to have confidence that the inferences from IoT
data are timely and accurate. For patients who need continuous
monitoring, increased accuracy allows for early detection of
complications, enabling active intervention.

8. Discussion

During the provision of treatment in emergency settings, low
latency enables instant clinical response with a fog-based framework
for instances such as cardiac arrest or major hypoglycemia. In low-
resource settings where network connectivity is poor, local processing
of health data through fog computing continues with only occasional
network connectivity for the purpose of monitoring. This autonomy
continues with clinical interventions in the continuity of care, where
internet availability is minimal.

The results validate that fog computing is efficient for the
performance enhancement of telehealth IoT systems. The implication
of this is gigantic in the case of upcoming health systems, particularly
on the following grounds:

1) Scalability and efficiency of resources in healthcare systems: Speed
and energy efficiency in fog computing equate to telehealth [oT
systems being more sustainably scaled. This is highly significant,
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considering the rising demand for remote healthcare services. With
the effective use of the available resources, healthcare providers
can scale telehealth services without equally increasing energy
and computation demands, which can render the operation more
affordable and serve more patients effectively.

2) Real-time responsiveness in time-sensitive care: The fog-based
model can significantly reduce latency, which has been shown in
time-sensitive medical applications such as emergency services
and intensive care units. Data processing and response times have
affected patient outcomes in these environments. Reducing latency,
fog-enabled telehealth [oT systems can provide feedback in real
time, thus enabling timely clinical decisions and improving patient
safety. Such responsiveness is critical for those conditions that
demand ongoing monitoring and real-time intervention, such as
cardiac arrhythmias or acute blood glucose levels.

3) Improved access in resource-constrained environments: Fog
computing has a unique advantage in resource-constrained
environments, such as rural or remote areas, where network
connectivity is poor. The data can be processed locally through fog
nodes, which reduces the demand for continuous cloud connectivity
and permits basic health monitoring and diagnostics to persist even
with sporadic network connectivity. This autonomy makes fog-
based telehealth systems more resilient in resource-poor areas, thus
enhancing healthcare access disparities and reducing the burden on
centralized healthcare facilities.

4) Support for predictive and preventive healthcare: Integration of
machine learning with fog nodes enables a platform for predictive
and preventive medicine. Fog-based systems have the potential
to track health trends ahead of time by enabling faster, local
processing of patient data, thereby allowing proactive healthcare
interventions. This capacity is especially valuable in chronic
condition management, where the early detection of adverse trends,
that is, rising blood pressure or abnormal heart rate patterns, equals
early intervention that reduces hospitalization and improves patient
quality of life.

5) Sustainability and environmental impact: This would also contribute
toward broader sustainability goals due to reduced energy
consumption by the fog-based system. As environmental awareness
and sensitivities grow in healthcare, this makes energy-efficient
models, such as fog computing within telehealth systems, assist
the sector in meeting its growing environmental responsibilities.
Such reductions in energy automatically convert to cost cuts, hence
making telehealth cheaper and more accessible over time.

9. Conclusion

This article will exhibit the performance, efficiency, and
reliability of a telehealth IoT application on a fog-cloud hybrid
infrastructure. The proposed model integrates data preprocessing and
analysis at the fog nodes, which resolves some of the most essential
issues in telehealth pertaining to latency, energy efficiency, and data
precision. Simulation results have validated that the fog-enabled model
outperforms the traditional cloud-only architecture for the majority of
the key performance indicators. In particular, the fog model reduced
energy consumption by 20%, latency by 50%, and improved the speed
of data processing and the accuracy of anomaly detection. These
improvements point to the advantage of localizing processing where
real-time aggregation, anomaly detection, and data compression are
performed by fog nodes with minimal workload on cloud servers and
optimized response times.

It mainly explores the promise of integrated loT, fog computing,
and machine learning for scalable telehealth systems. The fog-cloud
infrastructure forms the basis of the sustainability and scalability of
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telehealth infrastructures through the embracement of adaptive data
integration approaches, real-time knowledge extraction approaches, and
efficient means of using data. These findings therefore justify further
research and large-scale application of the fog-cloud architecture in
telehealth, and more so in applications where real-time continuous
monitoring of patients is highly needed. Areas of future research can
extend this work by considering more advanced machine learning
algorithms, assessing the scalability of the system with additional
patients, and determining the performance of the model in various
healthcare settings.

10. Future Research Directions

The future research can involve hybrid Al techniques, such as
federated learning combined with reinforcement learning, which could
improve diagnostic performance without sacrificing data privacy.
Secondly, multimodal data compatibility, for instance, medical
imaging and genomic sequences, could provide end-to-end views of
patient health. Scaling up is the other groundbreaking bottleneck, and
deployment of fog-cloud systems needs to be tried and tested in large
networks, particularly in smart city healthcare systems.

Considering the outcome of the research on energy-efficient
telehealth IoT systems in a hybrid fog-cloud model, some potential
directions of future research could include enhancing the functionality,
scalability, and personalization of these models for applications that are
telehealth-relevant, such as follows:

1) Hybrid Al-based diagnosis: Future research may integrate various
machine learning techniques, including natural language processing,
deep learning, and reinforcement learning, into hybrid Al systems
that would enhance the current diagnostic services offered by the
fog-cloud telehealth system. Through the implementation of a
hybrid model, it is hoped that complex health information may be
given meaning in real time, hence leading to a more comprehensive
and precise diagnosis specific to the individual profile of each
patient.

2) Diversification across different data types: Diversification of
integrated information to other data types, such as imaging data-for
instance, X-rays and MRI data-genomic data, or even behavioral
measures-might improve understanding of patient health status.
Future studies could focus on activating integrative systems that
analyze a broad range of data sources to support high-resolution
health patterns and potential for early intervention. In addition,
with increasing varieties of data, telehealth IoT systems could
support progressively higher and more complex clinical data for
personalized care.

3) Scale up in large telehealth networks: As fog-cloud systems are
attracting more attention, research needs to focus on scaling these up
for large telehealth networks, particularly in rural and underserved
areas. Future research in this area may investigate edge computing
platforms and distribute artificial intelligence systems that can reduce
latency and provide faster response times even in high-demanding
environments. This is critical for scalable, dependable, resource-
efficient healthcare solutions so the system can accommodate
diverse increases in patient loads.

4) Increased device compatibility: The flexibility of the system and
its applicability to a broad range of healthcare situations could
be increased through testing it on a larger variety of healthcare
devices, such as biosensors, implanted devices, and new wearable
technologies. Device-compatible telehealth systems that had
compatibility with multiple devices could monitor beyond simple
measures of health and would have insight into more types of
patient issues. In the fog-cloud model, future work might include
the creation of interoperability standards and protocols that can

accommodate many types of devices with secure, low-latency
communications.

5) Combining advanced machine learning models: A healthcare loT
system can provide real-time insights while preserving data privacy
can be improved with the addition of sophisticated machine learning
models, such as federated and transfer learning. Federated learning
can improve security and privacy through the ability to facilitate
learning over numerous sources without the data being stored at
the center. Moreover, health professionals would be able to better
comprehend and embrace Al-driven advice to make better clinical
and adoption decisions if explainable Al were utilized.

6) Greater personalized healthcare solutions: Currently, telehealth
is all about personalization; the health needs and responses are
individualized to each one of them. Further work can be done to
develop adaptive algorithms that, other than providing diagnostic
feedback and recommendations, are customized to the specific health
profile of each of them, with consideration for disease histories,
genetic predisposition, and lifestyle. Individualized solutions can,
in this way, enable even more accurate and effective interventions
that are more aligned with the general purpose of patient-centered
care in telehealth.

7) Longitudinal health outcomes studies: Finally, longitudinal studies
can be established to find out the long-term effects of fog-cloud
telehealth systems on patient outcomes, that is, disease management
of chronic diseases. Observing the effectiveness of these systems
over time, one would be able to analyze trends of patient participation
and health outcomes, and how these systems would finally perform
in serving towards their utilization. These will offer even more
detailed information for improving the design to accommodate
continuous improvement in health service delivery.
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