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Abstract: Precise segmentation of residual tumor in breast cancer (PSRTBC) after neoadjuvant chemotherapy is a fundamental key technique in
the treatment process of breast cancer. However, achieving PSRTBC is still a challenge, since the breast cancer tissue and tumor cells commonly
have complex and varied morphological changes after neoadjuvant chemotherapy, which inevitably increases the difficulty to produce a
predictive model that has good generalization with usual supervised learning (SL). To alleviate this situation, in this paper, we propose an
experts’ cognition-driven safe noisy label learning (ECDSNLL) approach. In the concept of safe noisy label learning, which is a typical type
of safe weakly SL, ECDSNLL is constructed by integrating the pathology experts’ cognition about identifying residual tumor in breast
cancer and the artificial intelligence experts’ cognition about data modeling with provided data basis. Experimental results show that,
compared with usual SL, ECDSNLL can significantly improve the lower bound of a number of UNet variants with 2.42% and 4.1%
respectively in recall and fIoU for PSRTBC, while being able to achieve improvements in mean value and upper bound as well.
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1. Introduction

Residual tumor in breast cancer (RTBC) indicates the tumor that
still remains in breast cancer tissue after neoadjuvant chemotherapy,
which is an important iatrotechnique in the breast cancer treatment
process [1–4]. Commonly, RTBC is associated with invasive ductal
carcinoma in which tumor has spread into surrounding breast tissue.
Quantitative evaluation of RTBC can provide clues important to
prognosis and subsequent therapy of breast cancer [5, 6]. The key
point of quantitative evaluation of RTBC is to achieve precise
segmentation of RTBC (PSRTBC), which is a fundamental key
technique in the treatment process of breast cancer, such as being
leveraged to calculate the tumor-stroma ratio that has been proven
to be a prognostic factor in breast cancer [7].

Whole sliding imaging (WSI) [8], which was previously referred
to as virtual microscopy, involves scanning a pathology glass slide into
digital image at high resolution and displaying the digitalized image on
a computer screen [9, 10]. WSI has provided the foundation for the

development of digital pathology [11, 12], which enables machine
learning techniques, such as deep learning (DL) [13] (mostly deep
convolutional neural networks [14–18] and transformers [19–26], to
be carried out for various medical image-based evaluations. In recent
years, based on WSI, a number of DL-based image semantic
segmentation solutions have been proposed for precise segmentation
of tumor in breast cancer (PSTBC) of pre-treatment biopsy [27–31].
However, as the breast cancer tissue and tumor cells commonly have
complex and varied morphological changes after neoadjuvant
chemotherapy [32], it is more difficult to achieve PSRTBC than
PSTBC. The fact that the task of PSRTBC is more difficult than the
task of PSTBC has been qualitatively confirmed by pathology
experts in their daily diagnosis process. Meanwhile, our recent work
[33] has also qualitatively proven this fact, as the generalization of
the predictive model for PSRTBC was worse than the generalization
of the predictive model for PSTBC. As a result, achieving PSRTBC
is still a challenge demanding prompt solution.

To alleviate this situation, in this paper, we propose an experts’
cognition-driven (ECD) safe noisy label learning (SNLL)
(ECDSNLL) approach, which integrates the pathology experts’
cognition and the artificial intelligence experts’ cognition in a
SNLL paradigm to construct an automatic system for PSRTBC.
SNLL concerns about the situation where both noisy data (ND) and
noisy-free data are leveraged to evolve a predictive model [34]. The
proposed ECDSNLL approach has three novel innovations:
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(1) Proposing problem-conscious labeling techniques that take into
account the pathological experts’ cognition about identifying
RTBC, which results in a large amount of noisy data (LAND) and
a small amount of noisy-free data (SANFD) to more effectively
describe RTBC; (2) Establishing a two-stage cascade learning
paradigm (TSCLP) that takes into account the artificial intelligence
experts’ cognition about data modeling, which first guarantees the
high recall of the target based on a ND and then promotes the
precision of the target based on a noisy-free data (NFD) to
effectively achieve better performance in prediction corresponding
to the target; (3) Constructing a new approach naturally in the
concept of SNLL to more effectively achieve PSRTBC, by
integrating the pathological ECD LAND and SANFD, and the
artificial intelligence ECD TSCLP based on the data basis of ND
and NFD. Regarding to its three novel innovations, the proposed
ECDSNLL approach is different from the existing work [35] that
realized SNLL in the ensemble learning paradigm [36–39] and the
related works that realized DL-based predictive models based on
separate noisy-free data [27, 30, 31] or separate ND [28, 33, 40, 41].

That the pathological experts’ cognition is referred to produce the
data basis of LAND and SANFD is because pathological experts know
how to effectively describe RTBC. That the artificial intelligence
experts’ cognition is referred to produce the TSCLP learning
paradigm with the provided data basis of ND and NFD is because
artificial intelligence experts know how to effectively achieve better
performance in data modeling. That the pathology ECD LAND and
SANFD and the artificial intelligence ECD TSCLP based on the data
basis of ND and NFD are integrated to construct the ECDNSLL
approach for PSRTBC is because LAND and SANFD naturally fit
the data basis of ND and NFD required by TSCLP in the concept of
SNLL. More detailed explanations about the three innovations of
ECDSNLL can be found in the first subsection of Section 3.

Besides our previous exploration on achieving PSRTBC via
noisy label learning with diverse noisy samples [33], as far as we
know, this paper is the first to particularly address the challenge
of PSRTBC via safe noisy label learning with both noisy and
noisy-free samples. Apart from the primary contribution which is
the proposed ECDSNLL approach for PSRTBC, this paper has
following additional contributions: Implementation and evaluation
of ECDSNLL for PSRTBC with samples of whole slide imaging;
Production of a predictive model for PSRTBC with samples of
whole slide imaging; Testing the domain generalization of the
produced predictive model for PSRTBC under microscope scenario.

2. Literature Review

In this section, we briefly review SNLL and alternative
DL-based approaches for PSTBC that are closely related to the
concept of ECDSNLL proposed in this paper.

2.1. Safe noisy labels learning

SNLL [34] has a close relation to noisy label learning (NLL)
[42, 43]. Different from the paradigm of NLL that is only based
on ND, the concept of SNLL is based on both ND and noisy-free
data, and to ensure the learning from both ND and noisy-free data
will not be inferior to simply learning from the noisy-free data.
SNLL is a typical type of safe weakly supervised learning
(SWSL) [34, 35], which aims to ensure that the extra weakly
supervised data will not be inferior to a simple supervised
learning model [35]. In the current literature, SNLL is usually
realized in the ensemble learning paradigm [36–39]. Different
from the current literature, in this paper, we propose a novel ECD

SNLL approach for PSRTBC via taking into account the
pathological experts’ cognition about identifying RTBC and the
artificial intelligence experts’ cognition about data modeling.

2.2. Alternative DL-based approaches for PSTBC

Existing alternative DL-based approaches for PSTBC can be
classified into two schemes: (1) learning with noisy-free/accurate
labels [27, 30, 31], and (2) learning with noisy/inaccurate labels
[28, 33, 40, 41]. The first type of scheme adopts the fully
supervised learning paradigm, which is simple and clear in the
scheme design. However, because the identification of RTBC is
very difficult even for pathologists in some cases, large amount of
accurately labeled (noisy-free) data is often rare, which will
inevitably limit the generalization of the predictive model. The
second type of scheme adopts the weakly supervised learning
paradigm [44] and produces the predictive model based on
inaccurately labeled (noisy) data [45, 46]. This, to some extent,
solves the problem of the difficulty in obtaining large amount of
accurately labeled (noisy-free) data faced by the first type of
scheme, since it is much easier to obtain large amount of
inaccurately labeled (noisy) data. However, identically, because
the identification of RTBC is very difficult even for pathologists
in some cases, the inaccurately labeled (noisy) data often contain
very complex noise, which inevitably affects the performance of
the prediction model. As a result, theoretically, existing alternative
DL-based approaches for PSTBC are probably not the best
choices for PSRTBC and more advanced approach is needed.
Different from these alternative approaches, in this paper, we
propose to address the PSTBC task with an approach in the
concept of SNLL which is based on both ND and noisy-free data.

3. Research Methodology

This section is structured as follows. In Section 3.1, we present
themethodology of ECDSNLL for PSRTBC. Based on the presented
methodology of ECDSNLL for PSRTBC, we present the details for
the implementation of ECDSNLL for PSRTBC in Section 3.2. In
Section 3.3, we present the metrics, strategies, and details for
evaluating ECDSNLL for PSRTBC. In Section 3.4, we describe
the method for producing the predictive model for PSRTBC.
Finally, in Section 3.5, we describe the method for assessing the
predictive model for PSRTBC under microscope scenario.

3.1. Methodology of ECDSNLL for PSRTBC

The outline of the proposed ECDSNLL approach for PSRTBC
is shown in Figure 1. More details of ECDSNLL are provided in the
rest of this subsection.

3.1.1. Pathology ECD LAND and SANFD
Referring to the pathological experts’ cognition that identifying

none RTBC is easier than identifying RTBC, we made two labeling
rules, which resulted in a LAND and a SANFD. Since identifying
none RTBC is easier, we made labeling rules one that
pathological experts can try best to exclude the none RTBC,
which will only ensure the RTBC to be included in the target as
much as possible to produce the LAND that may contain many
none RTBC areas as the target. Including RTBC in the target as
much as possible, LAND at least has a very high recall rate of
RTBC. Meanwhile, since identifying RTBC is more difficult, we
made labeling rule two that pathological experts can only ensure
RTBC to be accurately included in the target in certain cases to
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produce the SANFD. Including RTBC in the target accurately,
SANFD at least has a high precision rate of RTBC. As LAND
and SANFD are produced by referring to the pathological experts’
cognition about the identification of RTBC, the produced LAND
and SANFD are pathology ECD.

3.1.2. Artificial intelligence ECD TSCLP
Referring to the well-known artificial intelligence experts’

cognition that first guaranteeing the high recall of the target and
then promoting the precision of the target can achieve better
overall performance corresponding to the target [47, 48], we
established a TSCLP. TSCLP is appropriate to evolve a predictive
model for the precise segmentation of the target by trenching the
respective advantages of both ND and NFD. In the first stage of
TSCLP, a deep neural network can be trained to produce a pre-
trained model based on ND. If ND can at least have a very high
recall rate of the target, the pre-trained model can achieve a high
recall rate of the target in prediction. In the second stage of
TSCLP, the pre-trained model can be further optimized to produce
the final predictive model based on NFD. If NFD can at least
have a high precision rate of the target, the final predictive model
can achieve a higher precision rate of the target in prediction
compared with the pre-trained model. Therefore, evolving the
predictive model for the precise segmentation of the target based
on ND and NFD, TSCLP can better balance the recall and
precision rates of the target for prediction. As TSCLP are formed
by referring to the artificial intelligence experts’ cognition about
achieving better overall performance in prediction, the formed
TSCLP is artificial intelligence ECD.

3.1.3. Construction of ECDSNLL for PSRTBC
Based on the analysis of LAND and SANFD in Section 3.1.1,

and the analysis of TSCLP in Section 3.1.2, we constructed
ECDSNLL for PSRTBC by feeding LAND as the base ND for
the stage one (S1) of TSCLP and feeding SANFD as the base
NFD for the stage two (S2) of TSCLP, as LAND and SANFD fit

the data basis of ND and NFD required by TSCLP. As LAND
and SANFD are pathological ECD, and TSCLP is artificial
intelligence ECD, the constructed ECDSNLL is an ECD
approach. Meanwhile, evolving the predictive model based on the
LAND and the noisy-free data SANFD, the constructed
ECDSNLL is naturally a SNLL approach.

3.2. Implementation of ECDSNLL for PSRTBC

3.2.1. Preparation of LAND and SANFD
We collected 291 WSIs digitalized from pathology glass slides

of patients after treated with neoadjuvant chemotherapy. As the
coarse annotations of LAND are much easier than the accurate
annotations of SANFD according to their labeling rules, we
randomly selected 231 WSIs for coarse annotations to produce
LAND and 60 WSIs for accurate annotations to produce SANFD.
To generate LAND, we cropped 43752 tiles and corresponding
labels with 128 × 128 pixels from the coarsely annotated areas of
the selected 231 WSIs at the 5X resolution. To generate SANFD,
we cropped 1865 tiles and corresponding labels with 128 × 128
pixels from the accurately annotated areas of the selected 60 WSIs
at the 5X resolution. Some example tiles of LAND and SANFD
are shown in Figure 2.

In preparing the LAND and SANFD, any personal identifiers,
such as names and dates of birth, are removed from the images
through a process known as de-identification, ensuring that the
data cannot be traced back to individual patients.

3.2.2. Implementation details of TSCLP
The primary key point of the implementation of TSCLP is to

employ an appropriate DNN for the predictive model. Since
PSRTBC is basically an image segmentation problem, we can
employ existing DL-based medical image segmentation
architectures, such as UNet [49], its variants, for the construction
of the DNN of TSCLP. The subsequent key point is to set the
learning strategies for S1 and S2. Since the learning architecture is

Figure 1
Outline of the proposed ECDSNLL approach for PSRTBC. ECDSNLL constitutes of the pathology experts’ cognition-driven LAND
and SANFD, the artificial intelligence experts’ cognition-driven TSCLP, and the feeding relations between them. LAND is short for
large amount of noisy data; SANFD is short for small amount of noisy-free data. TSCLP is short for two-stage cascade learning

paradigm which is based on deep neural networks (DNN)
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a DNN, based on an appropriate loss function, we utilized an
optimizer of SGD variant to optimize the parameters of the
learning models for both S1 and S2 via minimizing the errors
between the predictions and the targets. In addition, since S1 and
S2 are assembled in a from-coarse-to-fine cascade learning
paradigm in TSCLP, the learning rate for S1 should be equal to or
larger than the learning rate for S2.

3.2.3. Evolvement of CDSNLL
Firstly, feeding LAND as the input of S1 of TSCLP, we

optimized the DL-based medical image segmentation architecture
of TSCLP to produce the pre-trained model using a specific
optimizer with a specific learning rate. Then, feeding SANFD as
the input of S2 of TSCLP, we continued to optimize the
pre-trained model to produce the final predictive model using a
specific optimizer with a specific learning rate.

In summary, the pseudocodes for the implementation of
ECDSNLL are as follows.

Inputs: LAND, SANFD, DNN, Optimizer (Opt), Loss function (Lf),
Learning strategy1 (Ls1), Learning strategy2 (Ls2).

Ptm = S1(Opt, DNN, Lf, LAND, Ls1),
= Opt(Lf(DNN(LAND-tiles), LAND-labels), Ls1),
= optimized DNN.
Pm = S2(Opt, Ptm, Lf, SANFD, Ls2),
=Opt(Lf(Ptm(SANFD-tiles), SANFD-labels), Ls2),
= optimized Ptm.
Output: Pm.
Ptm is short for pre-trained model; Pm is short for predictive model.

3.3. Evaluating ECDSNLL for PSRTBC

3.3.1. Metrics
We employed usual metrics for image semantic segmentation

evaluation. Let TP (true positive) be the number of pixels
correctly predicted to belong to the H. pylori class, FP (false
positive) be the number of pixels incorrectly predicted to belong
to the H. pylori class, and FN (false negative) be the number of
missing pixels predicted to belong to the background class. These
metrics are tightly related to the foreground class, i.e., the RTBC
in which we are interested the most. Based on TP, FP, and FN,
we further employed recall and foreground intersection over union
(fIoU, IoU of the target class) for overall performance evaluation,

as the two metrics are important in evaluation of PSRTBC. We
also employed PR and ROC curves for the evaluation of the
predictive abilities of models. These metrics are commonly used
indicators for evaluating the image segmentation performance of a
predictive model [27–31, 33]. More details can also be found in
Wang et al. [50].

3.3.2. Strategies
Since ECDSNLL is basically a SNLL approach, we followed

the basic setting for evaluating SNLL approaches, which in this
paper is comparing the performances of models trained on both
LAND and SANFD by ECDSNLL with the performances of
models trained only on SANFD by supervised learning (SL), to
show the effectiveness of ECDSNLL for PSRTBC. For the
implementation of this basic setting, SANFD was split into
training (SANFD-Train), validation (SANFD-Val), and testing
(SANFD-Test) datasets. We respectively trained models on both
LAND and SANFD-Train via ECDSNLL and models only on
SANFD-Train via SL. Specifically, in training models on both
LAND and SANFD-Train via ECDSNLL, we respectively used
80% data of LAND for training and 20% data of LAND for
validation to select the pre-trained model; Then, based on the pre-
trained model we trained models for evaluation just as the way of
training models only on SANFD-Train via SL. For comparisons
of the performances between the two types of models, using five-
fold cross-validation based on SANFD, we respectively trained
models for evaluation on SANFD-Train, selected the best models
on SANFD-Val, and evaluated their generalization on SANFD-
Test. For each fold of cross-validation, the SANFD-Test dataset
respectively contained 20% data of SANFD, and the SANFD-
Train dataset and the SANFD-Val dataset contained 80% data of
SANFD. The ratio of SANFD-Train to SANFD-val is 5 to 1.

3.3.3. Details
Based on the metrics and strategies, we conducted

comprehensive experiments using state-of-the-art deep neural
networks for medical image segmentation to show the
effectiveness of ECDSNLL for PSRTBC. The used deep neural
networks include the most commonly used UNet [49] and its
variants from lightweight to complex including mobile UNet
(MUNet) [51] (details of the implementation are provided in the

Figure 2
Example tiles of LAND and SANFD. Top row: Tiles and corresponding labels of LAND; Bottom row: Tiles and corresponding labels

of SANFD. The green polygon areas indicate the residual tumor labels
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Chinese patent 111179214A), UNeXt [52], combination of MUNet
and UNeXt (MUNeXt), UNet++ [53], UNet3+ [54], attention
UNet (AttUNet) [55], recurrent residual convolutional neural
network based on UNet (R2UNet) [56], and TransUNet [57].
Specifically, based on cross-entropy loss, we utilized the SGD
variant Adam [58] as the optimizer with the learning rate set to
10�4 to update the parameters of these UNet variants respectively
for SL and both S1 and S2 of ECDSNLL. When calculating the
usual segmentation metrics, we used 0.5 to thresh the logits of
optimized deep neural networks for PSRTBC, as it is a default
value to separate the predictions into tumor and non-tumor which
can balance the bias and variance of the optimized deep neural
networks.

3.4. Producing predictive model for PSRTBC

Firstly, referring to the results of the experiments conducted
in evaluation of ECDSNLL for PSRTBC, we selected the
appropriate solution to produce the final predictive model for
PSRTBC. Then we employed LAND and 80% data of SANFD
for training, 10% data of SANFD to select the final predictive
model for PSRTBC, and the rest 10% data of SANFD to test
the selected predictive model. This data split is different from
the strategy presented in evaluating ECDSNLL for PSRTBC,
for the purpose here is to produce the final predictive model
with the evaluation of ECDSNLL for PSRTBC.

3.5. Assessing under microscope scenario

To test the generalization of the predictive model for PSRTBC
produced with samples of whole slide imaging to out-of-distribution
data, we further qualitatively assessed it under microscope scenario.
For the testing, we collected 200 vision fields using a Nikon
microscope. For each vision field, we captured images at both
20X and 10X. During testing, the captured vision fields are
respectively down sampled into 5X to adapt to the scale images
for training the predictive model for PSRTBC.

4. Result and Discussion

This section is structured as follows. In Section 4.1, we give the
results for the evaluation of ECDSNLL for PSRTBC. In Section 4.2,
we give the results for the production of a predictive model for
PSRTBC and also provide the results for the assessment of the
produced model for PSRTBC under microscope scenario. In
Section 4.3, we describe the release of the produced model for
PSRTBC. Finally, in Section 4.4, we respectively discuss the results.

4.1. Evaluation result of ECDSNLL for PSRTBC

Following the metrics, strategies, and details presented for
experiments of evaluating ECDSNLL for PSRTBC in Section 3.3,
we have following results.

4.1.1. ECDSNLL compared with SL using usual
segmentation metrics

The evaluation results of various SL-based and ECDSNLL-
based UNet variants using usual segmentation metrics are
respectively shown as Tables 1 and 2. And, corresponding to the
SL-based and ECDSNLL-based UNet variants in Tables 1 and 2,
the evaluation results of performance improvement of ECDSNLL
compared with SL are shown in Table 3.

Based on the employed usual segmentation metrics, we also
provide the lower bound, mean value, and upper bound of
respective metric in Table 1–3, which will be discussed later in
the discussion subsection.

Table 1
Evaluation results of various SL-based UNet variants. Bold

indicates the best solution

DNN(SL) TP" FP# FN# recall(%)" fIoU(%)"
MUNet 4460 430 1005 81.66 75.69
UNeXt 4379 591 1085 79.84 72.01
MUNeXt 4436 381 1029 81.15 75.88
UNet 4767 555 697 87.30 79.26
UNet++ 4649 542 816 85.04 77.41
UNet3+ 4688 624 777 85.85 77.18
AttUNet 4596 541 869 84.14 76.49
R2UNet 4728 535 737 86.41 78.69
TransUNet 4639 759 826 84.79 74.77
lower bound 4379 759 1085 79.84 72.01
mean value 4594 551 871 84.02 76.38
upper bound 4767 381 697 87.30 79.26

Table 2
Evaluation results of various ECDSNLL-based UNet variants.

Bold indicates the best solution

DNN(ECDSNLL) TP" FP# FN# recall(%)" fIoU(%)"
MUNet 4496 443 969 82.26 76.11
UNeXt 4676 664 789 85.47 76.22
MUNeXt 4528 425 936 82.83 76.87
UNet 4828 592 637 88.35 79.73
UNet++ 4738 577 726 86.67 78.45
UNet3+ 4676 595 789 85.62 77.27
AttUNet 4801 598 664 87.89 79.23
R2UNet 4733 531 731 86.47 78.82
TransUNet 4668 534 797 85.40 77.89
lower bound 4496 664 969 82.26 76.11
mean value 4683 551 782 85.66 77.84
upper bound 4828 443 637 88.35 79.73

Table 3
Evaluation results of performance improvement of ECDSNLL

compared with SL. Bold indicates the best improvement

DNN
(ECDSNLL-SL) TP" FP# FN#

recall
(%)"

fIoU
(%)"

MUNet 36 13 −36 0.6 0.42
UNeXt 297 73 −296 5.63 4.21
MUNeXt 92 44 −93 1.68 0.99
UNet 61 37 −60 1.05 0.47
UNet++ 89 35 −90 1.63 1.04
UNet3+ −12 −29 12 −0.23 0.09
AttUNet 205 57 −205 3.75 2.74
R2UNet 5 −4 −5 0.06 0.13
TransUNet 29 −225 −29 0.61 3.12
lower bound 117 −95 −116 2.42 4.1
mean value 89 0 −89 1.64 1.47
upper bound 61 62 −60 1.05 0.47
p-value 0.015 0.499 0.014 0.016 0.009
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4.1.2. ECDSNLL compared with SL using PR and ROC
curves

Corresponding to the SL-based and ECDSNLL-based UNet
variants in Tables 1 and 2, the evaluation results of ECDSNLL
compared with SL using PR and ROC curves are shown in Figure 3.

4.2. Production result of predictive model for
PSRTBC

4.2.1. Predictive model for PSRTBC
Based on the results of the experiments conducted in evaluation

of ECDSNLL for PSRTBC and corresponding discussion, we selected
the UNet(ECDSNLL) solution to produce the final predictive model
for PSRTBC, as it showed the best generalization performance.
Following the details described in Section 3.4, we produced a
UNet(ECDSNLL) solution-based predictive model for PSRTBC.

4.2.2. Quantitative and qualitative evaluation results
For PSRTBC, some quantitative evaluation results of the

produced predictive model are shown in Table 4 and Figure 4,
and some qualitative results of the produced predictive model are
shown in Figure 5.

4.3. Assessment result of the produced model
under microscope scenario

4.3.1. Qualitative results
Some qualitative results of testing the predictive model for

PSRTBC produced with samples of whole slide imaging under
microscope scenario are shown in Figures 6 and 7. Figure 6
contains the results of vision fields at 20X and Figure 7 contains
the results of the same vision fields at 10X. Particularly, the
vision field at 20X and the vision field at 10X were captured at
the same vision center for comparisons in control results. The
reason that vision fields at 20X and 10X were chosen for
qualitative evaluation is because our pathology experts report that
they usually do careful inspections under these two magnifications

in the microscope scenario and the cases that they do inspections
under smaller and larger magnifications are relatively less.

4.4. Discussion

From Table 3, we can note that, compared with SL,
ECDSNLL can significantly improve the lower bound of a
number of UNet variants with 2.42% and 4.1% respectively in
recall and fIoU for PSRTBC, while being able to achieve
improvements in mean value and upper bound as well. This
advantage of ECDSNLL compared with SL is further proved by
Figure 3, as the PR and ROC curves of a number of ECDSNLL-
based UNet variant models are respectively covered by the PR
and ROC curves of the same number of SL-based UNet variant
models, which shows that ECDSNLL-based UNet variant
models possess better predictive abilities than SL-based UNet
variant models for PSRTBC. Above all, ECDSNLL improves
the recall performance while being able to promote the fIoU
performance. In addition, statistical test results (p-values) in the
last row of Table 3 show that the advantages of ECDSNLL are
statically significant compared with SL.

From Table 3, we can also note that ECDSNLL achieves
improvements of 5.63% and 4.21% respectively in recall and fIoU
with UNeXt. As UNeXt is a very efficient model [52], these
results exhibit the promising potentials of applying ECDSNLL to
real-world applications.

From Tables 1, 2, and 3, we can note that UNet achieves the best
performances in bothECDSNLL-based andSL-based solutions, and the
UNet(ECDSNLL) solution performs better than the UNet(SL) solution.
This indicates that it is appropriate to select the UNet(ECDSNLL)
solution to produce the predictive model for PSRTBC.

From Table 4, Figures 4 and 5, we can note that the produced
UNet(ECDSNLL) solution-based predictive model shows a good
performance for PSRTBC in samples of whole slide imaging,
which reflect the potentials of applying ECDSNLL in real-world
applications.

Two pathological experts were invited to check the qualitative
results of the produced predictive model under microscope scenario,

Figure 3
ECDSNLL compared with SL using PR and ROC curves
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and they confirmed that the predictive model for PSRTBC produced
with samples of whole slide imaging has the generalization potentials
in some vision fields under microscope scenario. At the meantime,
they also suggested that the results of vision fields captured at 20X
are better than the results of vision fields captured at 10X. This
shows the generalization potentials of the UNet(ECDSNLL)
solution-based predictive model in some vision fields under
microscope scenario for PSRTBC.

Table 4
Quantitative evaluation results of UNet(ECDSNLL)

solution-based predictive model for PSRTBC using usual
segmentation metrics

Solution TP FP FN recall(%) fIoU(%)

UNet(ECDSNLL) 5520 553 669 90.89 81.88

Figure 4
Quantitative evaluation results of UNet(ECDSNLL) solution-based predictive model for PSRTBC using PR and ROC curves

Figure 5
Qualitative results of UNet(ECDSNLL) solution-based predictive model for PSRTBC. Top: Input tiles. Middle: Manual labels

(ground truth) of residual tumor shown on input tiles. Bottom: Predicted labels of residual tumor shown on input tiles
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5. Conclusion and Future Work

Since the breast cancer tissue and tumor cells commonly have
complex and varied morphological changes after neoadjuvant
chemotherapy [32], achieving precise segmentation of residual
tumor in breast cancer (PSRTBC) is still a challenge demanding
prompt solution. Although a number of DL-based image semantic
segmentation solutions have been proposed for PSTBC of pre-
treatment biopsy [27–31], the fact that breast cancer tissue and
tumor cells commonly have complex and varied morphological
changes after neoadjuvant chemotherapy [32] makes achieving
PSRTBC more difficult than achieving PSTBC.

To alleviate this situation, in this paper, we propose an
ECDSNLL approach, which integrates the pathology experts’
cognition and the artificial intelligence experts’ cognition to
construct an automatic system for PSRTBC. The proposed
ECDSNLL approach has three novel innovations, including
making the labeling rules by referring to the pathological experts’
cognition about the identification of RTBC to prepare a LAND
and a SANFD, establishing the methodology of learning from

both LAND and SANFD by referring to the artificial intelligence
experts’ cognition about achieving better overall performance in
prediction to propose a TSCLP, and constructing ECDSNLL by
appropriately feeding the pathological ECD LAND and SANFD
to the artificial intelligence ECD TSCLP. These three innovations
eventually make the proposed ECDSNLL approach different from
the existing work that realized SNLL in the ensemble learning
paradigm, and the related works that realized DL-based predictive
models based on separate noisy-free data or separate ND.

Compared with the usual SL paradigm based on SANFD, the
proposed ECDSNLL approach based on both LAND and SANFD
can significantly improve the lower bound performance of a
number of UNet variants for PSRTBC, while being able to achieve
improvements in the mean value and upper bound performances as
well. This advantage of ECDSNLL compared with SL is further
proved by the PR and ROC curves of ECDSNLL-based UNet
variant models and SL-based UNet variant models, which shows
that ECDSNLL-based UNet variant models possess better
predictive abilities than SL-based UNet variant models for
PSRTBC. The proposed ECDSNLL approach achieved the best

Figure 6
Qualitative results of vision fields captured at 20X. Top row: Original images of vision fields;

Bottom row: Predicted results shown on original images

Figure 7
Qualitative results of vision fields captured at 10X. Top row: Original images of vision fields;

Bottom row: Predicted results shown on original images
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performance improvements with a very efficient model UNeXt
(Valanarasu & Patel, 2022), which exhibits the promising potentials
of applying ECDSNLL to real-world applications. The UNet [49]
achieved the best performances in both ECDSNLL-based and
SL-based solutions for PSRTBC, and the UNet(ECDSNLL)
solution performs better than the UNet(SL) solution. The
UNet(ECDSNLL) solution was selected to produce the final
predictive model for PSRTBC due to its best generalization
performance. The produced UNet(ECDSNLL) solution-based
predictive model showed a good performance for PSRTBC in
samples of whole slide imaging and had the generalization
potentials in some vision fields under microscope scenario.

In this paper, we have shown the advantages of the proposed
ECDSNLL approach and its promising potentials in addressing
PSRTBC. However, due to the fact that limited number (291) of
whole slide images (WSIs) were collected, the produced
UNet(ECDSNLL) solution-based predictive model will inevitably
have difficulties in handling complicated situations in PSRTBC,
where the testing samples of WSI are quite different from the samples
of our collected WSIs in this paper. Moreover, the produced
UNet(ECDSNLL) solution-based predictive model can only be
generalized to some vision fields under microscope scenario. As a
result, further advances still need to be made to achieve the product-
level PSRTBC. However, the predictive model for PSRTBC released
in this paper can provide a better foundation for some possible future
advances to be made. In addition, it is also interesting to explore
additional experiments to test the generalizability of the ECDSNLL
approach across different cancer types or imaging modalities [59, 60],
since the concept behind the proposed ECDSNLL approach is
fundamentally a new paradigm for artificial intelligence alignment [61]
that can be widely leveraged in building predictive models.

Recommendations

Compared with the usual SL paradigm based on SANFD, the
proposed ECDSNLL approach based on both LAND and SANFD
can significantly improve the lower bound of a number of UNet
variants with 2.42% and 4.1%, respectively, in recall and fIoU for
PSRTBC, while being able to achieve improvements in the mean
value and upper bound performances as well. This advantage of
ECDSNLL exhibits the promising potentials of applying
ECDSNLL to a wide range of real-world applications.
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