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Abstract: Anticancer peptides (ACPs) are a promising focus in clinical oncology due to their ability to inhibit tumor cell proliferation with
minimal side effects. Nevertheless, large-scale, expeditious and efficacious identification of ACPs is hindered by the high cost and time
demands of conventional wet-lab experiments. Therefore, we introduced a new method called iACP-SEI to identify ACPs using
sequence evolution information. iACP-SEI method utilizes the ESM2 protein language model, based on Transformer architecture, to
extract feature vectors that encapsulate evolutionary information from peptide sequences. These vectors underwent feature selection
via the light gradient boosting machine and used in an ensemble learning approach. Using the AntiCP2.0 main and alternate datasets,
iACP-SEI model achieved independent test accuracies of 77.78% and 94.82%, respectively. Furthermore, it outperformed current
methods on an unbalanced dataset, achieving a cross-validation accuracy of 90.39%, demonstrating improved robustness in handling
imbalanced class samples. Although iACP-SEI demonstrated higher predictive performance and robustness than other methods, some
limitations of it are also discussed.
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1. Introduction

Cancer continues to pose a substantial worldwide health
challenge, resulting in millions of fatalities each year [1]. To
address this issue, it is necessary to use inventive treatment
approaches. Mainstream cancer treatments such as chemotherapy,
radiotherapy, and targeted therapies effectively inhibit tumor
growth but often damage normal cells, leading to severe side
effects. These limitations have heightened the need for safer and
more targeted treatment options [2]. Given these challenges, ACPs
have attracted significant scientific interest due to their unique
advantages [3]. ACPs are a class of small molecule peptides,
typically consisting of no more than 50 amino acids, which have
demonstrated specific anti-tumor activity against cancer cells [4].
Compared with conventional therapies, ACPs offer a high degree
of safety and selectivity due to their naturally derived bioactive
molecules and natural cationic properties, enabling them to
selectively bind to the anionic elements on the surface of tumor
cells [5]. With advances in clinical research, there has been a
growing discovery and confirmation of ACPs derived from
proteins [6]. For example, Peelle et al. [7] confirmed the validity
of a randomized peptide library mediated by the protein backbone

through phenotypic screening of mammalian cells. Meanwhile,
Norman et al. [8] used genetic techniques to select and suppress
relevant biological pathway peptides. Although these methods
proved to be effective, they are often characterized by time and
cost constraints, posing challenges for widespread implementation
[9]. Consequently, developing new computational methods
and bioinformatics tools for the efficient identification and
optimization of ACPs is crucial to advancing research and
enhancing clinical applications in this field [10–13].

In recent years, many computational methods have been created
to identify potential ACPs by analyzing peptide sequences [14].
These models include iACP, PEPred-Suite, ACPred-Fuse, AntiCP
2.0, iACP-DRLF, ACP-check, ACP-BC, and ACP-DRL [5, 6,
15–21]. iACP uses an approach based on pseudo amino acid
composition (PseAAC) and g-gap dipeptide [6] patterns to extract
sequence features, followed by classification using support vector
machines (SVM). PEPred-Suite uses a flexible technique for
learning feature representation, which improves the accuracy and
robustness of prediction through feature selection and feature
fusion [22]. ACPred-Fuse applies the Random Forest (RF)
classifier to enhance the accuracy and robustness of prediction by
fusing multi-view information and sequential features [21].
AntiCP 2.0 utilizes the characteristics of amino acid composition
and dipeptide composition to predict ACPs using multiple*Corresponding author: Zhibin Lv, College of Biomedical Engineering,
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methods of machine learning, such as SVM and RF. The iACP-
DRLF method uses two deep representation learning feature
extraction techniques (soft symmetric alignment embedding and
uniform representation embedding) [18], which results in
extraction of deeper features containing more sequence
information, and finally combines with the light gradient boosting
machine (LGBM) algorithm for feature optimization. ACP-check
utilizes a Bidirectional Long Short Term Memory (Bi-LSTM)
network to capture temporal information in peptides and integrates
it with features of amino acid sequences (e.g., dipeptide
composition, amino acid composition, etc.,) [19] to enhance the
identification accuracy of ACPs. ACP-BC is a three-channel end-
to-end [20] structure, which utilizes Bi-LSTM, BERT
(Bidirectional Encoder Representations from Transformers), and
manual approaches to extract features and combine them for
processing. The ACP-DRL model utilizes in-domain pre-training
of language models and Bi-LSTM [20]. Additionally, it introduces
BERT-based protein macrolanguage models for ACP recognition,
eliminating the limitation of sequence length and the reliance on
manual features.

In addition to these advancements, many biomedical
researchers have further validated the efficacy of these model-
predicted ACPs through experiments or theoretical calculations.
For example, Grisoni et al. [23] developed an ensemble machine
learning model to design and identify ACPs. They synthesized 14
candidate peptides, and in vitro experiments on breast cancer
(MCF7) and lung cancer (A549) cell lines demonstrated that six
of these peptides exhibited anticancer activity, with five showing
inhibitory effects on both MCF7 and A549 cell lines.
Charoenkwan et al. [24] developed iACP-FSCM based on the
primary sequence and confirmed the potential binding efficacy of
model-predicted ACPs to HIF-1α through molecular docking
simulations. Ma et al. [25] combined existing antimicrobial
peptide prediction models and metagenomic mining techniques to
screen 40 potential ACPs from multiple datasets. Through in vitro
experiments, they confirmed that 39 of these ACPs exhibited
inhibitory effects on at least one cancer cell line. These studies
underscore the effectiveness of integrating AI tools with
experimental assays to discover novel and efficacious ACPs,
demonstrating the practical feasibility of AI-driven peptide design
in biomedical research. However, given that these models
predominantly rely on experimentally annotated ACP datasets—
which remain limited—their effectiveness is limited. Despite
achieving promising results in ACP recognition, there is
substantial scope for further refinement and improvement.

In the last few years, the field of protein and peptide sequence
research has seen a growing use of large language models due to the
development of deep learning. Some of the more typical models
include ProtTrans [26], UniRep [27], AlphaFold [28], RoseTTA-
Fold [29], and ESM [30–32]. These models employ deep learning
techniques and use large-scale datasets trained in an unsupervised
or semi-supervised manner. Although this deep representation
learning approach enables models to understand a wider range of
biological patterns and complex sequence properties [33], the
requisite large training datasets and extensive training time pose
significant demands on computational resources. Fortunately,
these problems can be easily overcome by implementing transfer
learning, where pre-trained models are used to accurately identify
ACPs in the study.

ESM2 (Evolutionary Scale Modeling 2) [32] is a pre-trained
protein language model based on BERT and Transformer [34].
Compared to its predecessor model, ESM-1b [30], ESM2 has
been improved in terms of architecture and training parameters

with additional computational resources and data. Through
masked training techniques, ESM2 effectively learns long-distance
dependencies and contextual nuances in protein and peptide
sequences and outputs a high-dimensional feature vector
containing structural and functional information of the protein.
This information can be manipulated by linear projection or other
downstream models to enable various predictions and analyses of
proteins. However, it is important to note that deep neural
networks (DNNs), including the Transformer architecture used in
ESM2, exhibit an implicit bias known as the Frequency Principle
(F-Principle) [35, 36]. This principle suggests that DNNs tend to
learn functions from low to high frequencies during training,
capturing general patterns before finer details. Consequently,
ESM2 might face challenges in learning high-frequency
components of protein sequences, such as subtle local motifs or
rare patterns, which are essential for certain protein functions or
interactions. This potential deficiency underscores the need for
further research into the training dynamics of ESM2 and the
development of methods to enhance its capacity to capture high-
frequency features in protein sequences.

This paper presents the development of a novel recognition
model for ACPs, namely iACP-SEI, which uses ESM2 as its basic
pre-trained model. For the purpose of assessing the impact of
multiple architectural complexities on model accuracy, we utilized
ESM2 pre-trained models with two configurations: a 33-layer
architecture containing 650 million parameters and a 36-layer
architecture with 3 billion parameters, to extract features from
peptide sequences. Afterwards, these features were employed to
train models utilizing three distinct machine learning algorithms:
Logistic Regression (LR) [37], SVM [13, 38, 39], and LGBM
[40, 41]. In order to obtain higher prediction accuracy, we input
the feature vectors into the LGBM for feature selection [42].
Ultimately, our method incorporated a stacked ensemble learning
approach [43] with LGBM and SVM as base learners to optimize
prediction. Compared with the current advanced ACP recognition
methods such as ACP-DRL [20] and ACP-BC [6], the optimized
iACP-SEI model achieves better results in both five-fold cross-
validation (5CV) and independent tests.

2. Materials and Methods

2.1. Overall framework

The modeling flowchart is shown in Figure 1-A. The primary
procedures are as follows:

1) Initially, peptide sequences were characterized as vectors
with evolutionary information using the model ESM2. This
process resulted in two types of features: the ESM2_t33
feature (1280 dimensions) and the ESM2_t36 feature (2560
dimensions).

2) Subsequently, the space of feature vectors was optimized using
the LGBM algorithm.

3) To boost model performance, the stacked ensemble learning
model was constructed with SVM and LGBM as the base
learners.

4) The optimized feature vectors were then input into four machine
learning models: LR, SVM, LGBM, and a Stacked Ensemble
model.

5) Finally, 5CV and independent tests were used to compare the
effectiveness of different models. The model with the greatest
accuracy was chosen to be developed as the final iACP-SEI
predictor.
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Further details of the modeling process will be provided in the
next section.

2.2. Dataset

For model training and subsequent evaluation, we selected the
dataset produced by Agrawal et al. as the basic dataset. The basic
dataset comprises data aggregated from multiple sources,
including ACP-DL, ACPP, ACPred-FL, AntiCP, iACP [17], and
CancerPPD [44]. It is divided into two parts: the main dataset and
the alternate dataset. The main dataset consists of 861
experimentally validated ACPs [45], matched with an equal
number of non-ACPs, where all negative samples are
antimicrobial peptides (AMPs). Meanwhile, the alternate dataset
comprises 970 experimentally confirmed ACPs and 970 non-
ACPs. These non-ACPs are random peptides sourced from
Swiss-Prot.

To investigate the robustness of the model when dealing with
minority samples, we performed 5CV on the unbalanced dataset
created by Xu et al. [20]. The unbalanced dataset consists of 845
ACPs and 3800 non-ACPs. It includes all the information from
the main and alternate datasets, together with supplementary data

from ACPred-Fuse [20]. Redundant sequences in this dataset were
removed using the CD-HIT algorithm to ensure data quality.

2.3. Feature extraction

2.3.1. Self-attention module
Feature extraction is used to obtain sequence evolutionary

information by utilizing the ESM2 pre-trained model. Its core
mechanism is the stacked self-attention module, which is used to
determine the features of amino acids. Detailed computational
steps of the self-attention mechanism are as follows:

First, the peptide input sequence is represented as a matrix
X 2 Rn�d, where n denotes the peptide sequence length and d
denotes the embedding dimension. To compute self-attention, the
input embedding matrix X is transformed into the Query, Key,
and Value spaces using projection [46]:

Q ¼ WqX;K ¼ WkX;V ¼ WvX (1)

whereWq;Wk;Wv 2 Rd�dk are the learned weight matrices, with dk
typically set to d=h, where h represents the number of attention
heads. Next, by computing the dot product of the queries and keys,
the attention scores are obtained:

scores ¼ QKT

ffiffiffiffiffi
dk

p (2)

where dk is the scaling factor to mitigate the problem of excessively
large dot product values at large matrix dimensions. Then, the Soft-
max function is used to normalize the scores in order to generate the
attention weight matrix:

W ¼ SoftmaxðscoresÞ (3)

The Softmax function is defined as follows:

SoftmaxðAijÞ ¼
expðAijÞP
n
k¼1 expðAikÞ

(4)

whereAij represents the specific element located at the intersection of
row i and column j in the input vector matrix. Afterward, the value
matrix is subjected to weighting and summation by utilizing the
attention weights, resulting in the final output:

AttentionðQ;K;VÞ ¼ WV (5)

In a multi-head self-attention mechanism, this process [47] is
replicated across several “heads”, each using a unique set of
parameters to calculate attention independently. Subsequently, the
results from individual heads are combined and sent into a linear
transformation layer:

Multi HeadðQ;K;VÞ ¼ concatðhead1; head2; . . . ; headhÞWo (6)

where headi ¼ AttentionðQi;Ki;ViÞ, andWo is the weight matrix of
the linear transformation. Finally, residual connections and layer nor-
malization are employed to stabilize the training process and hasten
convergence [48]:

Y ¼ LayerNormðXþMultiHeadðQ;K;VÞÞ (7)

The ESM2 model superimposes these attentional mechanisms by
means of Transformer architectures with different numbers of

Figure 1
General overview of modeling
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layers and is thus able to capture long-range dependencies and rich
feature representations in peptide sequences.

2.3.2. ESM2 pre-trained model
The ESM2 model is a sophisticated protein language model

created by Meta AI [32] that uses deep learning techniques to
predict protein function and structure [49]. Based on the
Transformer architecture, this model captures the evolutionary
patterns and sequence-structure-function relationships of proteins
through pre-training on millions of protein sequences from
different biological species that have been processed by Multiple
Sequence Alignment (MSA) and evolutionary analysis. The model
then performs self-supervised learning by predicting masked-out
amino acids in proteins and finally generates latent vectors that
represent their structural and functional attributes. These latent
vectors are versatile and support various downstream
bioinformatics tasks including protein function prediction,
structure modeling, and protein-protein interaction prediction [49].

Figure 1-B displays the structure of the ESM2 model. Initially,
the peptide sequences are converted into sequence matrices with
masks via tokenization, encoding, and concatenation. The mask
enables the pre-trained ESM2 model to develop predictive
capabilities [50]. These matrices are subsequently fed into the
Transformer encoder network containing a self-attention module,
producing feature vector matrices that characterize the peptide
sequences. Depending on the number of layers of self-attention
modules, multiple versions of the ESM2 model exist. Specific
parameters for each version are detailed in Table 1. In this study,
we used esm2_t33_650M_UR50D and esm2_t36_3B_UR50D,
featuring 33 and 36 self-attention layers with output dimensions
of 1280 and 2560, respectively.

2.4. Feature selection method

The main objective of feature selection is to increase model
efficiency and performance by removing irrelevant or redundant
features, which helps reduce overfitting and accelerate training
[51]. Common feature selection methods include analysis of
variance (ANOVA), which calculates the F-value between
features and the target variable for classification problems;
recursive feature elimination (RFE), which recursively reduces the
feature set to identify key features; minimum redundancy
maximum relevance (mRMR), which select features highly
correlated with the target and minimize redundancy; and Lasso
Regression, which applies regularization to shrink less important
feature coefficients to zero [52–55]. These methods can help filter
out the most meaningful information from the data and enhance
the efficiency of model processing. In our study, we choose the
LGBM algorithm, which employs a decision tree to find the
optimal feature space and is known for its efficiency in handling

large data and achieving high accuracy. The LGBM procedure is
as follows. Firstly, all the candidate features and target variables
are fed into the LGBM model for learning [56]. Through the
built-in feature importance evaluation mechanism based on the
Gain metric, LGBM measures the contribution of each feature to
the model’s predictive power. Therefore, features are ranked and
those that exceed a pre-defined threshold, which is determined
empirically are selected for the optimized feature set based on the
resulting feature importance score.

2.5. Machine learning methods

In this study, we initially picked three different machine
learning algorithms—LR, SVM, and LGBM—for comparative
analysis. LR is a statistical model widely used for classification,
particularly effective in addressing binary classification problems.
In this model, outputs from linear regression are mapped to the
(0,1) interval using a sigmoid activation function, representing the
probability of category membership. SVM classifies samples in a
high-dimensional domain by constructing one or more
hyperplanes. The training goal for SVM is to discover an optimal
hyperplane that maximizes the gap between distinct data
categories. Its core mechanism involves kernel techniques that
project data into a higher-dimensional domain, enabling linearly
inseparable data to be separated. LGBM is a decision tree
technique that leverages the gradient boosting framework to
provide efficient training speed and improved accuracy. By
optimizing the input data using a histogram, LGBM greatly
increases the efficiency of data splitting. This makes it particularly
well-suited for handling datasets with complex patterns.

To further enhance themodel’s overall performance, we applied
an ensemble learning method that combined the results of several
base learners. Ensemble learning more effectively captures diverse
data features and patterns, reduces overfitting risk, and enhances
generalization than a single model [57, 58]. Common ensemble
learning methods include Bagging, Boosting, and Stacking [59].
Specifically, Stacking utilizes the outputs of various base learners
as inputs for secondary learners, which then make the final
predictions. By fusing the predictions of multiple models,
Stacking can completely use the strengths of each base learner
and further enhance the whole model’s performance.

In the Stacking method, assuming there are n base learners with
hiðxÞ denoting the prediction of the ith base learner, the secondary
learner can be expressed as:

HðxÞ ¼
X

n
i¼1

αihiðxÞ (8)

where αi denotes the weight of the base learner hi, which satisfies the
condition that the total of all base learner weights is equal to
one,

P
n
i¼1 αi ¼ 1. By optimizing the weights αi, we can optimize

Table 1
Configuration table for the ESM-2 model

ESM-2 model Params Layers Dataset Embedding Dim

esm2_t48_15B_UR50D 15B 48 UR50/D 2021_04 5120
esm2_t36_3B_UR50D 3B 36 UR50/D 2021_04 2560
esm2_t33_650M_UR50D 650M 33 UR50/D 2021_04 1280
esm2_t30_150M_UR50D 150M 30 UR50/D 2021_04 640
esm2_t12_35M_UR50D 35M 12 UR50/D 2021_04 480
esm2_t6_8M_UR50D 8M 6 UR50/D 2021_04 320
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the performance of the secondary learnerH. Furthermore, the secon-
dary learners can also be in the form of more complex non-linear
combinations, as demonstrated below:

HðxÞ ¼ σ
X

n
i¼1

βihiðxÞ þ b
� �

(9)

Here, βi stands for the weight, b for the bias parameters, and σ for the
activation function (e.g., sigmoid or ReLU). Due to the increased
computational complexity, the explanatory and predictive power
of such non-linear combinations is generally greater than that of lin-
ear combinations

In the first phase of the Stacked Ensemble model, we used the
SVM and LGBM models as base learners and performed 5CV on
them using the training set (please see 2.6 for details on how to
do this). After training, each base learner produced an output, and
we concatenated these two outputs to form a new training set.
Subsequently, we fed the test set into both models to generate
their respective predictions and spliced these prediction sets
together to form a new test set. In the second stage, we used the
SVM model as the meta-learner, training it on the new training set
and performing classification on the new test set.

2.6. Evaluation metrics and methods

For the purpose of assessing the effectiveness of our model, we
employed several metrics: accuracy (ACC), sensitivity (Sn),
specificity (Sp), Matthews correlation coefficient (MCC), and the
area under the receiver operating characteristic curve (AUC) [18].
The equations for the first four metrics are as follows:

ACC ¼ TPþ TN
TPþ TNþ FPþ FN

(10)

Sn ¼ TP
TPþ FN

(11)

Sp ¼ TN
TNþ FP

(12)

MCC ¼ ðTP� TNÞ � ðFP� FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp (13)

Here, TP represents the number of true-positive samples, TN
represents the number of true-negative samples, FP represents the
number of false-positive samples, and FN represents the number
of false-negative samples [60]. With respect to the AUC, it is a
metric that quantifies the performance of a model by measuring
the area under the receiver operating characteristic curve (ROC),
which plots the true-positive rate against the false-positive rate
across various thresholds. A higher AUC value implies better
model performance, with a value closer to 1 being optimal. For
5CV on unbalanced datasets, we introduced an additional
evaluation metric known as the area under the precision-recall
(PR) curve (AUPR) [20], ranging from 0 to 1. A value closer to 1
means that the model has higher precision and recall in
identifying positive class samples [61]. Compared to AUC, which
is suitable for dealing with more balanced datasets, AUPR focuses
on the prediction ability of positive classes (minority classes), and
therefore more effectively reflects the performance under
unbalanced conditions.

In terms of the evaluation method, we chose the widely used
K-fold cross-validation (with K set to 5 in this study) as well as
independent tests. In K-fold cross-validation, the dataset is first

evenly partitioned into K copies. Next, the algorithm will
sequentially select K-1 copies of the K copies as the training set,
while the residual one is designated as the validation set, until
each copy of the data has been utilized as the validation set. In
other words, the model will go through a total of K training
sessions, and the evaluation result of the model is determined by
taking the average metric value from the K validations. The
advantage of this approach lies in its ability to provide a more
stable evaluation of model’s performance, since the validation set
during training will cover all the data in the original dataset. For
independent tests, the model is trained only once. In addition, the
test data are not included in the training set. For this reason,
independent tests are effective in assessing the generalizability of
the model.

3. Results

In this section, we assess six initial models developed using two
sequence embedding models, ESM2_t33 and ESM2_t36, combined
with three machine learning methods: LR, SVM, and LGBM. The
models are designated as T33_LR_F1280, T36_LR_F2560,
T33_SVM_F1280, T36_SVM_F2560, T33_LGBM_F1280, and
T36_LGBM_F2560. For example, in the model name
T33_SVM_F1280, 'T33' indicates the employment of the
ESM2_t33 model for feature extraction, 'SVM’ denotes the SVM
machine learning method, and 'F1280' represents a feature
dimension of 1280. We then apply the LGBM feature selection
technique to optimize the models. To further enhance model
performance, we construct stacked ensemble learning models with
SVM and LGBM serving as base learners, subsequently
evaluating each model’s performance. Finally, we select the best-
performing model (iACP-SEI) and compare its results with
current methods.

3.1. Preliminary performance of the models

In Figure 2 below, we can see the results of 5CV and
independent tests of the six models on the main dataset. It is
apparent that the SVM-based models achieved the best results in
both evaluations. Specifically, T33_SVM_F1280 has the most
superior performance in 5CV, outperforming other models in
ACC (75.8%), MCC (0.515), Sn (75.7%), and Sp (75.8%),
except for a slightly lower performance in AUC (0.804).
Furthermore, the performance of T36_SVM_F2560 in
independent tests also validates the superiority of the SVM
model, which outperformed the second-ranked performance
model T33_LR_F1280 on all evaluation metrics, with
improvements of 1.75% in ACC, 3.60% in MCC, 2.92% in Sn,
0.58% in Sp and 0.25% in AUC.

For the purpose of assessing the generality of each model across
various datasets, we trained the six models on the alternate dataset.
The results of their evaluation are presented in Figure 3. In 5CV,
mirroring its top performance on the main dataset,
T33_SVM_F1280 again achieved optimal results, excelling in
ACC (94.1%), MCC (0.882), Sn (91.7%), and AUC (0.979),
while the performance of Sp (96.4%) was second only to that of
the T33_LGBM_F1280 model of 96.9%. In independent tests,
T33_SVM_F1280 ranked first in ACC (93.78%), MCC (0.877),
and Sn (90.67%), and was lower than T36_LGBM_F2560's
97.93% in Sp (96.89%), and slightly lower than T33_LR_F1280's
0.973 in AUC (0.970). From Tables 2 and 3, it can be found that
the average ACC optimum of 5CV and independent tests on the
main dataset was obtained by T36_SVM_F2560, and the average
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ACC optimum on the alternate dataset was obtained by
T33_SVM_F1280. These results suggest that recognition models
combining ESM2 and SVM may have greater potential to handle
complex datasets and capture features and patterns in the data
more effectively.

3.2. Performance after feature selection

As discussed in the previous subsection, we found that in the
model based on the LGBM algorithm, T33_LGBM_F1280
significantly outperformed T36_LGB-M_F2560, which we
speculated was due to feature redundancy resulting from increased
feature dimensions in the latter. For LGBM algorithms, an excess
of low-information features can detract from model learning rather
than adding value. Therefore, we optimized the feature space,
utilizing the LGBM model to assess feature importance and
arrange features in descending order of importance. Subsequently,
we used these optimized feature vectors to train both SVM and
LGBM models. For different datasets, we adjusted the
dimensionality of feature selection. On the main dataset, we
obtained four optimized models: t33_SVM_F155,

t36_SVM_F205, t33_LGBM_F295, and t36_LGBM_F165. For
instance, 't33_SVM_F155' indicates that only the 155 most critical
dimensions were selected from the 1280 features extracted from
ESM2_t33. On the alternate dataset, we obtained four optimized
models, T33_SVM_F50, T36_SVM_F50, T33_LGBM_F255, and
T36_LGBM_F175. Results from 5CV and independent tests are
presented in Figures 4 and 5, with corresponding accuracy values
listed in Tables 4 and 5.

On the main dataset, it is evident that feature selection
considerably improves the performance of the LGBM model,
especially in 5CV, as shown in Figure 4 and Table 4. Taking
T36_LGBM_F165 as an example, compared with the model
T36_LGBM_F2560 without feature selection, its performance
exhibited significant improvement across all metrics: ACC
increased by 5.60% to 77.69%, MCC by 11.28% to 0.555, Sn by
4.07% to 74.42%, Sp by 7.12% to 80.96%, and AUC by 7.58%
to 0.881. In independent tests, the T36_LGBM_F165 also
outperformed T36_LGBM_F2560, showing increases of 3.51% in
ACC to 76.02%, 7.09% in MCC to 0.523, 4.09% in Sn to
80.70%, and 2.93% in Sp to 71.35%, although it trailed by 0.76%
in AUC at 0.813. However, for the SVM-based models, feature

Figure 2
Preliminary performance of LR, SVM, and LGBM on the main dataset

A B

Figure 3
Preliminary performance of LR, SVM, and LGBM on the alternate dataset

A B
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Table 2
Table of preliminary performance metrics for LR, SVM, and LGBM on the main dataset, with the best score for each metric bolded and underlined

Feature Model Dim

5-Fold cross-Validation Independent tests

AVG_ACC(%)ACC(%) MCC Sn(%) Sp(%) AUC ACC(%) MCC Sn(%) Sp(%) AUC

ESM_t33 LR 1280 72.74 0.455 72.04 73.45 0.808 73.68 0.474 76.61 70.76 0.803 73.21
SVM 1280 75.75 0.515 75.70 75.81 0.804 73.10 0.462 75.44 70.76 0.816 74.43
LGBM 1280 73.26 0.466 71.16 75.37 0.809 73.39 0.469 76.61 70.18 0.823 73.32

ESM_t36 LR 2560 72.82 0.456 72.09 73.55 0.805 71.64 0.434 74.85 68.42 0.810 72.23
SVM 2560 73.91 0.478 72.97 74.85 0.808 75.44 0.510 79.53 71.35 0.825 74.67
LGBM 2560 72.09 0.442 70.35 73.84 0.805 72.51 0.452 76.61 68.42 0.820 72.30

Table 3
Table of preliminary performance metrics for LR, SVM, and LGBM on the alternate dataset, with the best score for each metric bolded and underlined

Feature Model Dim

5-Fold cross-Validation Independent tests

AVG_ACC(%)ACC(%) MCC Sn(%) Sp(%) AUC ACC(%) MCC Sn(%) Sp(%) AUC

ESM_t33 LR 1280 92.65 0.854 90.32 94.97 0.976 92.75 0.858 88.60 96.89 0.973 92.70
SVM 1280 94.06 0.882 91.74 96.39 0.979 93.78 0.877 90.67 96.89 0.970 93.92
LGBM 1280 93.78 0.877 90.67 96.89 0.970 93.52 0.872 90.16 96.89 0.970 93.65

ESM_t36 LR 2560 92.13 0.843 90.97 93.29 0.977 91.97 0.841 88.60 95.34 0.963 92.05
SVM 2560 93.03 0.861 91.10 94.97 0.977 93.01 0.862 90.16 95.85 0.970 93.02
LGBM 2560 91.81 0.838 88.65 94.97 0.977 92.75 0.860 87.56 97.93 0.971 92.28
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Figure 4
Comparison of metrics after feature selection optimization on the main dataset

A B

C D

Figure 5
Comparison of metrics after feature selection optimization on the alternate dataset

A B

C D
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Table 4
Table of performance metrics for SVM and LGBM after feature selection on the main dataset, with the best score for each metric bolded and underlined

Feature Model Dim

5-Fold cross-Validation Independent tests

AVG_ACC(%)ACC(%) MCC Sn(%) Sp(%) AUC ACC(%) MCC Sn(%) Sp(%) AUC

ESM_t33 SVM 1280 75.75 0.515 75.70 75.81 0.804 73.10 0.462 75.44 70.76 0.816 74.43%
155 75.61 0.513 73.35 77.88 0.837 75.44 0.509 77.19 73.68 0.815 75.52%

LGBM 1280 73.25 0.466 71.16 75.37 0.809 73.39 0.469 76.61 70.18 0.823 73.32%
295 78.32 0.568 74.38 82.30 0.863 73.39 0.468 74.85 71.93 0.817 75.86%

ESM_t36 SVM 2560 73.91 0.478 72.97 74.85 0.808 75.44 0.510 79.53 71.35 0.825 74.67%
205 73.76 0.475 73.84 73.69 0.827 73.39 0.468 76.02 70.76 0.804 73.58%

LGBM 2560 72.09 0.442 70.35 73.84 0.805 72.51 0.452 76.61 68.42 0.820 72.30%
165 77.69 0.555 74.42 80.96 0.881 76.02 0.523 80.70 71.35 0.813 76.86%

Table 5
Table of performance metrics for SVM and LGBM after feature selection on the alternate dataset, with the best score for each metric bolded and underlined

Feature Model Dim

5-Fold cross-Validation Independent tests

AVG_ACC(%)ACC(%) MCC Sn(%) Sp(%) AUC ACC(%) MCC Sn(%) Sp(%) AUC

ESM_t33 SVM 1280 94.06 0.882 91.74 96.39 0.979 93.78 0.877 90.67 96.89 0.970 93.92%
50 94.45 0.890 92.13 96.77 0.983 93.78 0.877 91.19 96.37 0.970 94.12%

LGBM 1280 93.78 0.877 90.67 96.89 0.970 93.52 0.872 90.16 96.89 0.970 93.65%
255 94.06 0.883 90.84 97.29 0.985 94.56 0.895 90.16 98.96 0.971 94.31%

ESM_t36 SVM 2560 93.03 0.861 91.10 94.97 0.977 93.01 0.862 90.16 95.85 0.970 93.02%
50 93.87 0.878 91.74 96.00 0.979 93.78 0.879 89.64 97.93 0.963 93.83%

LGBM 2560 91.81 0.838 88.65 94.97 0.977 92.75 0.860 87.56 97.93 0.971 92.28%
175 93.74 0.876 91.23 96.26 0.985 93.52 0.874 89.12 97.93 0.969 93.63%
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selection on the main dataset did not enhance performance and
instead led to a decline. For example, T36_SVM_F205 was lower
than the original model T36_SVM_F2560 in all five metrics in
independent tests. While T33_SVM_F155 outperforms
T33_SVM_F1280 in the first four metrics, it still did not surpass
T36_SVM_F2560 overall, and this advantage was not maintained
in 5CV.

On the alternate dataset, the same improvement was observed
with the LGBM model from Figure 5 and Table 5: the feature-
selected model outperformed the original model in both 5CV and
independent tests. Among them, T33_LGBM_F255 performed
best, achieving 5CV scores of ACC (94.06%), MCC (0.883), Sp
(97.29%), and AUC (0.986). These represented improvements of
0.28%, 0.58%, 0.40%, and 0.01%, respectively, compared to the
next best model. Although Sn for T33_LGBM_F255 (90.84%)
was slightly (0.39%) behind that of T36_LGBM_F175 (91.23%),
it still surpassed other LGBM models. In independent tests,
T33_LGBM_F255 lead in ACC (94.56%), MCC (0.895), Sn
(90.16%), Sp (98.96%), and AUC (0.971), outperforming the
second-best model by margins of 1.04%, 2.08%, 1.04%, 1.03%,
and 0.05%, respectively. In particular, it also had the best values
of ACC, MCC, Sp, and AUC among all models (including SVM
models). For SVM-based models, feature selection on the
alternate dataset yielded partial improvements in performance.

These enhancements were mainly in 5CV. For example,
T33_SVM_F50 exhibited small improvements over the original
model T33_SVM_F1280 in all five metrics: ACC (94.45%)
improved by 0.39%, MCC (0.890) by 0.78%, Sn (92.13%) by
0.39%, Sp (96.77%) by 0.38% and AUC (0.983) by 0.44%.
However, there were no such improvements in the independent tests.

Overall, T36_LGBM_F165 and T33_LGBM_F255 were the
top performers on the main and alternate datasets, respectively, as
shown in Tables 4 and 5. This is attributed to both models not
only achieving the highest number of leading metrics but also the
highest average ACC values: 76.86% for T36_LGBM_F165 and
94.31% for T33_LGBM_F255.

3.3. Performance of ensemble learning models

For maximum effectiveness in recognizing ACPs, we adopted
an optimization using a stacked ensemble learning method with
SVM and LGBM as base learners and developed four such
ensemble models. Assessments of the different evaluation
methods are shown in Figures 6 and 7, with corresponding
accuracy values listed in Tables 6 and 7. For the purpose of
precisely assessing the behavior of the ensemble learning models,
we selected the top-performing models in the feature selection
optimization section for comparison.

Figure 6
Performance of SVM, LGBM, and Stacked ensemble learning models on the main dataset

A B

Figure 7
Performance of SVM, LGBM, and Stacked ensemble learning models on the alternate dataset

A B
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Table 6
Table of performance metrics for SVM, LGBM, and Stacked ensemble learning models on the main dataset, with the best score for each metric bolded and underlined

Feature Model Dim

5-Fold cross-Validation Independent tests

AVG_ACC(%)ACC(%) MCC Sn(%) Sp(%) AUC ACC(%) MCC Sn(%) Sp(%) AUC

ESM_t33 SVM 155 75.61 0.513 73.35 77.88 0.837 75.44 0.509 77.19 73.68 0.815 75.52
LGBM 295 78.32 0.568 74.38 82.30 0.863 73.39 0.468 74.85 71.93 0.817 75.86
Stack 124 78.33 0.569 75.99 80.68 0.783 73.98 0.480 75.44 72.51 0.732 76.15

ESM_t36 SVM 205 73.76 0.475 73.84 73.69 0.827 73.39 0.468 76.02 70.76 0.804 73.58
LGBM 165 77.69 0.555 74.42 80.96 0.881 76.02 0.523 80.70 71.35 0.813 76.86
Stack 124 79.94 0.602 76.32 83.58 0.802 77.78 0.557 81.87 73.68 0.770 78.86

Table 7
Table of performance metrics for SVM, LGBM, and Stacked ensemble learning models on the alternate dataset, with the best score for each metric bolded and underlined

Feature Model Dim

5-Fold cross-Validation Independent tests

AVG_ACC(%)ACC(%) MCC Sn(%) Sp(%) AUC ACC(%) MCC Sn(%) Sp(%) AUC

ESM_t33 SVM 50 94.45 0.890 92.13 96.77 0.983 93.78 0.877 91.19 96.37 0.970 94.12
LGBM 255 94.06 0.883 90.84 97.29 0.986 94.56 0.895 90.16 98.96 0.971 94.31
Stack 70 94.65 0.894 92.39 96.90 0.948 94.82 0.899 90.67 98.96 0.947 94.73

ESM_t36 SVM 50 93.87 0.878 91.74 96.00 0.979 93.78 0.879 89.64 97.93 0.963 93.83
LGBM 175 93.74 0.876 91.23 96.26 0.985 93.52 0.874 89.12 97.93 0.969 93.63
Stack 65 94.52 0.891 93.42 95.61 0.955 93.78 0.878 90.16 97.41 0.940 94.15
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In cross-validation on the main dataset (Figure 6-A and
Table 6), it is apparent that the general effectiveness of model
T36_Stack_F124 is better than the other models, which effectively
illustrates the applicability of the stacking ensemble learning
method. Specifically, it achieved scores of 79.94% for ACC,
0.602 for MCC, 76.32% for Sn, and 83.58% for Sp, an
improvement of 1.61%, 3.35%, 0.33%, and 1.28%, respectively,
over the second-place models. With respect to AUC, the
T36_Stack_F124 did not perform as well as the remaining four
single models, being outperformed by the best-performing model
T36_LGBM_F165 (88.09%) by 6.07%. However,
T36_Stack_F124 still performed better than another ensemble
model, T33_Stack_F124. A similar improvement was also
observed in independent tests (Figure 6-B and Table 6), where
T36_Stack_F124 ranked first on ACC, MCC, Sn, and Sp with
77.78%, 0.557, 81.87%, and 73.68%, respectively.

In tests conducted on the alternate dataset, the ensemble
learning models consistently demonstrated superior performance
(Figure 7 and Table 7). As an example, T33_Stack_F70 had an
ACC of 94.65% and 94.82%, and an MCC of 0.894 and 0.899,
which ranked first among all models in the two evaluation
methods. In terms of the remaining metrics, the ensemble learning
models also exhibited good performance. For instance,
T36_Stack_F65 had the highest Sn score of 93.42% in 5CV.
Meanwhile, T33_Stack_F70 and T33_LGBM_F255 jointly lead
with a Sp of 98.96% in independent tests. Although some
ensemble models occasionally underperformed single models in
certain metrics, they consistently achieve the highest ACC scores,
which were considered the most indicative of overall effectiveness
in 5CV and independent tests. In particular, T36_Stack_F124
leads with an average ACC of 78.86% on the main dataset, 2%
higher than the runner-up, while T33_Stack_F70 registered an

average ACC of 94.73% on the alternate dataset, outperforming
the second best by 0.42%.

The discussion illustrates that applying an ensemble learning
approach significantly strengthens model performance in
predicting ACPs. This is particularly evident in the performance
of models utilizing T36_Stack with 124 dimensions (124D) and
T33_Stack with 70 dimensions (70D), which have proven to be
the optimal choices for predicting ACPs on the main and alternate
datasets, respectively.

3.4. Comparison with advanced methods

With the aim of comprehensively evaluating the effectiveness
of iACP-SEI, we compared it with other machine learning or deep
learning models, including iACP, PEPred-Suite, ACPred-Fuse,
AntiCP 2.0, iACP-DRLF, ACP-check, ACP-BC, and ACP-DRL.
Table 8 shows the independent testing performance of each model
on AntiCP 2.0's benchmark datasets, with the top score for each
metric in bold and underlined. Although iACP-SEI did not
surpass the most advanced model, ACP-DRL, in ACC (77.78%
vs. 78.96%) and Sp (73.68% vs. 78.39%) on the main dataset, it
excelled in MCC and Sn metrics. Specifically, its MCC score of
0.56 matched that of ACP-DRL and ACP-check, and its Sn score
of 81.87% exceeded the second-ranked iACP-DRLF by
approximately 1.17%. On the alternate dataset, iACP-SEI
significantly outperforms other models, leading in ACC (94.82%),
MCC (0.90), and Sp (98.96%).

To further illustrate the excellence of our model, we compared it
on the unbalanced dataset constructed by ACP-DRL. The latest 5CV
scores of ACP-check, ACP-BC, and ACP-DRL were sourced from
ACP-DRL [20]. Table 9 shows the model performance on this
unbalanced dataset, with the top score for each metric bolded and

Table 8
Comparison of iACP-SEI with current ACP predictors on the main and alternate datasets for independent tests, with the best score

for each metric bolded and underlined

Method

Main dataset Alternate dataset

ACC(%) MCC Sn(%) Sp(%) ACC(%) MCC Sn(%) Sp(%)

iACP 55.10 0.11 77.91 32.16 77.58 0.55 78.35 76.80
PEPred-Suite 53.49 0.08 33.14 73.84 57.47 0.16 40.21 74.74
ACPred-Fuse 68.90 0.38 69.19 68.60 78.87 0.60 64.43 93.30
AntiCP 2.0 75.43 0.51 77.46 73.41 92.01 0.84 92.27 91.75
iACP-DRLF 77.50 0.55 80.70 74.30 93.00 0.86 89.60 96.40
ACP-check 78.00 0.56 80.00 77.00 93.00 0.86 93.00 93.00
ACP-BC 75.16 0.50 72.61 77.71 91.05 0.82 92.14 89.96
ACP-DRL 78.96 0.56 79.53 78.39 94.43 0.89 92.22 96.64
iACP-SEI(ours) 77.78 0.56 81.87 73.68 94.82 0.90 90.67 98.96

Table 9
Comparison of iACP-SEI with current ACP predictors on the unbalanced dataset for five-fold cross-validation, with the best score for

each metric bolded and underlined

Method ACC(%) MCC Sn(%) Sp(%) AUC AUPR

ACP-check 82.00 0.40 49.22 89.21 0.76 0.44
ACP-BC 88.53 0.60 64.58 93.87 0.89 0.71
ACP-DRL 89.82 0.64 62.47 95.89 0.91 0.78
iACP-SEI(ours) 90.39 0.66 61.70 96.93 0.93 0.80
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underlined. As we can see, iACP-SEI was the top performer in all
five metrics, achieving superior scores for ACC (94.82%), MCC
(0.90), Sp (98.96%), AUC (0.93), and AUPR (0.80). The Sn score
(61.70%) is only slightly below those of ACP-BC (64.58%) and
ACP-DRL (62.47%), which ranked third. These results indicate
that iACP-SEI is able to identify and process minority class
samples more effectively without being overwhelmed by the
majority class, and is more robust in the face of data imbalance.
In summary, iACP-SEI is one of the most advanced ACP
predictors that are based on machine learning, especially for
unbalanced data, where it consistently and accurately
differentiates between ACPs and non-ACPs.

4. Conclusion

In conclusion, we developed a potent ACP recognition model
named iACP-SEI. iACP-SEI leverages the ESM2 protein
language model to construct optimal ensemble learning models for
the main and alternate AntiCP 2.0 datasets using feature selection
and stacking ensemble learning method. To test the robustness of
iACP-SEI, we also conducted detailed experiments on the
unbalanced dataset of ACP-DRL. The results demonstrated that
iACP-SEI outperformed the existing advanced models across all
evaluated datasets. In particular, on both the alternate and
unbalanced datasets, iACP-SEI achieved enhanced performance in
ACC and MCC. By extracting evolutionary information features
of peptides using a protein language model, iACP-SEI showed an
improved ability to identify ACPs and non-ACPs.

Although iACP-SEI demonstrated higher predictive
performance and robustness than other methods, there are still
some limitations. For example, the large difference in the
distribution of certain anticancer peptide samples leads to
difficulties in the model recognizing these samples. Some ACPs
with cyclic structures or unconventional amino acid compositions
may not align with the main patterns the model has learned,
making them more challenging to identify accurately. In addition,
the deep feature extraction process of the model requires
significant computational resources, which can limit its
application. However, these shortcomings do not prevent us from
applying the pre-trained protein language models to analyze
peptide or protein sequences and develop more efficient methods.
In recent years, some studies have begun to focus on the
prediction of multifunctional peptides. For example, the ETFC
model developed by Fan et al. utilizes positional encoding and
text encoding combined with a feedforward neural network for
prediction [62]. These models are all based on traditional
sequence information. Therefore, in future research, we will
attempt to apply the modeling methods used in iACP-SEI to the
prediction of multifunctional peptides.

Funding Support

This project has received support from the National Natural
Science Foundation of China (No. 62371318, No. 32302083),
2024 Foundation Cultivation Research—Basic Research
Cultivation Special Funding (No. 20826041H4211), and the
Chengdu Science and Technology Bureau (No. 2024-YF08-
00022-GX).

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

Data available on request from the corresponding author upon
reasonable request.

Author Contribution Statement

Bowen Zheng: Validation, Formal analysis, Investigation,
Resources, Writing – original draft, Writing – review & editing,
Supervision, Project administration. Rujun Li: Investigation, Data
curation, Visualization. Haotian Wang: Validation, Investigation,
Visualization. Sheng Wang: Investigation. Shiyu Peng: Data
curation. Mingxin Li: Formal analysis. Liangzhen Jiang: Writing
– review & editing. Zhibin Lv: Conceptualization, Methodology,
Software, Supervision, Project administration, Funding acquisition.

References

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L.,
Soerjomataram, I., : : : , & Global cancer statistics 2022.
(2024). GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA: A Cancer
Journal for Clinicians, 74, 229–263.

[2] Gottlieb, E., & Tomlinson, I. P. (2005). Mitochondrial tumour
suppressors: A genetic and biochemical update. Nature
Reviews Cancer, 5, 857–866.

[3] Hollingsworth, R. E., & Jansen, K. (2019). Turning the corner
on therapeutic cancer vaccines. npj Vaccines, 4, 7.

[4] Gaspar, D., Veiga, A. S., & Castanho, M. A. (2013). From
antimicrobial to anticancer peptides. A review. Frontiers in
Microbiology, 4, 63880.

[5] Rao, B., Zhou, C., Zhang, G., Su, R., & Wei, L. (2020).
ACPred-Fuse: Fusing multi-view information improves the
prediction of anticancer peptides. Briefings in Bioinformatics,
21, 1846–1855.

[6] Sun, M., Hu, H., Pang, W., & Zhou, Y. (2023). ACP-BC: A
model for accurate identification of anticancer peptides based
on fusion features of bidirectional long short-term memory
and chemically derived information. International Journal of
Molecular Sciences, 24, 15447.

[7] Peelle, B., Lorens, J., Li, W., Bogenberger, J., Payan, D. G., &
Anderson, D. (2001). Intracellular protein scaffold-mediated
display of random peptide libraries for phenotypic screens in
mammalian cells. Chemistry & Biology, 8, 521–534.

[8] Norman, T. C., Smith, D. L., Sorger, P. K., Drees, B. L.,
O’Rourke, S. M., Hughes, T. R., : : : , & Murray, A. W.
(1999). Genetic selection of peptide inhibitors of biological
pathways. Science, 285, 591–595.

[9] Zhang, Z., Cui, F., Su, W., Dou, L., Xu, A., Cao, C., & Zou, Q.
(2022). webSCST: An interactive web application for single-
cell RNA-sequencing data and spatial transcriptomic data
integration. Bioinformatics, 38, 3488–3489.

[10] Müller, A. T., Gabernet, G., Hiss, J. A., & Schneider, G. (2017).
modlAMP: Python for antimicrobial peptides. Bioinformatics,
33, 2753–2755.

[11] Cui, F., Li, S., Zhang, Z., Sui, M., Cao, C., El-Latif Hesham, A.,
& Zou, Q. (2022). DeepMC-iNABP: Deep learning for
multiclass identification and classification of nucleic

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2025

13



acid-binding proteins. Computational and Structural
Biotechnology Journal, 20, 2020–2028.

[12] Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., : : : ,
& Zou, Q. (2022). webTWAS: A resource for disease candidate
susceptibility genes identified by transcriptome-wide
association study. Nucleic Acids Research, 50, D1123–D1130.

[13] Wang, Y., Zhai, Y., Ding, Y., & Zou, Q. (2024). SBSM-Pro:
Support bio-sequence machine for proteins. Science China
Information Sciences, 67, 212106.

[14] Gu, Z. F., Hao, Y. D., Wang, T. Y., Cai, P. L., Zhang, Y., Deng,
K. J., : : : , & Lv, H. (2024). Prediction of blood–brain barrier
penetrating peptides based on data augmentation with Augur.
BMC Biology, 22, 86.

[15] Chen, W., Ding, H., Feng, P., Lin, H., & Chou, K. C. (2016).
iACP: A sequence-based tool for identifying anticancer
peptides. Oncotarget, 7, 16895.

[16] Wei, L., Zhou, C., Su, R., & Zou, Q. (2019). PEPred-Suite:
Improved and robust prediction of therapeutic peptides using
adaptive feature representation learning. Bioinformatics, 35,
4272–4280.

[17] Agrawal, P., Bhagat, D., Mahalwal, M., Sharma, N., &
Raghava, G. P. S. (2021). AntiCP 2.0: An updated model for
predicting anticancer peptides. Briefings in Bioinformatics,
22, bbaa153.

[18] Lv, Z., Cui, F., Zou, Q., Zhang, L., & Xu, L. (2021). Anticancer
peptides prediction with deep representation learning features.
Briefings in Bioinformatics, 22, bbab008.

[19] Zhu, L., Ye, C., Hu, X., Yang, S., & Zhu, C. (2022). ACP-check:
An anticancer peptide prediction model based on bidirectional
long short-term memory and multi-features fusion strategy.
Computers in Biology and Medicine, 148, 105868.

[20] Xu, X., Li, C., Yuan, X., Zhang, Q., Liu, Y., Zhu, Y., & Chen,
T. (2024). ACP-DRL: An anticancer peptides recognition
method based on deep representation learning. Frontiers in
Genetics, 15, 1376486.

[21] Liu, M., Wu, T., Li, X., Zhu, Y., Chen, S., Huang, J., : : : , &
Liu, H. (2024). ACPPfel: Explainable deep ensemble learning
for anticancer peptides prediction based on feature
optimization. Frontiers in Genetics, 15, 1352504.

[22] Chen, J., Cheong, H., & Siu, S. (2021). XDeep-AcPEP: Deep
learningmethod for anticancer peptide activity prediction based
on convolutional neural network and multitask learning.
Journal of Chemical Information and Modeling, 61,
3789–3803.

[23] Grisoni, F., Neuhaus, C. S., Hishinuma,M., Gabernet, G., Hiss,
J. A., Kotera, M., & Schneider, G. (2019). De novo design of
anticancer peptides by ensemble artificial neural networks.
Journal of Molecular Modeling, 25, 112.

[24] Charoenkwan, P., Chiangjong, W., Lee, V. S., Nantasenamat,
C., Hasan, M. M., & Shoombuatong, W. (2021). Improved
prediction and characterization of anticancer activities of
peptides using a novel flexible scoring card method.
Scientific Reports, 11, 3017.

[25] Ma,Y., Liu, X., Zhang, X., Yu, Y., Li, Y., Song,M., &Wang, J.
(2023). Efficient mining of anticancer peptides from gut
metagenome. Advanced Science, 10, 2300107.

[26] Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Wang,
Y., Jones, L., : : : , & Rost, B. (2022). ProtTrans: Toward
understanding the language of life through self-supervised
learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44, 7112–7127.

[27] Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M., &
Church, G. M. (2019). Unified rational protein engineering

with sequence-based deep representation learning. Nature
Methods, 16, 1315–1322.

[28] Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., : : : , & Hassabis, D. (2021). Highly
accurate protein structure prediction with AlphaFold. Nature,
596, 583–589.

[29] Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J.,
Ovchinnikov, S., Lee, G. R., : : : , & Baker, D. (2021).
Accurate prediction of protein structures and interactions
using a three-track neural network. Science, 373, 871–876.

[30] Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., : : : , &
Ma, J. (2021). Biological structure and function emerge from
scaling unsupervised learning to 250 million protein
sequences. Proceedings of the National Academy of
Sciences, 118, e2016239118.

[31] Meier, J., Rao, R., Verkuil, R., Liu, J., Sercu, T., & Rives, A.
(2021). Language models enable zero-shot prediction of the
effects of mutations on protein function. Advances in Neural
Information Processing Systems, 34, 29287–29303.

[32] Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., : : : , &
Shmueli, Y. (2023). Evolutionary-scale prediction of atomic-
level protein structure with a language model. Science, 379,
1123–1130.

[33] Cao, C., Shao, M., Zuo, C., Kwok, D., Liu, L., Ge, Y., : : : , &
Zou, Q. (2024). RAVAR: A curated repository for rare variant–
trait associations. Nucleic Acids Research, 52, D990–D997.

[34] Chen, J., Wu, H., & Wang, N. (2024). KEGG orthology
prediction of bacterial proteins using natural language
processing. BMC Bioinformatics, 25, 146.

[35] Xu, Z. Q. J., Zhang, Y., & Luo, T. (2022). Overview frequency
principle/spectral bias in deep learning. arXiv:2201.07395.

[36] Xu, Z. Q. J. (2020). Frequency principle: Fourier analysis sheds
light on deep neural networks. Communications in
Computational Physics, 28, 1746–1767.

[37] Dai, R., Zhang, W., Tang, W., Wynendaele, E., Zhu, Q., Bin,
Y., : : : , & Xia, J. (2021). BBPpred: Sequence-based prediction
of blood-brain barrier peptides with feature representation
learning and logistic regression. Journal of Chemical
Information and Modeling, 61, 525–534.

[38] Wan, Y., Wang, Z., & Lee, T. Y. (2021). Incorporating
support vector machine with sequential minimal
optimization to identify anticancer peptides. BMC
Bioinformatics, 22, 286.

[39] Manganaro, L., Sabbatini, G., Bianco, S., Bironzo, P., Borile,
C., Colombi, D., : : : , & Vittorio Scagliotti, G. (2023). Non-
small cell lung cancer survival estimation through multi-omic
two-layer SVM: A multi-omics and multi-sources integrative
model. Current Research in Bioinformatics, 18, 658–669.

[40] Zhang,Y.,Yu, S.,Xie, R., Li, J., Leier,A.,Marquez-Lago,T. T.,
: : : , & Wang, J. (2020). PeNGaRoo, a combined gradient
boosting and ensemble learning framework for predicting
non-classical secreted proteins. Bioinformatics, 36, 704–712.
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