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Abstract: This article proposes a data-driven scheme for quality control and process optimization of injection molding in industrial plants. The
suggested approach enables the operators to find optimal process parameters that enable producing high quality parts. Additionally, it allows early
detection of defects throughmonitoring variations of process parameters. The implementation of the suggested scheme is investigated in a factory,
where an on-site test is conducted, and outcomes are validated using a process capability analysis. The adopted approach and various levels of data
processing are described, followed by a detailed explanation of the implementation steps and an on-site test to assess its effectiveness. The
obtained results indicate an increase in production quality, reduced surface-level defects by 52.47%, a 92.5% decrease in the variation of
pressure, and less than 2 ms variation in injection time. Furthermore, the process capability analysis resulted in a stabilized process with
lower weight variations as reflected with the related (cpk) index, proving the approach to be capable of producing conforming products.
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1. Introduction

Injection molding is one of themost popular processes in plastic
manufacturing [1]. It accounts for 30% of all plastic production, and
its global market size is expected to rise annually by 4.8% to reach
397.6 billion US dollars by 2030 [2]. Such an outcome is anticipated,
since injection molding allows the production of complex parts in a
short production time and at a low cost [3]. Despite its benefits,
injection molding is a major generator of waist as defects are still
a persisting problem. To address this concern, different methods
were investigated. These methods focused on controlling the
process and improving the quality of production [4].

Process control and monitoring are important procedures in
injection molding. They entail monitoring the interaction between
machine operation and the state of the resin. Ignoring a machine
alarm or a control procedure can lead to huge losses since one
injection cycle takes few seconds and can produce more than one
part [5]. Nonetheless, process control has its set of challenges [6].
This is due to the different factors affecting operation, the
nonlinear relationship between process parameters, and the large
time delay in process variables [7]. Conventional methods relied
heavily on operator’s expertise and on trial-and-error methods [8].
However, the result was an inconsistency in the quality of
production. Statistical methods were investigated, such as the
Taguchi method and fuzzy logic [9]. These techniques were
highly efficient in optimizing process parameters because of their

ability to detect abnormal variations, but less efficient in dynamic
control given their non-iterative nature [10].

Quality control is as important as process monitoring. Injected
products go through multiple control units to ensure that no defective
part is delivered to the customer. This makes quality control cost and
time-consuming, since the process is mainly manual, and it comes at
a later stage of the injection process [11]. Thus, relating variations of
parameters to the quality of products becomes more challenging.
Recent work has explored the use of cameras to inspect the quality
of parts right after ejection [12]. However, visual appearance takes
time to stabilize which may require additional inspections.

Considering a data analysis technique appeared to be an
efficient solution. It promises better monitoring of the process and
an overall improvement of the production quality [13]. For
instance, different research work in literature focused on finding
the process parameters that have the highest effect on production
[14, 15]. However, the results differ from one finding to another
given the high variability of process parameters.

New approaches relied on computer simulations such as
Computer-Aided Engineering (CAE), cyber-physical production
systems, and digital twins [16]. These technologies would allow
modeling of the process, replication of injection conditions, and
generation of large simulation-based datasets. Although the
theoretical results showed high accuracy, applying the findings in
real settings proves these methods to be less performing [17].

On the other hand, other research used machine learning (ML)
techniques to predict the appearance of defects as well as the quality
of injected products [18, 19]. Prominent results were found for
defects related to dimensionality and weight with an accuracy
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higher than 90% [20]. However, results were less promising for
surface-level defects since visual quality is far more challenging
to describe and quantify [21]. Additionally, using such techniques
requires huge amounts of data [22]. The latter can be hard to
acquire, as many companies are not yet adopting digitalization in
their factory floors. Subsequently, in many cases, records of
defects are done manually, and they don’t match the data
generated by injection machines.

Since the robustness of an injection monitoring system is related
to the ability to get reliable and time-based measurement of important
states in the process [23] and given the efficiency and versatility of
data-oriented techniques [13], this paper examines the viability of
integrating a data-driven quality control and process optimization
approach to overcome surface-level defects in a real injection
molding unit. The primary objective of this study is to align process
parameter variations with the quality of the ejected part. This is
done by investigating the process parameters affecting the quality
the most and finding process windows with low variations in these
parameters, hence ensuring the reproducibility and consistency of
good quality parts, while preventing surface-level defects.

The suggested approach provides the operator with an iterative
framework that takes into consideration the dynamic nature of
injection conditions and the high variations of process parameters.
Additionally, this study provides a practical approach for dealing
with surface-level defects. Indeed, successful implementation of the
approach promises reducing the reliance on the multiple quality
control procedure and paving the way for a fully automated process
and quality control. This will ensure fast integration into the
Industry 4.0 manufacturing scene, at a low cost and with eliminated
defects.

The remainder of this paper is structured as follows. Section 2
presents the theoretical model of quality control and process
optimization. Section 3 describes the implementation procedure of
the suggested data-driven suggested scheme. Section 4 details the
on-site industrial testing results along with the capability analysis.
Finally, Section 5 concludes the paper.

2. Literature Review

2.1. Theoretical framework

In this section, the quality control and process optimization
scheme will be described. As shown in Figure 1, the approach is
divided into six levels: Data acquisition, data analysis, extraction
of optimal parameters, process monitoring, quality control, and
database.

2.1.1. Data acquisition
There are two data sets that need to be collected: process

parameters and defect records.
Process parameters are collected from injection machines.

These machines are equipped with sensors that measure
temperatures, pressures, and other parameters [24]. The data sets
are in the form of time series. Each record corresponds to one
injection cycle. Additionally, in a cycle, one or multiple parts can
be produced. Data generated is extracted from the machine in
different formats including: (.txt, .tqc, .csv).

Defect records, on the other hand, are collected manually. First,
when the parts are ejected through visual inspections and at the end of
the injection process once the shape and visual appearance of the part
have stabilized to measure the weight and the dimensions of the part.
As mentioned in Section 1, these operations make quality inspections
cost-intensive, time-consuming, and sometimes prone to human error.
Different techniques in the literature have explored methods allowing
the automation of the process including [25] in which operators
responsible for weight and shape inspections are replaced with
auxiliary robots – which make the process aligned with Industry 4.0
manufacturing. Additionally, machine vision and deep neural
networks have also been used for defect detection [26, 27]. Indeed,
machine vision has the ability to cover the whole electromagnetic
spectrum, while deep learning provides different techniques for
defect detection such as defect detection context, learning
techniques, defect localization, and classification which surpass the
limitations of artificial visual inspections and eliminate manual
ones. Furthermore, new classes of ML algorithms have emerged
including reinforcement learning [28] and Generative Adversarial
Networks (GANs) [29]. Using the game concept, GANs train a
generator and a discriminator to inspect defects. These ensure the
powerful feature pertainig to their generation ability that enables the
expansion of defect datasets – resulting in an enhanced data.

2.1.2. Data analysis
At this level, data gathered will be cleaned, explored, and

analyzed to identify patterns in process parameters and relate them
to the occurrence of defects. Data cleaning enables us to remove
corrupt and incomplete records from data [30]. After cleaning the
data set, process parameters are visualized and explored to
understand the effect of each one on the other. Additionally,
records of defects are merged with process parameters data to
verify how variations in process parameters can be a direct cause
of appearance of defects. The analysis is carried out in Python
programming software, given its ease of use and the variety of
libraries it provides (Pandas, NumPy, Matplotlib).

Figure 1
General block diagram of the quality control and process optimization scheme
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2.1.3. Extraction of optimal parameters
After analyzing the different data sets and identifying the

relationship between them, the optimal process parameters are
determined. This can be accomplished by identifying the parameter
that has the highest effect on the quality of ejected parts and
identifying process windows for good quality products [18].
Depending on the availability of data, different methods can be used
to identify the parameter affecting the quality the most. This includes
analyzing correlation matrices or applying ML classification
algorithms, such as support vector machine (SVM), random forest,
and gradient-boosted trees (GBT) [31].

On the other hand, identifying process windows for good
production means determining parameter values resulting in no
defects. By doing so, the variations in process parameters would
be minimized with a consistent quality of production and better
control over the process.

2.1.4. Process monitoring
Optimal process parameters deduced are inserted in the injection

machine for a new production. Tolerances are specified as well in order
to eliminate high variations in parameters and to alert the operatorswhen
parameters are out of the range specified [32]. Once production starts,
the process can be monitored real-time using a graphical display [13].
The latter will enable the operator to visualize the process parameters
and detect any instabilities in the process.

Thanks to the advancements in deep learning, newmethods have
emerged allowing seamless monitoring of the process, less reliance on
manual maneuver, and effective handling of available data. This
includes systems merging off-production representation learning, in-
production dynamic calibration, and online monitoring for anomaly
detection and root cause identification [33].

2.1.5. Quality control
At this level, the quality of ejected parts will be controlled. As

previously discussed, records of defects are collected during and
after production. This implies that there are two control
procedures employed to assess the quality of production. The first
one is carried out periodically during production [14]. The second
is performed after the completion of production. The purpose of
this procedure is to ensure that no defective part was left from the
first control and to validate the quality of products through
different measurements such as weight, and dimensions.

2.1.6. Data base
Data collected from injection molding machines and from

quality control checkups will be stored in a database linked to the

company server. This will provide access to historical data that
will be used to train ML models and to predict the occurrence of
defects [34].

3. Research Methodology

3.1. Implementation procedure in a factory

In this section, the proposed data-driven scheme is employed in
the injection unit of an Automotive Moroccan company. Figure 2
illustrates the procedure used to implement the proposed scheme on
the factory floor. The procedure is divided into six consecutive
steps. Implementation results are elaborated in the following sections.

3.1.1. Product selection
To implement the suggested scheme as amode of operation for all

injected products, we must assess its effectiveness on one product. To
select the product, we used the Pareto principle, also known as the
80:20 rule. This principle asserts that 80% of process’s outcomes
derive from 20% of its causes [35]. If we apply this principle to our
case, we deduce that 80% of defects collected occurred in 20% of
injected products. Figure 3 illustrates the Pareto distribution
diagram of 6245 defects collected from 65 injected products. As
observed, the first product P183, which is an automotive interior
part, had the highest number of defects comprising 59% of total
defects recorded. Accordingly, the quality control and process
optimization scheme will be realized in this product.

3.1.2. Defect selection
After selecting the study product, the same principle is applied

for selecting the target defect. Figure 4 illustrates the Pareto
distribution diagram of defects detected in the chosen product. We
observe that the white spot, a surface-level defect, is the highest
recorded defect for the selected product with a percentage of
90.3%. This means that white spots affect the quality the most.
Subsequently, white spots will be the target of analysis.

3.1.3. Data manipulation
In this step, white spots are investigated following the proposed

scheme. As previously mentioned, two data sets are needed. Process
parameter data were collected from the injection molding machine in
a .csv format. The raw data contained {6923 rows × 19 columns}.
The number of rows refers to the number of cycles, where four
parts are ejected per cycle, and the number of columns refers to

Figure 2
Block diagram detailing the implementation procedure in the factory

Product Selection Defect Selection Data Manipulation
Extraction of Optimal 

Process Paramters

On site test
Validation of the 

procedure

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2025

03



the process parameters being monitored. Defect data on the other
hand was collected on an hourly basis for 11 shifts.

3.1.4. Data cleaning and exploration
Data extracted from the injection molding machine is

manipulated using python programming software. We noticed that

some rows or cells were empty. Table 1 presents the number of
missing values found for each parameter. In injection molding,
such records occur during downtimes of machines or when errors
arise. An example of this is having long cycle times or having
empty cells. Failure to remove these records will mislead the
analysis. Therefore, cycles with missing or misleading process

Figure 3
Pareto distribution diagram for product selection

Figure 4
Pareto distribution diagram for defect selection
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parameter values were removed, and the shape of the dataset
becomes {6914 rows × 19 columns}.

After that, a correlation matrix is plotted in Figure 5 to understand
how each parameter relates to the other. Pearson’s correlation coefficient
was used to measure the linear relationship between two parameters,
with values close to 1 indicating high positive proportionality, values
close to −1 indicating high negative proportionality, and values
close to 0 indicating low proportionality. Lighter colors mean high
positive proportionality, and darker colors indicate high negative
proportionality. We notice that the maximum injection pressure has a
high positive correlation with different parameters, among them
injection time, cushion, and end of screw retreat. This suggests that
the maximum injection pressure is the parameter that affects the
process the most.

As for defects, data collected were imported for analysis.
Figure 6 illustrates the distribution of the white spot defect in
time. The total number of white spot defects found during the 11
shifts is 41, and the highest hourly record was 6 white spot
defects (recorded at 2 PM).

To better understand how formation of defects can be caused by
high variations of parameters, we plotted some process parameters at
the time we had the highest number of defects.

In Figure 7, the variation of injection time with time is
displayed. We notice that the variations are between 0.6540 s and
0.6520 s. However, between 2:40:00 PM and 3:00:00 PM
injection time decreased to 0.6510 s. In Figure 8, the dosing time
is plotted. We observe that it increased until it surpassed the value
of 2.85 s. In Figure 9, the maximum injection pressure is plotted.

Table 1
Number of missing values for every process parameter

Parameter

Number of
missing
values

Date 2
Time (s) 2
Cycles 2
Cycle time (s) 0
Injection time (s) 1
Dosing time (s) 0
Cushion (mm) 1
Max inj. p. (bar) (maximum injection pressure) 1
End of screw p. (mm) (end of screw position) 0
CY3 Temp (°C) (temperature in the third
zone of screw)

0

mold cls time (s) (Mold closing time) 0
mold op time (s) (Mold opening time) 0
ps mld op (mm) (Position of the mold when open) 7
pos scr end ds time (mm) (Position of the screw at
the end of dosing time)

0

PC pos (mm) (Position of PC) 0
Oil Temp (°C) (Oil Temperature) 0
ZR Temp (°C) (Temperature of the ZR) 0
Nozzle Temp (°C) (Temperature of the Nozzle) 0
CY1 Temp (°C) (Temperature of the
1st zone of cylinder)

0

Figure 5
Correlation matrix of the process parameters
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We notice that the pressure decreased to a value less than 1660 bar.
This illustrates that the process is highly variable and in order to
efficiently monitor it and to predict the occurrence of defects,
these variations should be controlled.

After analyzing each data set separately, it is time to merge
them. One restriction that was faced is that records of process
parameters do not match the records of defects. This is because
process parameters are recorded autonomously by the machine in
each cycle, while records of defects were recorded on an hourly
basis by operators on-site. To overcome this limitation, we
increased the window of time for process parameters to match
records of defects. The hourly record represents the mean values
of process parameters for cycles produced in that hour.
Subsequently, the number of defects recorded every hour is
matched with the mean values of process parameters in that hour.

3.1.5. Extraction of optimal parameters
In this step, the optimal process parameters are extracted. These

parameters reflect a stable process producing high quality parts. To

Figure 6
Distribution of white spot defect versus time

Figure 7
Graph of variations of injection time

Figure 8
Graph of variations of dosing time

Figure 9
Graph of variations of maximum injection pressure
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find these parameters, we need first to analyze the defect’s distribution.
Figure 10 is a scatter plot illustrating the distribution of white spots
with respect to the maximum injection pressure and cushion area.

We observe that there are two clouds of points that are related to
pressure variation. One cloud for values less than 1500 bar and the
other is for values higher than 1650 bar. We also notice that a
pressure lower than 1450 bar did not produce any defects.

Following this finding, we analyzed cycles for which the pressure
was lower than 1450 bar. Table 2 details the statistical characteristics of
the sample.Weobserve that the standard deviation is low as opposed to
the whole sample, and the number of defects is 0. Using these results,
mean values from the table are considered to be the optimal process
parameters and the minimum and maximum values from the table
represent the upper and lower tolerances.

4. Results and Discussion

4.1. On-site test results

To evaluate the reliability of the parameters deduced in
controlling the process and reducing defects, an on-site trial was
conducted: starting first by inserting the optimal parameters
deduced in the injection molding machine followed by calibrating
the velocity to obtain the desired pressure. Then, production is
launched for four hours.

The test was monitored during production on an hourly basis
and after production for quality control. Only one white spot
defect was found, and it was during the hourly checkup.

Once the four hours had finished, test data were exported from
the injectionmoldingmachine, and results were investigated. Table 3
describes the statistical characteristics of the test process parameters.
Comparing the values obtained with values of Table 2, we notice that
the mean values of test parameters are very close to the process
optimization parameters. In addition, the variations are smaller, as
observed in Figure 11. This indicates that test parameters are
clustered tightly around the mean and that the test produced a
homogenous sample with less variations. These results are well
illustrated in Figure 12, where the points representing the products
injected form one cloud, and the defect found had a pressure that
exceeded the maximum tolerance.

4.2. Process capability analysis

To assess the efficiency of the proposed scheme, a process
capability analysis was implemented. Process capability is a
measure of the product uniformity of a process [36]. This analysis
consists of statistical measurements used to evaluate the process’s
ability to produce parts meeting the required specifications and the
extent of production homogeneity. Two indices are used, cp and
cpk; they are formulated as:

Cp ¼ USL� LSL
6σ

; (1)

Cpk ¼ min USL�meanð Þ; mean� LSLð Þ½ �
3σ

; (2)

whereUSL and LSL refer to the upper and lower specifications, and σ
represents the standard deviation.

The cp index indicates if the process is within the specified
range. The cpk index indicates if the process is centered between
the lower and upper specification limits, where the k index is a
scaled distance between the midpoint of the specification range
and the process mean [37].

A process under statistical control requires a cpk value greater
than 1. A stable process with a high cpk value is described as capable,
meaning that it can yield conforming products. In the context of
injection molding, capable processes are highly desirable. This is
because they allow long-term repeatability of good parts while
reducing operator intervention. This results in enhanced reliability
and productivity. Additionally, a capable process can further
optimize production by tightening the control limits and moving

Figure 10
Distribution of white spots defect with respect to cushion and the

maximum injection pressure

Table 2
Statistical characteristics of the process parameters

for cycles with a pressure less than 1450 bar

Count Mean Std Min Max

Cycle Time (s) 16 35.32 0.3 35.05 36.12
Injection time (s) 16 1.18 0.01 1.17 1.19
Dosing time (s) 16 2.84 0.05 2.81 2.99
Cushion (mm) 16 9.82 0.14 9.53 9.96
Max inj. P. (bar) 16 1444.8 3.4 1437.92 1449.99
End of screw p. (mm) 16 50.49 0 50.49 50.49
CY3 Temp (°C) 16 240 0.02 240 240.06
White spots 16 0 0 0 0

Table 3
Statistical characteristics of the test process parameters

Count Mean Std Min Max

Cycle Time (s) 436.00 35.14 2.01 34.09 76.95
Injection time (s) 436.00 1.22 0.001 1.22 1.23
Dosing time (s) 436.00 2.81 0.05 2.62 3.05
Cushion (mm) 436.00 10.02 0.34 8.96 10.76
Max inj. P. (bar) 436.00 1443.35 8.75 1399.00 1473.00
End of screw
p. (mm)

436.00 50.49 0.01 50.44 50.53

CY3 Temp (°C) 436.00 240.00 0.00 240.00 240.00
White spots 436.00 0.00 0.05 0.00 1.00
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towards lower specification limits that conserve energy and material
which leads to increased profitability [36].

The process capability analysis was conducted for the part’s
weight given the ease of its measurement. This, indeed, is highly
affected by the variations in process parameters. The analysis
proceeded by measuring the weight of the selected product

which was produced during the test and regular production. A
total of 240 parts were weighed (30 parts per cavity). Then the
cp and cpk indexes were calculated for each cavity. Table 4
details the obtained results. We notice that for all cavities, the
values of the test’s cpk index are greater than 1.33. In addition,
for cavity 1 and 2, the values of test-related cpk are improved
compared to those of regular production. To further illustrate
these results, a control chart was plotted for cavities 1 and 2. As
seen from Figures 13 and 14, parts produced from the test were
consistent and had a lower variation in weight. This means that
the deduced parameters from the data analysis scheme are more
capable of producing a stable process. In addition to that, since
the results differed from cavity to another, the study highlighted

Figure 11
Graph of injection time for test data

Figure 12
Distribution of injected parts with respect to cushion, maximum

injection pressure, and number of white spots defects

Table 4
Process capability comparison between regular production and

the on-site test

Cavities Process type cp cpk Mean weight

1 Production 18.94 16.17 23.17
Test 26.08 23.66 23.10

2 Production 13.78 11.35 23.2
Test 23.33 20.23 23.15

3 Production 19.25 19.15 23.2
Test 2.06 1.98 22.96

4 Production 22.07 19.48 22.86
Test 20.92 18.15 22.85
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the importance of further exploration of the impact of in-mold
process parameters [38].

5. Conclusion

In this paper, a data-driven approach for quality control and
process optimization of injection molding was proposed.

A description of the approach and the different levels of data
processing was provided, followed by an elaboration of the
implementation steps in a factory, and an on-site test to evaluate
its effectiveness. The main objective of the study was to examine
the impact of process parameters on the visual quality of the
end product through manipulation, control, monitoring, and
optimization of these parameters and their variations. In addition
to that, process stability was investigated to guarantee that

Figure 13
Control chart comparison between normal production and test for cavity 1

Figure 14
Control chart comparison between normal production and test for cavity 2
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optimized process parameters consistently deliver high quality parts,
eliminate scrab, and allow efficient use of resources. The results
obtained indicated that the pressure highly affects the product
quality, as was observed in the correlation matrix, and the
distribution of defects. Optimal parameters moved production to
lower and tightened specification values. This resulted in low
variations and better understanding of the effect of process
parameters on the quality of the ejected parts. Test results showed
that no defect was recorded when process parameters were within
the specified range of optimal parameters. The capability analysis
proved the scheme to be capable of delivering good quality parts
thanks to the enhanced cpk index of cavity 1 and 2. The high
values obtained in the capability analysis highlighted the
opportunity for potential enhancement and optimization of
specification limits.

The study can benefit from the use of more automated data
acquisition methods for quality inspection to enrich the dataset and
to synchronize data inspection with process parameters. This would
allow complete and accurate monitoring of part quality. Furthermore,
the availability of more data can allow the use of ML methods to
deduce optimal process parameters. Additionally, the use of feedback
control system can be explored to allow automated adjustment of the
state of parameters, based on parts quality. Moreover, further
investigation of in-mold parameters is needed to understand the
difference in results obtained from one cavity to another.

Futureworkwould address the limitation related to data availability
by exploring methods to automate the process. Additionally, a
comparison between machine and in-mold process parameters is to be
conducted to evaluate the impact of each one on the end product.
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