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Abstract: This paper addresses the challenge of parameter estimation for Weibull distributions with continuous interval-censored data, a
critical issue in reliability engineering where failures are observed only at predetermined inspection intervals. Traditional estimation
methods often struggle with the uncertainty of failure times, leading to suboptimal results. To overcome this limitation, we propose a
novel analytical approach that directly fits the probability density function to the frequency histogram, offering an alternative to
conventional numerical algorithms. This method not only improves estimation accuracy but also enhances computational efficiency.
Theoretical validation is established using the dual least squares method, and extensive Monte Carlo simulations further confirm its
robustness. Comparative analysis with existing approaches highlights the superiority of our method in terms of both precision and
stability. To demonstrate its practical applicability, we apply the proposed approach to Hong Kong casualty data from the World Health
Organization, effectively estimating the age distribution of unidentified casualties. The results underscore the method’s potential for
broader applications in reliability analysis and risk assessment.
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1. Introduction

Reliability research is highly prevalent in the field of engineering,
where various components, machines, and equipment require a reliable
lifespan as a reference to ensure the safe and successful progression of
projects. The lifespan is typically quantified using numerical
probabilities [1]. With the continuous expansion of the theoretical
depth of probability theory and statistics, the discovery of various
distributions has provided powerful support for fitting data in real-life
production and daily life. In reliability engineering and survival
analysis, the Weibull distribution is frequently employed to model
the lifespan distribution of various mechanical components, such as
wind turbines, aircraft door lock mechanism, and computed
tomography equipment [2–4]. Similarly, the two-parameter Weibull
distribution plays a significant role in modeling processes,
particularly in reflecting degradation rates [5–7]. In essence, it is
utilized across diverse fields including materials science, engineering,
physics, chemistry, meteorology, medicine, pharmacy, economics,
business, quality control, biology, geology, and geography [8].

However, in practical engineering applications, factors such as
high testing costs and stringent time constraints often serve as key
limiting conditions that impede the accurate observation of product
lifespan data. Affected by this, only the boundary values of the data
can often be obtained, thus forming the interval-censored data that is

the focus of this paper. Interval censoring means that the exact
survival time of a product cannot be precisely known, and it is only
clear that it lies within a certain specific time interval. For a more
detailed discussion, refer to Section 3.

In this study, we apply the weighted least squares approach to
continuous interval-censored data and derive a closed-form solution
for parameter inference in the bivariate Weibull distribution through
a series of rigorous mathematical derivations. This method helps us
bypass the iterative solution phase of numerical algorithms (EM and
MCMC [9, 10]), compensating for the deficiency of least squares
estimation in providing a closed-form solution.

The structure of this paper is as follows: Section 2 summarizes the
commonly used methods for Weibull parameter estimation, analyzes
their advantages and disadvantages, and investigates existing
approaches for handling interval-censored data. Section 3 provides a
detailed introduction to the explicit solution for parameter estimation
of continuous interval-censored data, and offers meaningful
discussions on the analytical expressions. Section 4 first conducts
Monte Carlo simulations to verify the effectiveness of the analytical
solution method. Secondly, we compare it with other methods from
the literature, including maximum likelihood estimation (MLE).
Finally, the analytical solution method is extended to fixed-censoring
tests and continuous sequential censoring tests, and an explanation is
provided for the three-parameter case. Section 5 effectively applies
this method using real data. Finally, Section 6 provides a summary
of the paper and discusses the implications and potential extensions
of the proposed method.
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2. Background for Research

If a random variable follows a Weibull distribution, its
probability density function (PDF) can be expressed as follows:

fT t;α; λ; γð Þ ¼ α
λ

t�γ

λ

� �
α�1e�

t�γ

λð Þα ; t > 0 (1)

where α; λ; γ are represent the shape parameter, scale parameter,
and location parameter, respectively. The form we are using here
is the most common form of the Weibull distribution, and for more
extended forms, one can refer to Lai et al. [11].

The different failure modes of a product are determined by the
shape parameter α of the Weibull distribution. When α > 1, the failure
rate increases over time, indicating a “wear-out” or “aging” phasewhere
the likelihood of failure grows as the product gets older. This is often
referred to as a “decreasing” or “increasing” failure rate model, depend-
ing on the context. When α ¼ 1, the failure rate is constant over time,
which corresponds to a “memoryless” property and is characteristic of
an exponential distribution. This situation implies that the risk of failure
does not change with age, which is often associated with “random” or
“chance” failures that are not influenced by the product’s age.

When α < 1, the failure rate decreases over time, suggesting that
the product becomes more reliable as it ages. This is less common in
practice and could be indicative of “infant mortality” or “burn-in”
periods where initial failures are more likely, followed by a period
of increased reliability. The scale parameter λ affects the time scale
over which failures occur. The larger the value of λ, the longer it takes
for failures to occur, and the wider the range over which the PDF is
spread out. This parameter essentially shifts the PDF along the time
axis, affecting the spread and scale of the distributionwithout changing
its shape. In summary, the shape parameter λ dictates the type of failure
pattern over time, while the scale parameter influences the time scale
and spread of the distribution. The position parameter γ can also be
referred to as the scale parameter.

By applying a translation transformation t̃ ¼ t � γ, Equation (1)
becomes the pdf of the two-parameterWeibull distribution, as indicated
in the Equation (2).

fT̃ t̃; α; λð Þ ¼ α

λ

t̃
λ

� �
α�1

e�
t̃
λð Þα (2)

When evaluating a product’s reliability, we commonly use the
reliability function, denoted as R tð Þ, also referred to as the survival
function.

It represents the probability that a product will perform a
specific function under given conditions and over a specified time
period. Since “the product performs a specific function within
time” is equivalent to “the product’s lifespan T is greater than t”,
we can calculate the probability that the product’s lifespan exceeds
t using the following formula:

R tð Þ ¼ PðT > tÞ ¼ Rþ1
t f xð Þdx ¼ e�

t�γ

λð Þα (3)

The failure rate of a product, denoted as h tð Þ, is defined as the prob-
ability that the product, which has been functioning up to a specific
point in time, will fail within the subsequent time unit. The failure
rate is a key measure in reliability engineering and is used to describe
how the likelihood of failure changes over time. For a product that
follows aWeibull distribution, the failure rate can be calculated using
the following formula:

h tð Þ ¼ α
λα t � γð Þα�1 (4)

For parameter estimation of the Weibull distribution, various
methods can be utilized, as illustrated in Figure 1. Traditional
methods include the life table method, product-limit estimation,
and probability plotting with hazard plotting methods, among
others. These are all non-parametric estimation techniques, which
are advantageous due to their flexibility and lack of dependence
on the data distribution. However, they may entail substantial
computational effort, and the interpretation of the data may not be
as intuitive as with parametric methods. In addition to these, there
are some traditional parametric estimation methods, such as
method of moments estimation, least squares estimation, best
linear unbiased estimation (BLUE), and best linear unbiased

Figure 1
Classification diagram of parameter estimation methods for the Weibull distribution
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invariant estimation. Parametric estimation typically offers precise
predictions and inferences, with stronger interpretability.

However, in the actual process of parameter estimation, it
has been observed that these estimation methods have significant
limitations. The least squares method (LSM) involves transforming
nonlinear models into linear ones, a process that alters the
distribution type within the model, thus no longer satisfying the
Gauss-Markov assumptions, leading to reduced estimation accuracy
[12]. Moreover, the empirical distribution function used in LSM
often relies on the median rank formula, which can also fail to fully
adapt to the sample data.

Building upon traditional parameter estimation methods,
numerous improvements and extensions have also been proposed,
see Jia [13, 14] for details. The problem of maximizing the
likelihood function in MLE has always been challenging. Kundu
and Dey [9] used the EM algorithm to calculate the location
parameters in the Marshall-Olkin bivariate Weibull distribution.
Jiang et al. [10] suggested the Markov Chain Monte Carlo
(MCMC) method for estimating the parameters of the modified
Weibull distribution based on complete samples.

Parameter estimation is an indispensable part of statistical
inference in reliability data analysis, yet understanding clearly the
data we are dealing with is equally crucial. This paper focuses on
censoring data, which often arises in applications across various
fields such as epidemiology and medical research [15]. In
medicine, the analysis of data that includes censored observations
is referred to as survival analysis, which differs from reliability
analysis typically conducted in industrial production. Such
censoring data come in various forms, for instance, biomarker
concentrations of interest in urine, serum, or other biological
matrices [16], which can be handled using imputation methods,
complete case analysis, and MLE [17]. In addition to these
traditional methods, there are other approaches for parameter
estimation. Spline functions can be employed for inference of left-
truncated and right-truncated data [18], while penalized Cox
proportional hazards models assess the impact of predictor
variables on survival [19]. Penalized generalized empirical
likelihood estimators are constructed for hypothesis testing in non-
parametric likelihood missing survival model assumptions [20].
Furthermore, the types of missing data extend beyond the scope
covered by definitions, necessitating different estimation methods
for specific scenarios. For example, multi-stage SCAD penalized
estimation equations are utilized for right-truncated length-biased
data variable selection [21]. Non-parametric maximum likelihood
joint modeling is employed for multivariate interval-censored
survival data [22]. Semi-parametric mixed models are used for
longitudinal missing data with Gaussian errors [23].

Although numerous effective parameter estimation methods
have been proposed in existing studies, the estimation of Weibull
distribution parameters under censored data universally faces three
major challenges: First, numerical iterative optimization
algorithms (e.g., EM and MCMC) suffer from exponentially
increasing computational complexity, leading to inefficiency in
large-scale data processing. Second, traditional parameter
estimation methods (e.g., MLE) often encounter ill-conditioned
likelihood functions in censored scenarios, resulting in
significantly reduced estimation accuracy. Third, most existing
approaches rely on numerical approximations and lack closed-
form analytical solutions, which severely limits their applicability
in engineering applications such as real-time monitoring systems.
Therefore, proposing an analytical solution for Weibull
distribution parameter estimation under censored data is both
necessary and meaningful.

3. Analytical Solution of Parameter Estimation

Interval-censored data in continuous intervals have significant
practical value, especially in situations where the exact failure times
of products cannot be precisely observed. Defining intervals offers
an effective solution in such cases. This study assumes that the
lifetimes of n products follow a Weibull distribution. Typically, the
experimental design requires setting predetermined inspection time
points and recording the number of failed products at each point. How-
ever, tracking until the final product fails is often impractical because
the process can be excessively time-consuming. Consequently, the
experiment may end at a predetermined observation cutoff time.

A concrete example from everyday life can help illustrate the
concept of interval-censored data more intuitively. Streetlights are
susceptible to sudden failures, yet in practice, it is often difficult
to pinpoint the exact time when each streetlight malfunctions.
However, by inspecting the status of streetlights at specific time
points, we can identify the time intervals during which failures
occur most frequently. This approach significantly reduces labor
and time costs, enabling efficient resource utilization.

To better illustrate this data, we use Table 1 for presentation.
Building on prior research, this section introduces a new method

for parameter estimation using interval data. The core idea of this
method is intuitive and easy to understand, resembling the empirical
distribution function, which can effectively approximate the
distribution function. By employing weighted first derivative values
to fit the frequency distribution of the sample data, we derive an
explicit estimation of the Weibull distribution parameters through
meticulous and rigorous mathematical expressions.

In a non-strict sense, the law of large numbers allows us to
estimate probabilities through frequencies. Therefore, we need to
minimize theQ value in the following equation to the greatest extent.

Q ¼Pr
i¼1 e�

ti
λð Þα � 1�

P
i
j¼1

nj
n

� �� �
2

(5)

Proposition 1. Given that Ri ¼
P

i
j¼1 nj, the explicit expression

for the Weibull parameter estimation based on the interval-censored
data from Table 1 is as follows, which also satisfies the condition of
minimizing the Q value.

bα ¼
P

r
i¼1 αi ln ð�ln fn tið ÞÞ ln ti �

P
r
i¼1 αi ln tið ÞP

r
i¼1 αiðln ti �

P
r
i¼1 αi ln tiÞ2

(6)

bλ ¼ exp
P

r
i¼1 αi ln ti � 1bαPr

i¼1 αi ln ð�ln fn tið ÞÞ
� 	

(7)

where αi and fn tið Þ are as follows, respectively:

Table 1
Continuous interval-censored data table

Intervals Frequency

0; t1ð � n1
t1; t2ð � n2
t2; t3ð � n3
� � � � � �
tr�1; trð � nr
tr ; þ1ð Þ n�Pr

i¼1 ni
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Wi ¼ 1� Ri
n

� �
2 ln 1� Ri

n

� �� �
2 (8)

αi ¼ Wi=
X

r
i¼1

Wi (9)

fn tið Þ ¼ 1� Ri
n (10)

Proof. Reformulate the problem as follows:

Q ¼Pr
i¼1 e�

ti
λð Þα � 1� Ri

n

� �h i
2 ¼Pr

i¼1 e�
ti
λð Þα � eln 1�Ri

nð Þh i
2

(11)

Based on the concepts of the weighted least squares

approach, we can use eln 1�Ri
nð Þ � ti

λ

� �
α � ln 1� Ri

n

� �� �
to approximate

e�
ti
λð Þα � eln 1�Ri

nð Þ. Thus, the original formula simplifies to:

Q ¼
X

r
i¼1

eln 1�Ri
nð Þ � ti

λ

� 	
α � ln 1� Ri

n

� �� �� �
2

¼
X

r
i¼1

1� Ri

n

� �
2

eln
�
�ln
�
1�Ri

n

��
� eln

ti
λð Þα

� �
2

(12)

Employing the aforementioned technique once more
to approximate exp ln

�� ln 1� Ri
n

� �� ��� exp ln ti
λ

� �
α

� �
with

exp ln
�� ln 1� Ri

n

� �� �� � ln ti
λ

� �
α � ln

�� ln 1� Ri
n

� �� ��
, the original

expression is transformed into:

Q ¼
X

r
i¼1

1� Ri

n

� �
2

ln 1� Ri

n

� �� �
2

ln
ti
λ

� 	
α � ln

�
� ln 1� Ri

n

� �� ��
2

¼
X

r
i¼1

1� Ri

n

� �
2

ln 1� Ri

n

� �� �
2

α ln
ti
λ
� ln

�
� ln 1� Ri

n

� �� ��
2

(13)

Let Wi ¼ 1� Ri
n

� �
2 ln 1� Ri

n

� �� �
2:

Q ¼
X

r
i¼1

Wi α ln
ti
λ
� ln

�
� ln 1� Ri

n

� �� ��
2

(14)

To minimize the Q value, we compute the partial derivatives with
respect α:

@Q
@α

¼
X

r
i¼1

2Wi α ln
ti
λ
� ln

�
� ln 1� Ri

n

� �� ���
ln
ti
λ

�
¼ 0

(15)

This is equivalent to

α
X

r
i¼1

Wi

�
ln
ti
λ

�
2
¼
X

r
i¼1

Wi ln

�
� ln 1� Ri

n

� ��
ln

ti
λ

(16)

Thus, we have:

α ¼
X

r
i¼1

Wi ln

�
� ln 1� Ri

n

� ��
ln

ti
λ


X
r
i¼1

Wi

�
ln
ti
λ

�
2

(17)

Take the partial derivatives with respect λ:

@Q
@λ

¼
X

r
i¼1

2Wi α ln
ti
λ
� ln

�
� ln 1� Ri

n

� �� ��
�α

λ

� 	
¼ 0

(18)

It yields:

α
X

r
i¼1

Wi ln ti � ln λð Þ ¼
X

r
i¼1

Wi ln

�
� ln 1� Ri

n

� ��
(19)

Bringing ln λ to the left-hand side of the equation, it becomes:

ln λ ¼ α
X

r
i¼1

Wi ln ti �
X

r
i¼1

Wi ln

�
� ln 1� Ri

n

� ��

α
X

r
i¼1

Wi

(20)

Simplifying the Equation (17) where ln ti
λ ¼ lnti � lnλ, we obtain:

α ¼
X

r
i¼1

Wi ln

�
� ln 1� Ri

n

� ��
ln ti

� ln λ
X

r
i¼1

Wi ln

�
� ln 1� Ri

n

� ��
X
r
i¼1

Wi ln ti � ln λð Þ2

(21)

Substituting the above Equation (20) into Equation (17), we obtain:

X
r
i¼1

Wi ln

�
� ln 1� Ri

n

� ��
ln ti

�α
P

r
i¼1 Wi ln ti �

P
r
i¼1 Wi ln

�� ln 1� Ri
n

� ��
α
P

r
i¼1 Wi

X
r
i¼1

Wi ln

�
� ln 1� Ri

n

� ��

¼ α
X

r
i¼1

Wi ln ti �
P

r
i¼1 Wi ln tiP

r
i¼1 Wi

þ
P

r
i¼1 Wi ln

�� ln 1� Ri
n

� ��
α
P

r
i¼1 Wi

 !
2

(22)

Multiply both sides by α simultaneously:

α

�X
r
i¼1

Wi ln

�
� ln 1� Ri

n

� ��
ln ti

�
P

r
i¼1 Wi ln tiP

r
i¼1 Wi

X
r
i¼1

Wi ln

�
� ln 1� Ri

n

� ���

þ
P

r
i¼1 Wi ln

�� ln 1� Ri
n

� ��P
r
i¼1 Wi

X
r
i¼1

Wi ln

�
� ln 1� Ri

n

� ��

¼
X

r
i¼1

Wi

��
ln ti �

P
r
i¼1 Wi ln tiP

r
i¼1 Wi

�
α

þ
P

r
i¼1 Wi ln

�� ln 1� Ri
n

� ��P
r
i¼1 Wi

�
2

(23)

Upon expansion and simplification, we can derive the following:

α ¼
P

r
i¼1 Wi ln

�� ln 1� Ri
n

� ��
ln ti �

P
r
i¼1

Wi ln tiP
r
i¼1

Wi

� �
P

r
i¼1 Wi

�
ln ti �

P
r
i¼1

Wi ln tiP
r
i¼1

Wi

�
2 (24)

Dividing both numerator and denominator of Equation (24) byP
r
i¼1 Wi, then substituting with Equation (9), we get:
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α ¼
P

r
i¼1 αi ln

�� ln 1� Ri
n

� ��
ln ti �

P
r
i¼1 αi ln ti

� �P
r
i¼1 αiðln ti �

P
r
i¼1 αi ln tiÞ2

(25)

Further substitution using Equation (10), we obtain:

α ¼
P

r
i¼1 αi ln ð�ln fn tið ÞÞ ln ti �

P
r
i¼1 αi ln tið ÞP

r
i¼1 αið ln ti �

P
r
i¼1 αi ln tiÞ2

(26)

Similarly, utilizing Equation (9) for substitution into Equation (20),
we can obtain an explicit expression for λ.

λ ¼ exp
X

r
i¼1

αi ln ti �
1
α

X
r
i¼1

αi ln ð�ln fn tið ÞÞ
� �

(27)

In practical applications, detection intervals are sometimes uniform,
like in the street light failure example, where detection occurs
monthly. Based on Proposition 1, if the intervals are equidistant,
denoted as 0; cð �; � � � ; r � 1ð Þc; rcð �, then the integral in Equations
(6) and (7) can be simplified as follows:

ln ic�
X

r
i¼1

αi ln ic

¼ ln iþ ln c�
X

r
i¼1

αi ln iþ ln cð Þ

¼ ln i�
X

r
i¼1

αi ln i (28)

bλ ¼ exp
X

r
i¼1

αi ln ti
� 	

=exp
1
α

X
r
i¼1

αi ln ð�ln fn tið ÞÞ
� �

(29)

It can be observed that the simplified expression in (28) does not
depend on c, meaning the parameter estimate bα is also independent

of the interval. Moreover, the denominator of parameter bλ is not influ-
enced by c. Hence, we only need to concentrate on the numerator.

exp
X

r
i¼1

αi ln ti
� 	

¼ exp
X

r
i¼1

αi ln iþ
X

r
i¼1

αi ln c
� 	
¼ c � exp Pr

i¼1 αi ln ið Þ (30)

Thus, we find that the scale parameter has a linear relationship with
the interval. Let’s illustrate this with a simple example. Consider two
equidistant test intervals shown in the Table 2, each with the same
frequency.

When we substitute the data from the table into Equations (6) and
(7), we obtain the shape and scale parameters for Equal Interval 1 as
1.8793 and 4.3102, respectively. For Equal Interval 2, the shape and
scale parameters are 1.8793 and 8.6204, respectively. This means that
the shape parameter estimated for both equal interval test intervals is
the same, while the scale parameter for Equal Interval 2 is twice that of
Equal Interval 1. Similarly, the ratio of their interval sizes is also 2. This
pattern is insightful: firstly, the shape parameter is independent of the

interval size c, indicating that the shape of the frequency distribution
histogram directly determines the shape parameter, independent of the
scale parameter. Secondly, the proportional relationship between the λ
and the interval size c implies that as the interval c increases,λ increases
as well. This aligns with the role of λ in determining the width of the
Weibull distribution.

4. Parameter Estimation Simulation and
Discussion

4.1. Simulation test

To demonstrate the effectiveness of the analytical solution for
parameter estimation, we generate random numbers for Weibull
distributions with three typical shape parameters, respectively, and
conduct random simulations.

Firstly, we employ the Monte Carlo method to construct
continuous interval deletion data akin to Table 3. Subsequently,
utilizing the parameter estimation model established by Proposition
1, we iteratively solve it through 1000 repetitions of experiments.
From this, we derive the mean, variance, and mean squared error
(MSE) of the shape and scale parameters, thus validating the
feasibility and efficacy of the aforementioned approach.

Here, based on the Weibull distribution density function curves
(Figure 2), we design different continuous interval deletion data sets
based on the characteristics of the Weibull distribution under
three sets of parameters. We perform three sets of experiments,
with each group’s samples adhering to the Weibull distributions
Weibull (0.8, 3), Weibull (2.5, 6), and Weibull (10, 12). These
distributions represent distinct failure patterns for products: the
increasing failure rate, the constant failure rate, and the decreasing
failure rate types. To ensure non-empty data within each interval,
we select intervals such that each interval lies within a significantly
nonzero segment of the density function. We make the following
reasonable divisions: for Weibull (0. 8, 3), the intervals are set as
(0, 3], (3, 5], (5, 7], (7, 10]; for Weibull (2.5, 6), the intervals are
set as (0, 3], (3, 6], (6, 8], (8, 11]; and for Weibull (10, 12), the
intervals are set as (0, 9], (9, 10], (10, 11], (11, 12], as shown in
Table 3. This design is rational, as in practical engineering, we
often utilize prior statistical information to plan the next steps of
experimentation, thereby avoiding unnecessary expenditure of
experimental resources, time, and labor costs.

From Table 4, we observe that as the amount of interval data
increases, the parameter estimation error obtained using this
method gradually decreases. The estimation relative error here is

calculated using the formula jbθ�θj
θ

, θ ¼ α; β. In Case 1, with a
sample size of 30, the shape parameter estimation error is 0.925%,
and the scale parameter estimation error is 2.27%. In Case 2,
with a sample size of 100, the shape parameter estimation error is
1.144%, and the scale parameter estimation error is 0.91%. In
Case 3, with a sample size of 100, the shape parameter estimation

Table 2
Interval-censored data with two equidistant intervals

Equal interval1 Frequency Equal interval2 Frequency

(0, 1] 4 (0, 2] 4
(1, 2] 7 (2, 4] 7
(2, 3] 8 (4, 6] 8
(3, 4] 9 (6, 8] 9
(4, 5] 10 (8, 10] 10

Table 3
Interval-censored data example

Case 1 2 3

Real
Parameter

Weibull
(0.8, 3)

Weibull
(2.5, 6)

Weibull
(10, 12)

Interval1 (0, 3] (0, 3] (0, 9]
Interval2 (3, 5] (3, 6] (9, 10]
Interval3 (5, 7] (6, 8] (10, 11]
Interval4 (7, 10] (8, 11] (11, 12]
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error is 0.846%, and the scale parameter estimation error is 0.0875%.
It can be seen that the estimation effect is ideal. When the sample size
is small, the larger deviation is partly due to insufficient sample infor-
mation, which is a normal phenomenon.

Figures 3–8 allow us to visually see that the estimation accuracy
significantly increases with the increase in sample size, further
demonstrating the effectiveness of this method.

4.2. Method comparison

We utilize the interval-censored data from Tan [24], with
specific information presented in Table 5. The data consist of 157
crack data points from identical components, divided into 9
intervals, with 5 components in one interval, and the rest are similar.

Similarly, as can be seen from Table 6, the proposed method
significantly outperforms the results presented in Tan [24] and
Nelson [25] in terms of fitting the original interval data. The sum
of squared residuals is the value obtained when the estimated
parameter values are substituted into Q. It reflects the fitting error
between the Weibull probability density curve and the frequency
histogram of the interval data.

For time interval testing experiments, we compare our proposed
method with existing methods. Since the specific failure times or
lifetimes of the products during each time interval are not known,
we typically use linear interpolation to estimate these data, with
the notation being the same as shown in the aforementioned table.

Let tij denote the failure time of product in the-th time interval,
its calculation method is as follows:

tij ¼ ti�1 þ
j

ni þ 1
ti � ti�1ð Þ; j ¼ 1; � � � ; ni (31)

Subsequently, we utilize the approaches discussed in the second
section, such as MLE and the method of moments, to estimate the
parameters. Building upon the research of predecessors, we
understand that MLE tends to perform better compared to the
BLUE, least squares estimation, and method of moments [26–28].
Therefore, below we will primarily compare with the MLE, the
MLE technique used is detailed in Joarder et al. [29].

Figure 2
Weibull distribution density function curves under three different cases

Table 4
Interval-censored data example

Case Sample size bα bλ MSE(bα) MSE(bλ)
1 20 0.7681 3.1531 0.0697 1.4653

30 0.7926 3.0681 0.0537 0.8781
50 0.7939 2.9929 0.0322 0.5049
100 0.8061 2.9947 0.0171 0.2636
500 0.7993 3.0066 0.0030 0.0496
1000 0.8008 3.0003 0.0015 0.0236

2 20 2.1657 6.2741 0.2466 0.4612
30 2.3061 6.1544 0.1421 0.2544
50 2.3922 6.0760 0.1007 0.1324
100 2.4714 6.0544 0.0590 0.0836
500 2.5016 6.0004 0.0129 0.0148
1000 2.5048 6.0018 0.0064 0.0073

3 20 9.1386 12.0489 5.7461 0.2014
30 9.4702 12.0070 4.4594 0.0974
50 9.8842 12.0075 3.0783 0.0567
100 9.9154 12.0105 1.4756 0.0270
500 9.9912 11.9970 0.3118 0.0048
1000 10.0057 12.0006 0.1517 0.0025
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Figure 3
Frequency distribution histogram of bα in case 1

Figure 4
Frequency distribution histogram of bλ in case 1
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Figure 5
Frequency distribution histogram of bα in case 2

Figure 6
Frequency distribution histogram of bλ in case 2
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Figure 7
Frequency distribution histogram of bα in case 3

Figure 8
Frequency distribution histogram of bλ in case 3
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From Table 7, it is evident that there is a noticeable
improvement with proposed method. The performance of MLE
using linear interpolation may be compromised due to two factors:
the interpolated data not following a Weibull distribution and the
right-censored data.

4.3. Parameter estimation extension

For n test samples, with the lifespans of r products known
and containing n-r right-censored data, to apply Proposition 1,
consider the following two grouping methods. The failure time
t0 ¼ 0 < t1 < . . . < tr is processed as follows:

τi ¼
ti þ ti�1

2
; i ¼ 1; 2; � � � ; r (32)

τi ¼ ti; i ¼ 1; 2; � � � ; r (33)

This will yield an interval for 0; τ1ð �; τ1; τ2ð �; � � � ; τr�1; τrð �
similar to the discussion above, and here ni ¼ 1; i ¼ 1; 2; � � � ; r,
so the parameter estimation can be the same as the previous formula.

We have designed three sets of experiments, in which we have
agreed upon such symbolic representations for the conducted
experiments, K α; λ; x; yð Þ, where α; λ denote the shape and scale
parameters of the Weibull distribution, respectively, and x; y

represent the percentage of censored data samples and the total
sample size, respectively. The three sets of experiments designed
here are as follows, K 0:8; 3; 80%; 100ð Þ, K 3; 6; 80%; 100ð Þ,
K 10; 12; 80%; 100ð Þ, with the default number of repeated trials
set to 1000. Similarly, we compare our proposed extended methods
with the MLE, and the detailed comparison can be seen in the table
below, where the method using Equation (32) is referred to as
Proposed Method-1, and the method using Equation (33) is referred
to as Proposed Method-2.

From Tables 8–10, it is evident that when retaining only 80% of
the known observed data, the extended method using Equation (32)
exhibits estimation relative errors (RE) for the shape parameter of
0.3875%, 0.3733%, and 0.0410% in the three trials, respectively.
In contrast, the method using Equation (33) shows estimation
errors of 0.8625%, 0.9700%, and 0.9890% for the shape
parameter across the same trials. These errors are significantly
lower than the relative errors of the MLE method, which are
1.6875%, 1.7633%, and 1.7680%, respectively. This affirms the
effectiveness of the extended method in fixed-failure-rate
censoring tests. Additionally, the approach of converting points to
intervals using Equation (32) performs better than that using
Equation (33). That is, utilizing the midpoints between the
original sample values as interval endpoints can make better use
of the original sample information, thereby yielding more precise
parameter estimates. Simultaneously, we can observe that the
method we proposed yields a MSE slightly larger than that of the
MLE when estimating parameters. This is related to the fact that
we only use interval values without specific numerical data.
However, their standard errors (SdE) are quite close, and the
estimation is closer to being unbiased, so we can still consider it
to be slightly superior to MLE.

Table 5
Cracking data of 157 identical components

Intervals Number in interval

(0, 6.12) 5
(6.12, 19.92) 6
(19.92, 29.64) 12
(29.64, 35.4) 18
(35.4, 39.72) 18
(39.72, 45.24) 2
(45.24, 52.32) 6
(52.32, 63.48) 17
(63.48, þ1) 73

Table 6
One-way ANOVA results based on teaching subjects

Method bα bλ SSE

PM 1.5771 73.2497 0.3817
Results [24] 1.485 71.690 1.2812
Results [25] 1.486 71.687 1.2748

Table 7
Parameter estimation mean, variance, and standard error for
PM andMLE in case 2 (Weibull(2.5, 6)) with a sample size of 100

Method Proposed method MLEbα 2.4714 1.6274bλ 6.0544 4.8233

Var(bα) 0.0583 0.0310
MSE(bα) 0.0590 0.7924
Var(bλ) 0.0807 0.0921
MSE(bλ) 0.0836 1.4766

Table 8
Proposed method-1, proposed method-2, and MLE in the

application comparison of K (0.8, 3, 80%, 100)

Method bα bλ RE(bα) RE(bλ)
Proposed Method-1 0.8031 3.0258 0.3875% 0.8600%
Proposed Method-2 0.7931 3.0040 0.8625% 0.1333%
MLE 0.8135 3.0300 1.6875% 1.0000%

Table 9
Proposed method-1, proposed method-2, and MLE in the

application comparison of K (3, 6, 80%, 100)

Method bα bλ RE(bα) RE(bλ)
Proposed Method-1 2.9888 6.0175 0.3733% 0.2917%
Proposed Method-2 2.9709 5.9816 0.9700% 0.3067%
MLE 3.0529 5.9810 1.7633% 0.3167%

Table 10
Proposed method-1, proposed method-2, and MLE in the

application comparison of K (10, 12, 80%, 100)

Method bα bλ RE(bα) RE(bλ)
Proposed Method-1 10.0041 11.9932 0.0410% 0.0567%
Proposed Method-2 9.9011 11.9898 0.9890% 0.0850%
MLE 10.1768 11.9871 1.7680% 0.1075%
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In practical applications, it is also common to encounter the
situation where test samples are removed, that is, continuous
sequential interval-censored data. For this scenario, with a slight
modification of Proposition 1, Corollary 2 can be derived. The
distinction between continuous sequential interval-censored data
and continuous interval-censored data is that a portion of the
samples that have not yet failed is removed at each inspection
interval. Specifically, n products are subjected to a life test simulta-
neously.Within the interval 0; t1ð �, n1 products fail and k1 non-failed
products are removed. Within the interval t1; t2ð �, n2 products fail
and k2 non-failed products are removed, and this process continues
sequentially. By the time we reach the interval tr�1; trð �, a total of
products have failed and kr ¼ n�Pr

i¼1 ni �
P

r�1
i¼1 ki non-failed

products have been removed. This can be represented more clearly
and intuitively in Table 11 as follows.

In the original derivation of Proposition 1, we needed to make

exp � ti
λ

� �
α

� �
and 1�

P
i
j¼1

nj
n as close as possible. Here, we need to

make exp � ti
λ

� �
α

� �
and 1�

P
i
j¼1

nj

n�
P

i
j¼1

kj
as close as possible, which is

to minimize the following expression:

M ¼
X

r
i¼1

e�
ti
λð Þα � 1� Ri

n�Pi
j¼1 kj

 !" #
2

(34)

Corollary 2. Given that Ri ¼
P

i
j¼1 nj, the solution that minimizes

expression (34) is as follows:

bα ¼
P

r
i¼1 βi lnð�ln gn tið ÞÞ ln ti �

P
r
i¼1 βi ln tið ÞP

r
i¼1 βi ðln ti �

P
r
i¼1 βi ln tiÞ2

(35)

bλ ¼ exp
X

r
i¼1

βi ln ti �
1bαXr

i¼1
βi ln ð�ln gn tið ÞÞ

� �
(36)

βi and gn tið Þ are respectively:

Fi ¼ 1� Ri

n�Pi
j¼1 kj

 !
2

ln 1� Ri

n�Pi
j¼1 kj

 ! !
2

(37)

Fi=
X

r
i¼1

Fi ≜ βi (38)

1� Ri

n�Pi
j¼1 kj

≜ gn tið Þ (39)

The proof here is the same as for Proposition 1.

For the parameter estimation of the three-parameter Weibull
distribution, we can provide a rough estimate for the location
parameter γ using the method from Guo et al. [30], refer to Equation
(40) for the specific form. For the shape and scale parameters, we can
use formula (6) and (7), respectively.

γ ¼ min tið Þ � 1
n

(40)

We summarize the proposed method as follows: The analytical
formula driven by Proposition 1 is not only applicable to
the original continuous interval-censored data but also to
fixed-censoring data and continuous sequential interval-censored
data. By combining the methods used for the latter two, it can
be extended to fixed-censoring sequential tests. First, use
Equation (33) to transform it into continuous sequential interval-
censored data and then apply the corresponding method; regarding
the parameter estimation of the three-parameter Weibull
distribution, it should be noted that we can only obtain a
rough estimate. After obtaining the location parameter from
Equation (40), the original data can be combined with the location
parameter estimate to reduce it to a two-parameter case, thereby
obtaining further estimates. For the case of the three-parameter
model, although the aforementioned steps can simplify it to a two-
parameter model for solving, there is no significant advantage
compared to the numerical algorithms in the literature. The issue
of the analytical solution for the three-parameter model still
requires further research. The detailed flowcharts for various
methods can be seen in Figure 9.

The advantages of this method are reflected in the following
aspects: First, its analytical simplicity is achieved by providing
closed-form analytical solutions (Equations 6 and 7),
eliminating the iterative optimization processes required by
traditional numerical algorithms (e.g., EM or MCMC). Second,
it significantly improves computational efficiency by greatly
reducing computational overhead. Additionally, the method
demonstrates broader applicability, extending to fixed-
censoring tests, sequential interval-censored tests, and being
partially applicable to parameter estimation for three-parameter
Weibull distributions. Finally, its superior accuracy is
validated through Monte Carlo simulations and comparisons
with existing methods in the literature, such as outperforming
MLE with linear interpolation in terms of relative error and
fitting residuals (see Tables 6–8). These strengths provide
robust theoretical support for practical applications in
engineering and medical fields.

The method also has several limitations. First, it is restricted to
the two-parameterWeibull distribution, as the three-parameter case
requires additional approximations and lacks a robust analytical
solution. Second, its performance is heavily dependent on the
Weibull distribution assumption; significant deviations of the
data from this model may lead to suboptimal accuracy. Finally,
the method exhibits sensitivity to interval design, particularly
when intervals are unequally spaced, which could introduce
biases in parameter estimation and affect reliability in practical
applications. These constraints highlight the need for careful
model validation and interval partitioning when implementing
the approach.

5. Fitting Application of Hong Kong Casualty Data

The data from theWorld Health Organization are segmented into
age groups: 0, 1–4, 5–14, 15–24, 25–34, 35–54, 55–74, and 75+,

Table 11
Constant failure rate sequential censoring data explanation table

Intervals
“failure” or

“damage” count
The number of

non-failed products removed

0; t1ð � n1 k1
t1; t2ð � n2 k2
t2; t3ð � n3 k3
� � � � � � � � �
tr�2; tr�1ð � nr�1 kr�1

tr�1; trð � nr kr
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with each age group featuring three attributes: male, female, and
unknown, as illustrated in Figures 10.

Using the derived explicit expression for parameter
estimation, the shape parameter and scale parameter are 2.0279
and 42.8871, respectively, with the corresponding probability
density curve shown in Figure 11. The reliability function curve
shows the median life and characteristic life, as shown in

Figure 12. As shown in Figure 13, the probability density
function of the Weibull distribution provides a good fit to the
histogram of casualties in Hong Kong.

Based on the obtained Weibull distribution parameter
estimates, we are able to make predictions for the unknown
mortality data. The specific predicted values are provided in
Table 12.

Figure 9
Analytical method application flowchart for different types of data

Figure 10
Table of injury-related deaths by age group in Hong Kong, China, for the year 2022
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Figure 11
Probability density curve corresponding to parameter estimates (2.0279 and 42.8871)

Figure 12
Characteristic life and median life corresponding to parameter estimates (2.0279 and 42.8871)
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6. Conclusions

Against the backdrop of the three major challenges faced by
Weibull distribution parameter estimation under censored data,
this paper, grounded in extreme value statistics theory,
innovatively derives a closed-form solution for parameter
estimation by constructing a bilinear optimization model within a
weighted least squares framework. Theoretical analysis and Monte
Carlo simulations demonstrate that the proposed method achieves
a computational complexity of O(n) while reducing the relative
error of parameter estimation under interval-censored data to
below 1%. Moreover, the closed-form solution provides a
rigorous mathematical foundation for online lifetime prediction in
reliability engineering. This advancement not only resolves the
precision-efficiency trade-off inherent in traditional methods but
also opens new methodological pathways for survival analysis
under complex censoring mechanisms. Furthermore, the method is
extendable to time-censored and failure-censored tests, as well as
three-parameter Weibull distribution scenarios, as detailed in

Figure 9. The explicit solution we proposed has also been applied
in the World Health Organization’s study of casualty data. This
solution not only successfully fits the casualty distribution but
also provides effective predictions for unknown casualty data. So
it is recommended to apply this method for parameter estimation
of interval-censored data.
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Figure 13
Probability density curve and data frequency distribution histogram fitting effect chart

Table 12
Constant failure rate sequential censoring data explanation table

Age group Probability value Population forecast

0 0.0005 2
1–4 0.0076 25
5–14 0.0900 293
15–24 0.1671 543
25–34 0.1993 648
35–54 0.3328 1082
55–74 0.1541 501
75–120 0.0483 156

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2025

14

https://platform.who.int/mortality/themes/theme-details/mdb/injuries
https://platform.who.int/mortality/themes/theme-details/mdb/injuries


References

[1] Tversky, A., & Kahneman, D. (1974). Judgment under
uncertainty: Heuristics and biases: Biases in judgments
reveal some heuristics of thinking under uncertainty. Science,
185(4157), 1124–1131.

[2] Gaidai, O., Li, H., Cao, Y., Liu, Z., Zhu, Y., & Sheng, J. (2024).
Wind turbine gearbox reliability verification by multivariate
Gaidai reliability method. Results in Engineering, 23, 102689.

[3] Jiang, D., Han, Y., Cui,W.,Wan, F., Yu, T., & Song, B. (2023).
An improved modified Weibull distribution applied to predict
the reliability evolution of an aircraft lock mechanism.
Probabilistic Engineering Mechanics, 72, 103449.

[4] Fan, L., Hu, Z., Ling, Q., Li, H., Qi, H., & Chen, H. (2023).
Reliability analysis of computed tomography equipment using
the q-Weibull distribution. Engineering Reports, 5(7), e12613.

[5] Das, D., Samanta, G. C., Barman, A., De, P. K., & Mohanta,
K. K. (2022). A recovery mathematical model for the impact
of supply chain interruptions during the lockdown in
COVID-19 using two warehouse perishable inventory
policies. Results in Control and Optimization, 9, 100184.

[6] Das, D., & Samanta, G. C. (2023). An EOQ model for a two
warehouse system with price and time dependent demand
and instantaneous deterioration during COVID-19 pandemic.
Research Square [Preprint]. Available from: https://doi.org/
10.21203/rs.3.rs-2777984/v1

[7] Barman, A., Chakraborty, A. K., Goswami, A., Banerjee, P., &
De, P. K. (2023). Pricing and inventory decision in a two-layer
supply chain under the weibull distribution product deterioration:
An application of NSGA-II.RAIRO-Operations Research, 57(4),
2279–2300.

[8] Örkcü, H. H., Özsoy, V. S., Aksoy, E., & Dogan, M. I. (2015).
Estimating the parameters of 3-p Weibull distribution using
particle swarm optimization: A comprehensive experimental
comparison.AppliedMathematics andComputation, 268, 201–226.

[9] Kundu, D., & Dey, A. K. (2009). Estimating the parameters of
the Marshall-Olkin bivariate Weibull distribution by EM
algorithm. Computational Statistics & Data Analysis, 53(4),
956–965.

[10] Jiang, H., Xie, M., & Tang, L. C. (2008). Markov chain Monte
Carlo methods for parameter estimation of the modified Weibull
distribution. Journal of Applied Statistics, 35(6), 647–658.

[11] Lai, C. D., Murthy, D. N. P., & Xie, M. (2011). Weibull
distributions. Wiley Interdisciplinary Reviews: Computational
Statistics, 3(3), 282–287.

[12] Bergman B. (1986). Estimation of Weibull parameters using a
weight function. Journal of Materials Science Letters, 5(6),
611–614.

[13] Jia, X. (2021). A comparison of different least-squares methods for
reliability of Weibull distribution based on right censored data.
Journal of Statistical Computation and Simulation, 91(5), 976–999.

[14] Jia, X. (2020). Reliability analysis forWeibull distribution with
homogeneous heavily censored data based on Bayesian and
least-squares methods. Applied Mathematical Modelling, 83,
169–188.

[15] Lu, F., Huang, X., Lu, X., Tian, G., & Yang, J. (2023). Model
detection for semiparametric accelerated failure additive model

with right-censored data. Statistical Methods in Medical
Research, 32(8), 1527–1542.

[16] Zou, Y., Peng, Z., Cornell, J., Ye, P., & He, H. (2021). A new
statistical test for latent class in censored data due to detection
limit. Statistics in Medicine, 40, 779–798.

[17] Tran, T.M. P., Abrams, S., Aerts, M., Maertens, K., &Hens, N.
(2021). Measuring association among censored antibody titer
data. Statistics in Medicine, 40, 3740–3761.

[18] Jiang, W., Ye, Z., & Zhao, X. (2020). Reliability estimation
from left-truncated and right-censored data using splines.
Statistica Sinica, 30(2), 845–875.

[19] Mcgough, S. F., Incerti, D., Lyalina, S., Copping, R.,
Narasimhan, B., & Tibshirani, R. (2021). Penalized
regression for left-truncated and right-censored survival data.
Statistics in Medicine, 40(25), 5487–5500.

[20] Tang, N., Yan, X., & Zhao, X. (2020). Penalized generalized
empirical likelihood with a diverging number of general
estimating equations for censored data. The Annals of
Statistics, 48(1), 607–627.

[21] He, D., Zhou, Y., & Zou, H. (2020). High-dimensional variable
selection with right censored length-biased data. Statistica
Sinica, 30, 193–215.

[22] Wu, D., & Li, C. (2021). Joint analysis of multivariate interval-
censored survival data and a time-dependent covariate.
Statistical Methods in Medical Research, 30(3), 769–784.

[23] Valeriano, K. A., Galarza, C. E., & Matos, L. A. (2023).
Moments and random number generation for the truncated
elliptical family of distributions. Statistics and Computing,
33(1), 32. https://doi.org/10.1007/s11222-022-10200-4

[24] Tan, Z. (2009). A new approach toMLE ofWeibull distribution
with interval data. Reliability Engineering & System Safety,
94(2), 394–403.

[25] Nelson, W. B. (2003). Applied Life Data Analysis. Hoboken, NJ:
John Wiley & Sons.

[26] Gibbons, D. I., & Vance, L. C. (1981). A simulation study of
estimators for the 2-parameter Weibull distribution. IEEE
Transactions on Reliability, 30(1), 61–66.

[27] Genc, A., Erisoglu, M., Pekgor, A., Oturanc, G., Hepbasli, A.,
& Ulgen, K. (2005). Estimation of wind power potential using
Weibull distribution. Energy Sources, 27(9), 809–822.

[28] Pobocikova, I., Sedliackova, Z., Michalkova, M., & George, F.
(2017). Monte Carlo comparison of the methods for estimating
the Weibull distribution parameters–wind speed application.
Communications-Scientific Letters of the University of Zilina,
19(2A), 79–86.

[29] Joarder, A., Krishna, H., & Kundu, D. (2011). Inferences on
Weibull parameters with conventional type-I censoring.
Computational Statistics & Data Analysis, 55(1), 1–11.

[30] Guo, J., Kong, X., Wu, N., & Xie, L. (2024). Evaluating the
lifetime distribution parameters and reliability of products
using successive approximation method. Quality and
Reliability Engineering International, 40, 3280–3303.

How to Cite:Yu, Y., Gong, J., & Zhu, K. (2025). Analytical Solution for Parameter
Estimation of Weibull Distributions with Interval-Censored Data. Journal of Data
Science and Intelligent Systems. https://doi.org/10.47852/bonviewJDSIS52024661

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2025

15

https://doi.org/10.21203/rs.3.rs-2777984/v1
https://doi.org/10.21203/rs.3.rs-2777984/v1
https://doi.org/10.1007/s11222-022-10200-4
https://doi.org/10.47852/bonviewJDSIS52024661

	Analytical Solution for Parameter Estimation of Weibull Distributions with Interval-Censored Data
	1. Introduction
	2. Background for Research
	3. Analytical Solution of Parameter Estimation
	4. Parameter Estimation Simulation and Discussion
	4.1. Simulation test
	4.2. Method comparison
	4.3. Parameter estimation extension

	5. Fitting Application of Hong Kong Casualty Data
	6. Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


