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Treatment Combinations
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Abstract: In this paper, a combination of breast cancer treatment procedures is considered, and its impact on breast cancer survival is precisely
observed. Both statistical and neural network procedures are used to predict the breast cancer survival time. The results indicate that treatment
procedures that use surgical options improve breast cancer survival. In the case of non-surgical options, hormone therapy appears to be the
best. Additionally, the results suggest that radiation and chemotherapy combination lead to lower survival rates. The dataset used in this
research had limited cases where the chemotherapy option was prescribed. Chemotherapy alone was a confounding cancer treatment
option for non-node-positive cancer. For node-positive cancer cases, chemotherapy seems to work best where the surgery option is not
considered or is viable. The experiments with neural networks show that neural networks can help predict the event of death, but these
techniques could not accurately predict the length of survival.
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1. Introduction

Breast cancer is a significant type of cancer affecting women in
the US [1], with an estimated 2.3 million new cases worldwide [2].
Statistics show that nearly one in three female cancer cases are related
to breast cancer [3]. Breast cancer is also the second leading cause of
female cancer deaths in the US [3]. Breast cancer research studies
have primarily focused on statistical methods that use survival
analysis [4] and machine learning methods that predict breast
cancer occurrence [5] or its intensity (benign or malignant) [6].
Both methods need further improvements.

Survival analysis methods assess the impact of cancer treatment
plans on survival outcomes. Prior research on cancer outcomes
focused on establishing survival rates under individual treatment
plans [4]. While useful, these studies ignore the most realistic
situations where doctors often allow patients to undergo different
treatment plans to identify a treatment plan that works the best.
Under such circumstances, survival outcomes should be measured
as treatment combinations instead of an individual treatment plan.
These treatment plan combinations could perhaps be sequenced in
a certain way to improve the overall efficacy of cancer treatment.
Survival analysis under such situations gets challenging, but this
study shows that special coding procedures could be used to
identify survival curves for such analyses.

Machine learning methods are primarily predictive and cannot
be directly compared to statistical survival analysis methods.

Statistical survival methods focus on events (cancer death) and
survival times until an event is observed. Multiple output machine
learning methods such as neural networks allow a researcher to
predict two outputs: cancer death and survival time. Such multiple
output machine learning methods were not used previously and
warrant researchers’ attention. The multiple output machine
learning methods should also be compared with traditional
statistical survival analysis methods to highlight their merits and
drawbacks. Treatment plan combinations mentioned earlier can be
easily incorporated in machine learning methods as multiple
different binary inputs.

Breast cancer treatment procedures can be surgical or non-
surgical. Non-surgical breast cancer treatment procedures include
hormone therapy, radiotherapy, and chemotherapy [4]. Hormone
therapy centers around regulating essential female hormones
called estrogen. Estrogen prepares the female body for pregnancy
in adulthood and maintains cardiovascular and bone health.
Estrogen also helps cancers grow in women because most female
organs contain estrogen receptors. One way to reduce breast
cancer growth is to reduce the exposure of estrogen to breast
cancer cells. This reduction of exposure of estrogen to breast
cancer cells is the primary goal of hormone therapy. Given the
importance of estrogen to women’s overall cardiovascular and
bone health, hormone therapy often reduces bone density and
increases the risk of heart disease in women. Hormone therapy is
not an entirely non-surgical option because surgical options such
as the removal of ovaries in premenopausal women can also
reduce estrogen in women. While hormone therapy primarily
focuses on reducing the growth of breast cancer, radiation therapy
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kills cancer cells using high-energy X-rays. Side effects of radiation
therapy are fatigue and sunburn-like skin damage. These side effects
typically go away in several months since radiation treatment. The
goal of chemotherapy is to stop the spread of cancer to other parts
of the body and to kill fast-growing cancer cells. Chemotherapy is
often administered using injections into muscles, veins, or arteries.
Chemotherapy’s side effects include unwanted damage of cells in
other organs (heart, kidney, lungs, etc.) and temporary hair loss.

Surgical treatment typically focuses on surgical removal of the
area containing cancer cells. Two commonly used surgical
procedures are lumpectomy [7] and mastectomy [8]. Lumpectomy
deals with partial removal of breast, and mastectomy deals with
complete removal of the breast.

Breast cancer typically starts in a few cells in breast tissue. Over
time, these cells grow and divide and invade other tissues. When
cancer growth spreads to lymph nodes, it is ready to metastasize.
When breast cancer growth spreads to lymph nodes, it is called
node-positive breast cancer. Treatment for such type of breast
cancer is very aggressive. Chemotherapy and surgery play a prime
role in treating node-positive breast cancers.

This paper investigates two research questions: First, do
different breast cancer treatment combinations lead to different
survival rates? Second, can multiple output neural networks be
used to predict death due to breast cancer and survival time until
death? If different breast cancer treatment combinations lead to
different survival rates, then optimal treatment procedures can be
constructed to improve the survival times of breast cancer
patients. Additionally, predicting survival times accurately will
lead to smother transition and adjustment for families of breast
cancer survival patients.

The paper is organized as follows: Section 2 provides a brief
overview of survival analysis methods and reviews the literature on
applying machine learning methods for breast cancer diagnosis.
Section 3 reports data, experiments, and results. Section 4 concludes
this paper with a summary of the results.

2. Overview of Survival Analysis, Methods for
Survival Analysis, and Machine Learning
Applications in Breast Cancer Research

Survival analysis is used to study the impact of factors that
influence the time of a specific event. In cancer survival literature,
that event is typically the death of a patient. Classical statistical
techniques such as linear regression cannot be used for survival
analysis because techniques cannot handle censoring and time to
an event is not normally distributed. As a result, survival analysis
techniques assume that the event time distribution function, f(t), is
non-normally distributed. The cumulative event time distribution
function (the probability that an event has happened in time less
than or equal to t) is defined as follows:

F tð Þ ¼ P T � tð Þ ¼
ð
t

0
f uð Þdu (2.1)

The survival function,S(t),whichdenotes theprobability that an event
will happen after a specific time t in the future, can be similarly
computed from cumulative event time distribution as follows:

S tð Þ ¼ 1� F tð Þ ¼ P T > tð Þ ¼
ð1
t
f uð Þdu (2.2)

The hazard function or hazard rate, h(t), is an instantaneous risk of an
event happening at time t, given that a subject has survived until

time t. This hazard function has the following relationship with
probability density function (pdf) f(t) and survival function S(t):

h tð Þ ¼ f tð Þ
S tð Þ (2.3)

Survival analysis may be parametric or non-parametric depending
on whether or not any underlying functional form for pdf is assumed
in the analysis. Standard parametric survival analysis assumes any
exponential, standard gamma, Weibull, or log-normal pdf. Maximum
likelihood estimators are used for both parametric and non-parametric
survival analyses. Among the popular approaches for survival analysis
are the life table (LT) method, Kaplan-Meier (KM) survival analysis,
and Cox proportional hazards regression.

2.1. Life table and Kaplan-Meier survival analysis

The LT and KM survival analysis are non-parametric survival
analysis methods where the maximum likelihood estimator of
survival function S(t) is used. The analysis starts with an ordering
of event times in ascending order t1 < t2 < : : :< tk. The primary
difference between LT and KM survival analysis is that, in LT
analysis, the interval lengths (e.g., t2–t1 = tk–t(k–1)) are fixed,
whereas, in KM survival analysis, interval lengths are determined
by the events where a death occurs. As a result, the event times in
KM are defined by the events, where t1 may be the shortest time in
the database where the event has occurred, and tk is the longest
time in the dataset where the event is observed. The computational
method for computing survival function in both methods is the same.

Let for some intermediate time t ∈ [t1, tk), dj be the number of
individuals who have seen the event (died), and nj be the number of
individuals who have not seen the event (survived), then the KM
estimator estimates the likelihood of S(t) using the following expression:

ŝ tð Þ ¼
Y

tj � t
1� dj

nj

 !
(2.4)

LT and KM analyses can also be extended for hypothesis testing to
determine whether the survival curves for different groups (e.g.,
node-positive cancer vs. non-node-positive cancer) are statistically
different. Statistical tests such as log-rank, Wilcoxon, and
likelihood ratio statistics are among the popular tests used to test
these hypotheses.

2.2. The Cox proportional hazards regression

Let x = [x1, : : : , xs]T be the set of covariates that impact the
hazard rate h(t). Since the hazard rate is always non-negative,
assuming parameter vector β = [β1, : : : , βs]T, the hazard function
can be written as follows:

h tjxð Þ ¼ exp β0 þ βTxð Þ (2.5)

Since the formulation in Equation (2.5) does not model hazard rate
dependence on time, an additional multiplier h0(t), a baseline hazard
rate that describes the dependence of hazard rate on time alone, can
be added, and formulation in Equation (2.5) can be written for some
individual “i” as follows:

h tjxið Þ ¼ h0 tð Þexp βTxið Þ (2.6)

The term “proportional” comes from the fact that the hazard rate
stays constant over time with fixed covariates. For example, for
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two individuals i and j, the ratio between their hazard rates can be
written as follows:

h tjxið Þ
h tjxj
� � ¼ exp βT xi � xj

� �� �
(2.7)

The Equation (2.7) illustrates that a subject most at risk at any one
time remains most at risk at any other time. A log-linear
regression model is obtained using logarithms on both sides of
Equation (2.6), and maximum likelihood procedures can be used
to estimate parameters βs.

2.3. Brief review of literature on machine learning
applications for breast cancer prediction

Machine learning techniques are used extensively for breast
cancer prediction. Most studies used machine learning to solve
traditional classification [9] and clustering breast cancer cases.
Fatima et al. [5] used artificial neural networks that used several
demographic, hereditary, dietary, and other related variables to
identify women who are in high-risk subpopulation groups for
contracting breast cancer. Setiono [6] developed a neural network
to learn breast cancer prediction rules and proposed a data
preprocessing technique to improve classification accuracy further.
Other applications of neural networks included the application of
self-organization mapping neural networks for clustering breast
cancer cases for identifying clinical trends [10], and application of
hybrid [11] and evolutionary neural network for the prediction of
breast cancer [12]. Some studies used fuzzy classifiers [13], a
hybrid fuzzy genetic algorithm [14], and hybrid deep learning
techniques [15] for predicting breast cancer.

Non-classification methods used regression, feature selection,
and ensemble methods for breast cancer research. Among these
studies was the use of support vector regression to predict clinical
metastases time for breast cancer patients and rank different genes
for their role in breast cancer metastases time [16]; the use of the
Mann-Whitney statistical test for feature selection for improved
breast cancer prediction [17]; a hybrid decision tree and genetic
algorithm-based ensemble for cost-sensitive classification [18];
and a hybrid rough set and support vector machine ensemble for
solving traditional breast cancer classification problems.

A few studies have used hybrid statistical and machine learning
methods, deep learning, and case-based reasoningmethods for breast
cancer analysis. These studies addressed problems such as the data
imputation procedure to fill in missing values [19], multi-category
classification [20], tumor prediction [21], and providing visual
reasoning for diagnosis explanations [22].

3. Data, Experiments, and Results

Data on 453 cases were obtained from a large cancer hospital in
the northeastern US. The researchers did not formally collect this
data as part of the study. Still, it was provided to them, and the
researchers of this paper did not control the hospital’s data
acquisition procedures. The hospital provided all the available
data. If some data was excluded, it was due to internal hospital
procedures, and researchers had no control over these procedures.

The data were obtained under real-world conditions where not
all patients were observed for the same length. Many cases were
censored because they may have moved or changed physicians or
hospitals. Survival times were computed using the diagnosis data
to the date of death. Only the cases with known survival time
values were included in the dataset. Death records were matched

with the state death files, and deaths were classified as death due
to cancer, death for non-cancer-related reasons, and death for
unknown reasons. Of these 453 cases, 84 cases belonged to node-
positive breast cancer. The overall average age of patients was
63.7 years, with a standard deviation of 12.5 years. The average
age of node-positive breast cancer patients was 61.42 years, and
the average age of node-negative breast cancer patients was 64.3
years. For the 453 cases in the dataset, the event (cancer-related
death) was observed for 374 cases, and the remaining cases were
either censored or contained cases due to non-cancer-related
deaths. Figure 1 illustrates the procedures performed on these 453
patients. The cancer survival time in months for each case was
computed from the date of diagnosis to the date of death or the
date of data extraction (when the death event was not observed/
censored). 26 patients did not have any procedures performed on
them. These patients were either transient patients who visited the
hospital for a second opinion before moving on to another care
facility or were very near death, where no procedures were
performed. These 26 cases were dropped from further data
analysis. Two of these dropped cases were node-positive breast
cancer cases. The dataset contained other attributes, such as
estrogen and progesterone receptor status. These variables were
only considered in secondary data analysis because, due to
missing values of these variables, using them led to a further
reduction in the original dataset size and an increase in binary
input combinations.

Figure 1 illustrates that hormone therapy and radiation therapy
were the two most frequently used procedures, which were followed
by surgery and chemotherapy. Verifying that the overall procedure
total exceeds 427 remaining patients is easy. This illustrates that
several patients had undergone multiple procedures. The treatment
procedure variables in the dataset were assigned binary values,
where one indicated that the procedure was performed on the
patient and 0 suggested that the procedure was not performed on
the patient. Since there are four treatment variables, each taking a
binary value, 16 unique treatments exist. Of these 16 unique
treatments, 26 cases (mentioned earlier) taking all 0 values for all
four procedures were already dropped from the analysis. For the
remaining 15 combinations, a mapping that uniquely assigns an
integer value for each of the 15 remaining treatment combinations
was used. More specifically, the mapping: f : 0; 1f g4 ! Z, where
integer set Z = {1,2,3, : : : ,15} was used. This mapping was created
by assuming that the treatment combinations are defined using a
binary component vector q = [q1, : : : , q4]T. The unique value of Z
was then computed using the following expression:

Z ¼
X

4
i¼1

qi � 2i�1; where
X

4
i¼1

qi > 0 (3.1)

Once the Z values were obtained, samples with sizes of five or fewer
cases per Z value were dropped because computing meaningful sur-
vival curves for small sample sizes was challenging to draw and
interpret. These samples were for Z= 10 (5 cases), Z= 11 (2 cases),
Z= 14 (2 cases) and Z = 15 (1 case). After removing these 10 cases,
417 cases were available for analysis. Table 1 lists the Z values and
number of cases for each category of Z value. The dataset also pro-
vided the size of cancer in centimeters. For the 417 cases, the overall
cancer size was 3.03 centimeters, with a standard deviation of 1.87
centimeters. The average cancer size for node-positive breast cancer
patients was 2.98 centimeters, and the average cancer size for node-
negative breast cancer patients was 3.04 centimeters.

The results of Table 1 indicate that hormone and radiation
therapy combination is the most frequently used combination,
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which is followed by hormone-only and radiation-only therapy
procedures. Chemotherapy and its combinations are among the
least commonly used methods. In the 417 cases used for data
analysis, node-positive breast cancer cases were 76 cases,
representing about 18.2% of overall cases. The rest of the cases
were non-negative breast cancer cases. Table 2 illustrates the
breakdown in the number of cases based on cancer type.
Radiation and hormone therapy combination remains the most
popular treatment option for both types of cancers. However,
radiation alone, while a popular procedure for node-negative
cancer, is rarely used for node-positive cancers.

Figure 2 illustrates the LT survival analysis and plots of survival
functions for node-positive and node-negative breast cancer cases.
The SPSS software was used for survival analysis. The median
survival times for node-negative and node-positive cancers were
58.57 months and 68.14 months, respectively. The Wilcoxon
statistic was 3.262 (df= 1), which is non-significant at a 95%
statistical level of confidence. The reader needs to notice that
node-positive and node-negative breast cancers are not mutually
exclusive cancers. Cases with categories labeled as node-positive
cancers were previously node-negative breast cancers. A patient
with node-positive breast cancer needs to survive as node-negative

breast cancer for a while until the cancer spreads and becomes
node-positive breast cancer. As a result, care must be exercised in
viewing results from Table 2 and Figure 2. Many treatments that
show up for node-positive breast cancer in Table 2 may be
administered when the patient is in the node-negative breast
cancer category. Furthermore, some node-negative breast cancers
in the dataset may become node-positive breast cancers in the future.

Given that the survival times for node-negative and node-
positive breast cancers were not statistically significant, two
different KM survival analyses were performed. In the first
analysis, cancer type was ignored, and all cases were treated as
overall breast cancer cases. Figure 3 illustrates the survival curves
for different treatment plans for this first analysis. Censored cases
in Figure 3 are represented by “+” symbol. This censoring label
appears in Figures 4 and 5 as well.

Figure 3 and Table 3 illustrate that treatment plans 8, 9, 12,
and 13 have the highest survival rates. All of these plans use
surgery only or some other treatment in combination with
surgery. Chemotherapy (plan 2) also appears promising, but
based on Table 2, our dataset did not have many cases related
to this plan. Plan number 7, which was a combination of
hormones, chemotherapy, and radiation, appears to be the worst

Figure 1
Procedure distribution histogram

Table 1
Therapy combinations, Z values, and total cases for each Z

value

Hormone Chemo. Radi. Surgery Z Total cases

1 0 0 0 1 62
0 1 0 0 2 7
1 1 0 0 3 9
0 0 1 0 4 46
1 0 1 0 5 109
0 1 1 0 6 14
1 1 1 0 7 26
0 0 0 1 8 38
1 0 0 1 9 43
0 0 1 1 12 35
1 0 1 1 13 28

Table 2
Number of cases breakdown by cancer type

(node= 1 is node-positive)

Z value Node= 0 Node= 1

1 52 10
2 1 6
3 3 6
4 15 1
5 93 16
6 9 5
7 16 10
8 33 5
9 34 9
12 32 3
13 23 5
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option in terms of survival rates. Plan 5, a combination of
radiation and hormone therapy, seems to have average survival
rates. There are two options to compute the central tendency of
survival times. These two options are median and mean
survival times [23]. The median survival time is the smallest
survival time for which the survivor function is less than or
equal to 0.5. Generally, median survival time computation is
desirable when the sample size is large [23]. For smaller
sample sizes, some survival functions may not go as far as the value
of 0.5. In such cases, median survival time is usually not computed.

The mean survival times [24] are computed as an expected value of
survival time using the area under the entire survival curve [25]. The
mean survival times assume that the longest survival time is the
longest for a patient in the dataset [23]. Table 3 provides numeric
estimates of mean survival times and 95% confidence levels around
these means for different treatment options.

Table 4 illustrates the test results of the null hypothesis that all
treatment plans have the same survival distribution. This null
hypothesis was rejected, emphasizing that selecting a treatment
plan does improve breast cancer survival.

Figure 2
Survival functions for node-positive and node-negative breast cancers

Figure 3
Kaplan-Meier analysis of survival functions
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The second KM survival analysis stratified data for computing
survival rates using the cancer type variable. Table 5 illustrates the
number of cases of each cancer type and treatment plan. To avoid
clutter in survival function plots, survival function plots that
contained fewer than 6 cases for each cancer type and treatment
plan combination were suppressed. These cases with suppressed
survival function plots are marked with an asterisk in Table 5.

Figures 4 and 5 illustrate survival function plots for node-
negative and node-positive breast cancers. Table 6 provides
numeric estimates of mean survival rates and 95% confidence
levels around the means. Treatment plans with surgery (plans 8, 9,
12, and 13) all have higher survival rates for node-negative breast
cancer cases. Treatment plans containing radiation and
chemotherapy (plans 6 and 7) have the lowest survival rates for

both node-negative and node-positive breast cancers.
Chemotherapy should be generally administered for node-positive
breast cancers only. While treatment plan 1 (Hormone therapy
only) has low survival rates for node-negative cancers, its
pronounced impact in Figure 5 appears to suggest that hormone
therapy may work well for certain patients. Perhaps other
confounding variables, such as the age of the patient, may play a
role in deciding on a hormone-only therapy option. Table 7
illustrates the test results of the null hypothesis that all treatment
plans have the same survival distribution adjusted for different
breast cancer types. The null hypothesis was rejected, illustrating
that the selection of a treatment plan improves the chances of
breast cancer survival.

Estrogen and progesterone receptor status were included in the
dataset for additional analysis. Including these two variables reduced
the database size to 367 cases for analysis. This data size reduction
was due to eliminating cases containing missing values for estrogen
and progesterone receptor status variables. A selection choice
between estrogen and progesterone receptor status variables was
made to avoid a further reduction in sample sizes of cases
belonging to different combinations of estrogen and progesterone
receptor status variables and to improve the generalizability of the
results. The status variable that best splits the database using the
entropy criterion [26] was selected. This best separating variable
and associated rule separating 114 cases in the database was:

IF Estrogen Receptor Status ¼ Positive Then Treatment

Plan ¼ 5ð98 total casesÞ
Else

Treatment Plan ¼ 4 16 casesð Þ:

Since radiation was administered in both plan 4 and 5 and
hormone therapy was only administered in plan 5, it appears that
estrogen receptor status is the key determining factor in hormone
therapy treatment. Table 8 illustrates average survival rates. The
table demonstrates that positive estrogen status only improves
survival rates for treatment plan 13. For all other treatment plans,
higher average survival rates were observed when estrogen
receptor status was negative. The analysis indicates that using
estrogen receptor status to separate different treatment plans may
be beneficial. Except for treatment plans 4 and 5, our sample sizes
for other treatment plans were too small to draw reliable
conclusions. The estrogen receptor status variable certainly has
merit in determining treatment plans.

Table 3
Kaplan-Meier analysis mean survival times and confidence intervals

Treatment plan Mean Std. Error 95% lower bound 95% upper bound

1 42.12 3.71 34.83 49.40
2 66.48 22.57 22.23 110.72
3 38.71 14.67 9.96 67.46
4 44.87 3.78 37.45 52.29
5 41.85 2.75 36.45 47.25
6 28.20 5.25 17.90 38.51
7 25.39 6.16 13.30 37.48
8 95.42 3.69 88.18 102.66
9 93.07 3.29 86.69 99.53
12 87.49 3.88 79.89 95.10
13 83.85 3.32 77.33 90.37

Table 4
Statistical significance results on equality of survival

distributions for different levels of treatments

Method Chi-Square df Sig.

Log Rank (Mantel-Cox) 188.122 10 0.000*
Breslow (Generalized Wilcoxon) 216.157 10 0.000*
Tarone-Ware 217.481 10 0.000*

Table 5
Number of node-positive and node-negative cancer cases for

each treatment plan

Treatment
plan (Z)

Number of cases
(Node= 0)

Number of cases
(Node= 1)

1 52 10
2 1* 6
3 3* 6
4 45 1*
5 93 16
6 9 5*
7 16 10
8 33 5*
9 34 9
12 32 3*
13 33 5*

Note: *Too few cases. Treatment plans related to these cases are
suppressed in survival function plots.
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A Cox regression analysis with independent variables of age,
cancer size in centimeters, breast cancer type, and 11 different
treatment plans, with the dependent variable of survival time, was
conducted in months. Table 9 illustrates the results of variable
significance for Cox regression analysis. The base-level treatment
plan was Z= 13. The overall Omnibus test of the model was signifi-
cant with a−2 log-likelihood value of 3319.50 (chi-square: 210.26 at
df= 13), which was significant at a 99% level of statistical signifi-
cance. The results indicate that cancer size, type, and treatment plan
are important in cancer hazard rates. An inverse relationship exists
between cancer size and cancer type with hazard rate. Larger-size
cancers and node-positive cancers reduce the hazard rate. The rela-
tionship between lower hazard rates for node-positive breast cancer

is consistent with higher survival rates observed in Figure 2. The
relationship between cancer size and hazard rate may not be very
intuitive, but many factors may play a role in explaining this relation-
ship. For example, it appears that large cancers may be easy to detect,
treatment plans for large cancers may be more aggressive, and sur-
gical treatment plans may be recommended for large-size cancers.

Table 10 illustrates Helmert contrast statistics between different
treatment plans. Helmert contrasts the hazard rates of each treatment
plan with the average effects of previous categories. For example,
if u denotes an index for a treatment plan with u taking a value of 1
when Z= 1 and u taking a value of 11 when Z= 13 and
μu denotes mean survival rate for a treatment plan with index u,
then Helmert contrasts test following ten null hypotheses:

Figure 4
Survival functions for node-negative breast cancer

Figure 5
Survival functions for node-positive breast cancer
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1� 1
u

� �
µu � 1

u

P
u�1
q¼1 µq

� �
¼ 0; where u ¼ 2; . . . ; 11. The last

column in Table 10 represents the hazard rates. Generally, lower
values represent lower hazard rates for the treatment plan. The best
treatment plan has a u-value of 8 and Z = 8. All treatment plans with
surgery as an option have statistically significantly lower hazard rates
than average combinations of non-surgical and/or surgical and
non-surgical options. For the non-surgical option, hormone therapy
is best. Chemotherapy and radiation therapy options seem to be the
worst options.

Machine learning techniques have limited usefulness in
determining the efficacy of breast cancer treatment procedures, but
these techniques can still help predict death and cancer survival
times (durations) [3]. Among different available methods, neural
networks are an attractive option for testing the performance of a
machine learning technique in predicting death and survival
duration. A C++ program and IBM SPSS Modeler were used for
this part of the research. The C++ program was used to generate
samples for V-fold validation, and IBM SPSS software was used to
run neural network experiments on these samples.

Figure 6 illustrates a neural network used in this research. The
inputs in the neural networkwere patient age, cancer size, cancer type
(node-positive or node-negative), and different treatment
procedures. The outputs were cancer survival time and cancer
death. Figure 6 indicates the variables assigned binary values
using label {0,1}. All cases where the treatments suggested by
inputs were administered, cancer was node-positive, or an event
(death) was observed were assigned a value of 1. Otherwise, a
value of 0 was assigned to the variables. Cancer death was
assigned a value of 1 only when death was attributed to breast
cancer. For all other possibilities, such as deaths unrelated to
cancer, censored cases, or when the event of death was not
observed, a value of 0 was assigned to the cancer death variable.

Among the factors that impact the performance of a neural
network are the design of a neural network and data bias [26]. The
neural network design factors consist of the learning algorithm used
to learn connection weights, the architecture of a neural network,
and the neural network learning parameters (learning rate and
stopping criterion) [27]. Three-layer neural network architectures
with either seven hidden nodes or 14 hidden nodes and two output

Table 6
Kaplan-Meier analysis mean survival times

and confidence intervals

Treatment
plan Mean

Std.
Error

95% lower
bound

95% upper
bound

Node-Negative Breast Cancer
1 37.69 2.90 31.99 43.38
2 13.27 0 13.27 13.27
3 19.71 16.96 0 52.97
4 43.02 3.39 36.36 49.67
5 38.88 2.93 33.13 44.62
6 24.78 6.05 12.91 36.65
7 21.21 5.88 9.68 32.74
8 92.71 3.74 85.37 100.04
9 95.26 3.79 87.81 102.70
12 85.53 3.78 78.12 92.95
13 83.67 4.03 75.75 91.58
Node-Positive Breast Cancer
1 74.13 17.99 38.86 109.40
2 77.12 24.93 28.25 125.98
3 48.91 21.10 7.56 90.27
4 105.40 0 105.40 105.40
5 60.40 6.67 47.32 73.49
6 34.19 9.40 15.75 52.63
7 28.68 10.67 7.77 49.58
8 116.15 7.16 102.10 130.20
9 82.31 4.49 73.50 91.11
12 104.85 18.08 69.41 140.30
13 84.78 2.63 79.63 89.82

Table 7
Statistical significant results on equality of survival

distributions for different levels of treatments
(adjusted for breast cancer type)

Method Chi-Square df Sig.

Log Rank (Mantel-Cox) 209.60 10 0.000*
Breslow (Generalized Wilcoxon) 219.40 10 0.000*
Tarone-Ware 238.64 10 0.000*

Note: *Significant at 99% statistical level of significance

Table 8
Survival rates based on estrogen receptor status

Z value Negative Positive

1 44.75 34.53
2 34.83 0.83
3 88.13 12.43
4 44.75 41.60
5 47.84 37.46
6 31.68 20.85
7 22.05 21.96
8 80.09 70.31
9 93.98 83.41
12 93.13 76.94
13 64.85 83.73

Table 9
Variable significance test results in Cox regression analysis

Variable Beta value Std. Error Wald df Sig.

Age 0.004 0.005 0.73 1 0.391
Size −0.079 0.031 6.64 1 0.010**
Cancer Type −0.796 0.168 22.37 1 0.000*
Treatment 182.0 10 0.000*
Treatment 1 1.448 0.253 32.82 1 0.000*
Treatment 2 0.639 0.579 1.21 1 0.270
Treatment 3 1.585 0.438 13.12 1 0.000*
Treatment 4 1.226 0.264 21.55 1 0.000*
Treatment 5 1.272 0.229 30.77 1 0.000*
Treatment 6 2.307 0.379 37.00 1 0.000*
Treatment 7 2.137 0.306 48.79 1 0.000*
Treatment 8 −0.521 0.290 3.23 1 0.072
Treatment 9 −0.331 0.265 1.56 1 0.212
Treatment 12 −0.210 0.279 0.56 1 0.452

Note: *Significant at 99% statistical level of significance; **Significant
at 95% statistical level of significance
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nodeswere chosen for the experiments. The learning algorithm used in
the researchwaserrorbackpropagationwitha learningrateof0.01anda
stopping criterion of 5,000 learning iterations or convergence of error
values. Figure 6 illustrates seven hidden node neural network
architectures used in current research.

A brief overview of neural network learning is as follows. The
input neurons are assigned actual case values of inputs. For each non-
input layer of neurons, assume that there are i neurons in the previous
layer and k neurons in the current layer. For any of the hidden layer or
output layer neurons, say nk, their output (ok) is represented using the
following expression: ok ¼ f

P
i wikpið Þ þ wiþ1;k

� �
;

where f xð Þ ¼ 1
1þ e�x (3.2)

At each iteration, the connection weights between layers i and k are
adjusted using the following formula:

wnew
ik ¼ wold

ik � ηδk pi (3.3)

Theweightswnew
ik are the newvalues ofweights andwold

ik are old values
from the previous iteration. The value of δk is determined as follows:

δk ¼
ok 1� okð Þ yk � okð Þ if nk is an output neuron
ok 1� okð Þ Pj wkjδj if nk is hidden layer neuron:

�
(3.4)

The subscript j denotes the number of neurons in the output layer, and
δj is computed only for the output neurons using the first part of
the Equation (3.4). The variables yk are actual values of outputs that
a neural network attempts to learn by applying weight adjustments.
The parameter η is the learning rate. Theweights are assigned random
values at the beginning of the learning procedure. The procedure
terminates when weights converge or some predetermined number
of iterations are completed (5,000 in our case).

A V-fold holdout sampling approach was used, where the
original data set of 417 cases was broken into five nearly equal-
sized samples [26]. Five different holdout experiments were
conducted using each of the five approximately equal-sized samples
as holdout datasets and the remaining four training samples as the
training dataset. For two different types of outputs, two different
performance metrics were used. The first metric used for survival
time output was the root mean square (RMS) error. Several
performance metrics were necessary to account for dataset bias for
the cancer death output. Out of a total of 417 cases, 352 cases
contained the event of cancer death. That is approximately 85% of
cases where the event of death was observed. Thus, if a neural
network predicted the event of death for all 100% of cases, then it
would be approximately accurate 85% of the time. To deal with
this data bias issue, several other performance metrics are necessary
to assess the predictive performance of a neural network
appropriately. These performance metrics were computed using the

Table 10
Helmert contrast statistics for different treatment plans

u-index Beta value Std. Error Wald stat. df Sig. Exp (beta)

2 −0.81 0.558 2.105 1 0.147 0.445
3 0.542 0.450 1.447 1 0.229 1.719
4 0.002 0.287 0.000 1 0.995 1.002
5 0.047 0.208 0.052 1 0.820 1.049
6 1.073 0.329 10.639 1 0.001* 2.925
7 0.724 0.239 9.218 1 0.002* 2.063
8 −2.03 0.254 64.382 1 0.000* 0.130
9 −1.59 0.217 53.727 1 0.000* 0.203
10 −1.29 0.215 36.140 1 0.000* 0.274
11 −0.95 0.227 17.699 1 0.000* 0.385

Note: *Significant at 99% statistical level of significance

Figure 6
A 7-hidden node neural network architecture for predicting events and survival time

Age

Cancer Death

Input Layer Hidden Layer Output Layer

Survival Time

Cancer Size

Node Positive
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Hormone

{0,1}
{0,1}

Journal of Data Science and Intelligent Systems Vol. 4 Iss. 1 2026

133



confusion matrix shown in Figure 7. A confusion matrix is created by
comparing the prediction for cancer deaths from a neural network with
their known actual values from the dataset. The variables a, b, c, and d
are integer values. For example, the variable a represents total
positives, where the neural network correctly predicts an event
death for holdout sample cases, etc.

Table 11 illustrates the results of neural network experiments.
For cancer death output and its metrics, the accuracies of the
two neural network architectures look similar. Sometimes, the
7-hidden nodes neural network performs slightly better, and other
times, the 14-hidden nodes neural network performs better. The
F-measure that combines precision and recall into one measure
slightly appears to favor 7-hidden node architecture. Assuming
that decision-makers are trying to predict survival from breast
cancer, the specificity metric is the most critical. For this measure,
the 7-hidden node architecture performs slightly better in a higher
average value for the specificity metric. The 7-hidden node
architecture consistently provides lower RMS errors for the
survival time output. So overall, the 7-hidden node architecture is
slightly better than the 14-node architecture.

Table 11 also includes a reliability column. This reliability
column only looks at the ratio between training and test accuracy
(reported in the 3rd column of Table 10). Since the training dataset
contains more examples than the test dataset, training dataset
accuracies were consistently lower than test datasets but higher
than 85%. We do not report training dataset accuracies because
they can be computed by multiplying the second column of
Table 11 with the third column. The ideal value of the reliability
column will be 1, where both training and test dataset accuracies

are precisely equal. A general expectation of reliability is that test
performance will also worsen if training accuracies deteriorate.
The reliability measure indicates that the 14-node architecture is
slightly better. For large dataset sizes, decision-makers may prefer
this architecture because it will slightly adjust well for large datasets.

The results of experiments with neural networks indicate that
these techniques add marginal value because the prediction
accuracies for death output are higher than 90%, which is higher
than the average death cases in the dataset at nearly 85%. The
survival time predictions have high RMS errors. The errors are so
high that most decision-makers may not want to use these
predictions in their patient recommendations. Using these
predictions can have an error of two or more years.

While this research used traditional neural networks, advanced
hybrids that combine global and local search can improve predictive
performance [27]. When available, incorporating additional relevant
variables in the dataset may also improve predictive performance.

4. Summary, Discussion, and Conclusions

Given that it is rare for breast treatment plans to consider only
a single treatment, this study investigated survival analysis for
different treatment plane combinations for breast cancer treatment.
A simple binary function was introduced to map different
treatment plans into a unique category integer value. Statistical
survival analysis was then conducted on other treatment plans,
and it was found that surgery and its combination with hormone
therapy led to the highest survival rates. For node-positive
cancers, radiation was not the best option to consider.

Figure 7
The cancer death class performance metrics

Table 11
Summary of neural network experiments

Fold Rel. Acc. % Recall % Spec. % Prec.% RMS Error

7-Hidden Node Architecture
1 0.86 98.77 98.55 0 85.00 27.64
2 0.95 90.48 91.67 16.67 86.84 31.29
3 0.94 44.05 93.94 5.56 78.48 29.14
4 0.86 97.62 98.67 11.11 90.24 26.37
5 0.95 90.48 92.86 21.43 85.53 30.11
14-Hidden Node Architecture
1 0.93 95.08 95.65 8.33 85.71 30.27
2 0.97 90.48 90.28 8.33 85.53 33.60
3 0.93 96.43 95.45 0 77.78 29.33
4 0.89 96.43 97.33 11.11 90.12 27.96
5 0.96 91.67 92.86 14.29 84.42 32.48
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Chemotherapy was a confounding cancer treatment option.
At first, it did not appear to improve survival rates. However,
for node-positive cancer cases, chemotherapy may be
considered to improve survival, albeit only after a surgical
option is considered. Chemotherapy was also the least
prescribed option in the dataset (Figure 1). The small sample
size for chemotherapy patients reduces the significance of
conclusions that may be drawn for this treatment option. The
results of the study also suggest that the estrogen receptor
status variable may play a role in determining if a combination
of hormonal therapy and radiation therapy should be used with
a surgery option.

The experiments with neural networks suggest the importance
of survival analysis for predicting breast cancer survival rates.
Neural networks helped predict the event of death, but these
techniques could not accurately predict the length of survival. It
is possible that increasing the number of outputs in a neural
network leads to a sacrifice in accuracy for some outputs. Part of
the reason may be that the weights for the first layer of
connections are learned by considering both outputs. Perhaps
two separate networks, each with one output, may provide for
marginal improvement in prediction accuracy. Future research is
needed to address this issue.

The current research only used demographics, cancer size,
and cancer treatment variables. Cancer diagnostic procedures
have improved substantially. In particular, minimal invasion
biopsies are very common nowadays. These biopsies provide
information on tissue trauma, tissue inflammation, genetic
alteration, and chromosomal instability information [28]. Such
additional information may be used to improve optimal
treatment procedure recommendations. When biopsy
information is available, researchers may be overwhelmed with
much available information. In such situations, dimensionality
reduction and special sampling approaches helped screen
samples and essential variables for cancer prediction [29].
Ensemble techniques are also beneficial in cancer research [30]
to improve prediction accuracies. The use of dimensionality
reduction and ensemble techniques represents another possible
extension of the current study.
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