
Received: 27 September 2024 | Revised: 5 November 2024 | Accepted: 4 December 2024 | Published online: 24 December 2024

RESEARCH ARTICLE

A Dynamic Trapdoor Redactable
Blockchain Schemes

Shuqiao Li1, Xiaoming Hu1,*, Yan Liu1 and Shuangjie Bai1

1School of Computer and Information Engineering, Shanghai Polytechnic University, China

Abstract: The permanent storage of blockchain data exposes certain security risks in practical applications, necessitating the ability to edit
data in specific scenarios. The chameleon hash function, as a trapdoor one-way hash function, has emerged as a key technology for achieving
redactable blockchains. However, existing redactable blockchain schemes based on chameleon hash function face security vulnerabilities
related to trapdoor misuse and leakage. This paper proposes a dynamic trapdoor redactable blockchain schemes, utilizing a dynamic
trapdoor chameleon hash (DTCH) that allows for the dynamic update of trapdoors while overcoming the inherent immutability of
blockchain, thus reducing the risk of malicious nodes retaining the trapdoor long-term. The proposed scheme employs controllable
randomness, where the trapdoor key automatically updates after a certain period or upon use. In this scenario, authorized nodes cannot
successfully find hash collisions with old keys, effectively revoking their authorization. Consequently, only users with valid trapdoor
keys can modify the data on the chain. Relevant security tests and experimental results indicate that the proposed scheme offers
advantages in security and maintains good efficiency at various stages, achieving higher security guarantees with minimal computational cost.

Keywords: data management, redactable blockchain, chameleon hash function, dynamic trapdoor

1. Introduction

In 2008, Nakamoto first proposed Bitcoin, an electronic
payment system based on Peer-to-Peer (P2P) network and
consensus mechanism [1]. As the core technology of Bitcoin,
blockchain has attracted widespread attention from academia,
industry, and government departments due to its characteristics of
decentralization, transparency, and immutability [2]. Among them,
immutability means that once data are recorded on the blockchain,
it cannot be deleted or modified, providing a guarantee for the
reliability and credibility of blockchain data [3]. However, this
permanent storage feature also brings many security risks.
Malicious users may upload sensitive or illegal data to the
blockchain, seriously affecting the healthy development of the
network. In addition, data protection laws and regulations
promulgated by government agencies require the editable nature
of data to promote the rapid development and widespread
application of blockchain technology [4]. Therefore, researching
redactable schemes for blockchain data holds significant
theoretical importance and practical application value.

In order to solve the contradiction between the immutability of data
on the blockchain and data supervision, scholars have proposed the
concept of redactable blockchain, which has been continuously
researched and developed in recent years. Lou et al. conducted a
systematic investigation and analysis of current redactable blockchain
schemes and divided redactable blockchain technologies into
chameleon hash-based schemes and non-chameleon hash-based
schemes, where the latter includes consensus voting, mutable

transactions, and other consensus algorithms [5]. The redactable
blockchain constructed by chameleon hash function offers advantages
such as low cost and high efficiency, making it the predominant
method for constructing redactable blockchains [6]. This is primarily
attributed to the unique property of chameleon hash, which possesses
a trapdoor that allows the input of the hash function to be altered
without changing the hash value. For non-trapdoor holders,
chameleon hash maintains collision resistance similar to that of
standard hash. In redactable blockchain system, the holder of
chameleon hash trapdoor has the edit permission to modify data [7].

Although chameleon hash function provides technical support for
redactable blockchain, there are still many problems to be solved. One of
the first issues is how to achieve data trust in redactable blockchains. The
advantage of blockchain is data tamper-proof, and editability seems to
break this advantage. If the data on the chain can be arbitrarily
modified by anyone at any time, the authenticity and reliability of the
data cannot be guaranteed, and data trust is out of the question.
Therefore, redactable blockchains that support data modification need
to establish secure and perfect trust and supervision mechanisms to
prevent the abuse of editing permissions [8].

To address the above challenges, the main contributions of this
paper are as follows:

1) We propose a chameleon hash function supporting dynamic
trapdoor. The trapdoor abolition and update algorithm are
added to the chameleon hash function, which can realize the
dynamic update of trapdoor when breaking through the
inherent immutability of blockchain. Even if the key is stolen,
the key held by the thief will become invalid after a period of
time, thereby reducing the risk of malicious nodes holding

*Corresponding author: Xiaoming Hu, School of Computer and Information
Engineering, Shanghai Polytechnic University, China. Email: xmhu@sspu.edu.cn

Journal of Data Science and Intelligent Systems
2024, Vol. 00(00) 1–9

DOI: 10.47852/bonviewJDSIS42024450

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

mailto:xmhu@sspu.edu.cn
https://doi.org/10.47852/bonviewJDSIS42024450
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

trapdoor for a long time. It solves the security risks of trapdoor
abuse and trapdoor leakage and has higher security.

2) We design the identity-based user key generation algorithm. The
algorithm generates the corresponding user key after identifying
the user’s identity and sets the validity period. The authorization
is effectively revoked with controllable randomness, so that only
the user with the legal trapdoor key can change the data that has
been linked, which has the effect of dynamic rights management.

3) We prove the security of the proposed scheme and evaluate the
performance of DTCH. The results show that our scheme is
security and effectiveness. Compared with other schemes,
our scheme achieves higher security guarantee with lower
computation cost.

The rest of this paper is organized as follows. In Section 2, we
elaborate literature review; In Section 3, we review the preliminary
knowledge used throughout the paper. In Section 4, we present the
system model and the concrete construction of DTCH. In Section 5,
we describe the security analysis of DTCH. In Section 6, we provide
the performance analysis of DTCH. In Section 7, we present
discussion of this paper. Section 8 concludes the paper.

2. Literature Review

In 2017, Ashritha et al. [9] proposed a blockchain historical data
editing method based on the chameleon hash algorithm. The
chameleon hash function can ensure the consistency of hash
values through pre left trapdoors, allowing users with chameleon
hash algorithm trapdoors to edit the data of historical blocks.
However, there is a problem of centralized holding of trapdoors.

In 2019, Derler et al. [10] proposed a scheme based on temporary
trapdoors (CHET) and attribute-based encryption (ABE), in which the
authors proposed a new cryptographic primitive called policy-based
chameleon hash (PCH). In PCH, only the modifier who knows the
long-term trapdoor and temporary trapdoor can modify the
transaction, but the cost is high. Huang et al. [11] proposed
threshold chameleon hash (TCH), which allows a group of
authorized sensors to write and rewrite the blockchain without
causing any hard forks, but poses significant security risks.

In 2020, Huang et al. [12] proposed the first revocable
chameleon hash (RCH), which enables a transient trapdoor to
detect collisions without any cooperation, periodically expires for
submitted hashes, and a transient trapdoor to prevent any abuse of
editorial power, but there is a trapdoor exposure issue.

In 2021, Jia et al. [13] introduced a stateful chameleon hash
function in their article, which divides the key into a master key
and multiple slave keys. The master key is used for regulatory
agencies, and the slave key is used for users. Each user is
assigned a corresponding state by the regulatory agency while
being assigned a slave key. When a user initiates a modification
request, the verification node not only verifies the legitimacy of
the request but also verifies whether the user’s key state is
available. This scheme can effectively prevent malicious nodes
from doing evil and improve system security, but it still relies on
trusted regulatory agencies. Once the regulatory agency is
dishonest, it will cause huge damage to the system. Xu et al. [14]
introduced the concept of revocable PCH (RPCH) based on
Derler, which revokes the ability of certain users to decrypt
symmetric encryption keys by changing the access policy.
However, their scheme does not truly achieve revocability, only
revoking the ability of users who obtain trapdoors for decryption.
Panwar et al. [15] proposed an efficient framework called
ReTRACe for transaction-level blockchain rewriting, designed by

combining a new revocable chameleon hash with a transient
trapdoor scheme, a novel revocable fast attribute-based encryption
scheme, and a dynamic group signature scheme. In the same year,
Xu et al. [16] proposed a round-based redactable blockchain
scheme based on chameleon hash function and digital signature
technology, which stipulated that the modifier could perform up
to K data edits in each round. Once the limit was exceeded,
anyone could trace the source by extracting the malicious
modifier’s private key. However, this scheme did not consider the
limitation of data editing frequency. Once the data editing
frequency was too fast, it would trigger serious DDoS attacks.

In 2022, Ma et al. [17] proposed a new cryptographic primitive
called distributed attribute-based chameleon hash (DPCH) based on
the PCH scheme to address the above-mentioned issues. The
modifier’s permissions are issued by multiple authoritative institutions,
so there is no need for fully trusted authoritative institutions. At the
same time, DPCH can resist collusion attacks between authoritative
institutions and modifiers, and there is no need for any interaction
between various authoritative institutions. However, there are too
many cryptographic primitives and the computation is complex.

In 2023, Li et al. [18] proposed a non-interactive chameleon
hash (NITCH) scheme, which only requires collecting enough
subkeys when users need to modify data. Li also designed a
periodic update committee scheme in the article, which can
effectively solve the damage caused by key destruction and ensure
the anonymity of committee members. However, the voting stage
during the modification process takes a long time. Chen Yue et al.
[19] proposed a chameleon hash function with editing limit,
which includes a master trapdoor, a slave trapdoor, and a
generated witness. The slave trapdoor is used to edit data, the
master trapdoor is used to revoke the slave trapdoor to achieve the
purpose of revoking editing permissions, and the witness can
strictly limit the editing limit of the slave trapdoor to once, but the
revocation of the trapdoor lacks flexibility.

In 2024, Zhao et al. [20] proposed Tiger Tally as a secure
redactable architecture, introducing a novel targeted policy-based
chameleon hash algorithm and tokenized editing permissions to
form an integrated cryptographic and access control mechanism.
However, tokenized editing permission management may bring
new security risks, such as the risk of token theft or abuse.

In order to achieve an efficient decentralized blockchain redactable
scheme, this paper introduces the chameleonHash function to construct a
redactable blockchain and designs a chameleon hash with dynamic
trapdoor (DTCH) scheme that supports dynamic trapdoors. This
scheme can dynamically update trapdoors when breaking the inherent
immutability of the blockchain, thereby reducing the risk of malicious
nodes holding trapdoors for a long time. Specifically, the trapdoor
key will automatically update after a certain period of time or after
being used once. In this case, the authorized node cannot successfully
find the hash collision using the old key, thus effectively revoking its
authorization. One major advantage of this method is that even if the
key is stolen, the key held by the thief will expire after a period of time.

3. Preliminaries

In this section, we introduce the preliminary knowledge used
throughout the paper and give the security requirements that
DTCH needs to satisfy.

3.1. Bilinear map

Bilinear Map is a mathematical structure widely used in
cryptography, especially in designing secure protocols and

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

02

constructing encryption algorithms. The following are the basic
concepts and properties of bilinear map:

Definition 1: Given two multiplicative cyclic groups G and GT

of order q, g represents the generator of group G. The bilinear
map e from G to GT : G� G! GT satisfies the following properties:

(1) Bilinear: For any x; y 2 G and any a; b 2 Zq, e xa; yb
� � ¼

eðx; yÞab always holds.
(2) Nondegeneracy: Any x; y 2 G, such that e ¼ x; yð Þ 6¼ 1GT

holds,
where 1GT

is the unit element of the multiplicative cyclic groupGT .
(3) Computability: For any x; y 2 G, there exists an effective algo-

rithm to compute e ¼ x; yð Þ in polynomial time. The following
presents a computability difficulty problem defined on group G.

Definition 2: Discrete Logarithm Problem (DLP) Given a binary
ðg; gaÞ, the output a 2 Zq, where g is the generator of the multiplication
loop groupG. If there exists a negligible functionnegl λð Þ for any security
parameterλ and any probability polynomial-time adversaryA, such that:

Pr A 1λ; g; gað Þ ¼ a : a
R Zq

� �
� negl λð Þ

Then it is said that the DLP assumption on group G holds true.

3.2. Chameleon hash function

Hash functions typically have collision resistance, whichmeans
that when given two different inputs, their outputs must also be
different. Moreover, even with small changes in input data, there
will still be significant differences in output, which is the key
guarantee of blockchain’s immutability. The chameleon hash
function is a category of hash functions, proposed by Krawczyk
and Rabin as a single item hash function with trapdoors [21, 22].
The algorithm consists of four parts: initialization, key generation,
hash calculation, and collision generation.

Chameleon hashing, on the premise of implementing hashing,
can pre-set a backdoor called a private key or trapdoor, which can
easily identify collisions (making m and m

0
hash values the same,

where m equals m
0
). The chameleon hash function can be defined

as: given the chameleon hash public key hk, arbitrary data m, and
randomly selected parameters r, if the chameleon hash trapdoor tk
is unknown, the chameleon hash CH m; r; hkð Þ has the unidirectional-
ity and collision resistance of general hash functions; If you hold
the chameleon hash trapdoor tk, you can easily find the corresponding
message ðm; rÞ ðm0

; r
0 Þ, making the chameleon hash CH m; r; hkð Þ ¼

CHðm0
; r
0
; hkÞ. Although this breaks the two collision-resistance of

the hash function mentioned above, for most people, these character-
istics still exist. Therefore, this function is still safe.

A standard chameleon hash algorithm CH ¼ ðSetup;
KeyGen;Hash; ForgeÞ. It usually includes four parts: initialization,
key generation, hash calculation, and hash collision. The specific
description is divided into the following four steps.
(1) Parameter generation algorithm CH:Setup λð Þ ! pp: Input the

security parameter λ and output the common parameter p.
(2) Key generation algorithmCH:KeyGen ppð Þ ! ðhk; skÞ: Input the

public parameter pp and output the chameleon hash’s public key
hk and private key sk (also known as trapdoors).

(3) Hash calculation algorithm CH:Hashðhk;m; rÞ ! hð Þ: Input
the public key hk, message m, random number r, and output
the chameleon hash value h.

(4) Hash collision algorithm CH:Forgeðsk;m;m
0
; rÞ ! r0ð Þ: Input

the private key sk, two different messagesm,m0, random number

r, output a new random number r0, and satisfy CH sk;m; rð Þ ¼
CHðsk;m0

; r
0 Þ.

3.3. Security requirements

The security requirements of a secure chameleon hashing
scheme are mainly based on the security model given in reference
[13], which includes the security requirements of correctness,
revocability, and collision resistance.

Correctness: A chameleon hash CH is called correct, if for all
security parameter λ 2 N, for all CH:Setup λð Þ ! pp, for
all CH:KeyGen ppð Þ ! ðhk; skÞ, for all m0, we have for all
CH:Forgeðsk;m;m

0
; rÞ ! r0ð Þ, thatCH sk;m; rð Þ ¼ CH sk;m

0
; r
0� �

is always true.
Revocability: Revocability requires the ability of a data modifier
to find a collision of a certain hash value after one edit of a pre-
given message under a certain hash value has occurred by the data
modifier. A DTCH is revocable, if for all efficient adversary A it
holds that Pr ExptRevokeA λ ¼ 1

� � � negl λð Þ
Collision resistance: A chameleon hash CH is enhanced
collision-resistant, if for all probabilistic polynomial-time
adversary A, the following probability is negligible:
Pr m1;m2ð Þ A 1λ;CHð Þ : m1 6¼ m2 ^ CH m1ð Þ ¼ CH m2ð Þ½ �.

4. Scheme Design

In this section, we present the system model and the concrete
construction of DTCH.

4.1. System model

As shown in Figure 1, the scheme in this article mainly involves
four entities: Certificate authority, authorized agency, data user, and
data modifier.

1) Certificate authority: The Certificate authority is responsible for
initializing the entire system and distributing identity certificates
to data modifiers.

2) Authorized agency: After verifying the identity of the data
modifier, the authorized agency is responsible for distributing
user keys (from trapdoors) to the data modifier, ensuring that
blockchain data can only be edited if the editing policy is met.

3) Data user: The data user is responsible for packaging the raw data
into a transaction form and broadcasting it to the blockchain
network, and broadcasting data modification requests when
there is a need to modify the relevant data.

Figure 1
System model

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

03

4) Data modifier: When the attribute set owned by the data modifier
meets the corresponding editing strategy, it can initiate editing of
blockchain data.

Below is the workflow of the proposed scheme in this article. The
certificate authority first initializes the entire system and broadcasts
the generated public parameters to other entities in the system,
while the data modifier completes the generation of its own user
key. Subsequently, the data user broadcasts the transaction to the
blockchain network and adds the transaction to the blockchain. If
illegal data is found in a transaction on the blockchain, the data user
can initiate an editing request to the data modifier. After verifying
the legality of the editing request, the data modifier updates the
corresponding transaction content on the blockchain.

4.2. Concrete construction

This article mainly includes the following polynomial time
algorithms: parameter generation algorithm CHInit, trapdoor gener-
ation algorithm TrapdoorGen, identity-based user key generation
algorithm ModKGen, hash generation algorithm CHGen, collision
search algorithm FindCollision, hash verification algorithm
VerifyCollision, trapdoor update algorithm UpdateEtd, and update
verification algorithm UpdateVerify.

1) CHInit λð Þ ! ppð Þ: The algorithm is executed by the authorized
authority. Input the selected security parameter λ, select themulti-
plication loop group G and GT with order q and generator g,
choose the hash function H : 0; 1f g� ! G;H1 : 0; 1f g� ! Zq,
and set the bilinear mapping e : G� G! GT . Output the
common parameters pp G;GT ; e; g;H;H1f g and use them as
implicit inputs for all other algorithms.

2) TrapdoorGen ppð Þ ! mtk; hkð Þ: The algorithm is executed by
authorized agencies. Input the public parameter pp, generate the sys-
tem master trapdoor key mtk and the system master public key hk,
and output the chameleon hash master trapdoor key pair mtk; hkð Þ.
The system master trapdoor key mtk is kept by an authorized insti-
tution and the systemmaster public key hk is made public. The proc-
ess of generating the main trapdoor key pair is as follows:

Select the randomnumber x 2 Z�q, calculate y ¼ gx , run the algo-
rithm to generate the main trapdoor key pair mtk; hkð Þ, and make the
system’s main public key hk ¼ y and main trapdoor key mtk ¼ x.

3) ModKGen mtk; hkð Þ;CID; n; hvalid ; ctimeðÞð Þ ! IDpp; tk
� �

: The
algorithm is executed by the authorized authority. The data modi-
fier sends its own identification CID to the authorization agency,
requesting the generation of a user key tk. The authorized agency
uses the main trapdoor keymtk to calculate the user private key tk
corresponding to the identity identifier CID, inputs the main
trapdoor key pair mtk; hkð Þ, identity identifier CID, maximum
allowedmodification times n, user key usage period hvalid , returns
the timestamp function ctimeðÞ, generates specific identity
identifiers for all data modifiers, and calculates h:

h ¼ H CIDjj ctimeðÞ
hvalid

h i� 	
; (1)

Calculate the user key tk ¼ hx. Output the identity parameters
of the data modifier IDPP CID; hvalid; hf g and the user key tk.

4) CHGen hk; IDPP;m; rð Þ ! CHð Þ: The algorithm is executed by
the data modifier. Enter the system master public key hk, the data
modifier identity parameter IDPP, the original information string

m 2 0; 1f g�, and a random number r, and output the hash value
CH. The process of calculating the hash value CH corresponding
to information m is as follows:

Randomly select the integer α, calculate r ¼ gαx, and calculate:

CH ¼ e hk; hH1 mð Þ� � � e g; rð Þ (2)

5) FindCollision hk; CH;m; rð Þ;m0ð Þ ! CH
0
; r0

� �
: The algorithm is

executed by the data modifier. Enter the system master public
key hk, chameleon hash value CH, original message stringm, ran-
domnumber r, newmessage stringm0, and calculate the hash value
CH0 corresponding to m0. The calculation process is as follows:

① Calculate the temporary proof tw
0 ¼ tk0 � tx, where tx refers to

the specific operation request.
② Calculate and save etd

0 ¼ etdtw
0
;

③ Obtain the random number r, message m, public key hk, h.
Calculate hk

0 ¼ y
0 ¼ ytw

0
,

r0 ¼ gα
0x0

¼ etdH1 mð Þ gαxð Þ
etd0H1 m0ð Þ ¼ etdH1 mð Þ gαxð Þ

etdH1 m0ð Þtk0tx

¼ gαxetdH1 mð Þ�H1 m0ð Þtk0tx

CH0 ¼ e hk0; hH1 m0ð Þ� � � e g; r0ð Þ

(3)

Output hash value CH
0
and random number r0.

(1) VerifyCollision
hk; CH;m; rð Þ; CH

0
;m

0
; r0

� �
; IDPP; tk

� �! Status: The
algorithm is executed by the data modifier. Enter the system
master public key hk; CH;m; rð Þ; CH

0
;m

0
; r0

� �
, data modifier

identity parameter IDPP, and user key tk. The specific execution
of this algorithm is as follows:

① Calculate whether e y; htxð Þtk0� �
is equal to e y

0
; h

� �
, and if not,

output Status ¼ False.
② Obtain the modifier ID CID and user key tk parameters from

the data modifier identity parameter IDPP, and determine
whether the user private key is within its validity period
and has enough editing times. If it is not within its validity
period or does not have enough editing times, output
Status ¼ Expired.

③ Retrieve CH and CH0, determine if CH ¼ CH0 holds, output
Status ¼ Invalid if yes, otherwise output Status ¼ Valid.

(2) UpdateEtd IDPP; hvalid; ctimeðÞð Þ ! mtk
0
; hk

0
; tk0

� �
:

The algorithm is executed by an authorized agency.
Abolish the old trapdoor and select the new trapdoor. The
updated trapdoor satisfies the new trapdoor value that does
not depend on the old trapdoor value. The calculation
process is as follows:

① Based on the input data, modify the identity parameter IDPP to
obtain the current CH;m; rð Þ and user key tk ¼ hx.

② Call and execute the TrapdoorGen algorithm, select a random
integer x0, calculate parameter y0 ¼ gx

0
, and output a new cha-

meleon hash master trapdoor key pair mtk0; hk0ð Þ.
③ Call and execute the ModKGen algorithm. The authorization

authority uses the main trapdoor keymtk0 to calculate the user
key tk corresponding to the identity identifier CID.
The authorization authority generates specific identity identi-
fiers for all data modifiers, calculates h0, and the user key
tk0 ¼ h0x0 .

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

04

(3) UpdateVerify tk; hkð Þ; CH;m; rð Þð Þ ! Status: The algorithm is
executed by the authorized agency. Execute collision search algo-
rithmCollisionFind and hash verification algorithmCollisionVerify.
If tk is invalid or CH 6¼ CH0, output Status ¼ Success, that is, the
old trapdoor cannot generate a valid hash value, and the verification
is revoked successfully. Otherwise, output Status ¼ Fail.

5. Security Analysis

In this section, we give a detailed security analysis of DTCH,
which includes correctness, revocability, and collision resistance.

5.1. Correctness

The correctness of this scheme depends on the correctness of the
cryptographic primitives commonly used in algorithm construction,
as demonstrated below.

① FindCollision:

CH0

¼ e y0; hH1 m0ð Þ� � � e g;R0ð Þ

¼ e gx
0
; hH1 m0ð Þ� � � e g;

etdH1 mð Þgαx

etd0H1 m0ð Þ

 �

¼ e gx
0
; hH1 m0ð Þ� � � e g;

hxH1 mð Þgαx

hx
0H1 m0ð Þ

 �

¼ e g; hx
0H1 m0ð Þ� � � e g; gαxð Þ � e g; hxH1 mð Þ�x0H1 m0ð Þ� �

¼ e g; hxuH1 mð Þ� � � e g; gαxð Þ
¼ e gx; hH1 mð Þ� � � e g; gαxð Þ
¼ e y; hH1 mð Þ� � � e g; gαxð Þ ¼ CH

Confirmed by CH
0 ¼ CH, completed.

② UpdateEtd

CH00

¼ e y0; hH1 m00ð Þ� � � e g; gα
00x00

� �
¼ e gx

00
; hH1 m0ð Þ� � � e g; h x0�x00ð ÞH1 m0ð Þgα0x0

� �
¼ e g; hx

00H1 m0ð Þ� � � e g; h x0�x00ð ÞH1 m0ð Þ� � � e g; gα
0x0

� �
¼ e gx

0
; hH1 m0ð Þ� � � e g; gα

0x0
� � ¼ CH0

Confirmed by CH
0 0 ¼ CH0, completed.

5.2. Revocability

Lemma 1: If H is a collision-resistant hash function and G is a
secure pseudo-random number generator, then for the same message
m and identity identifier CID, the root hash valueCHM ofMerkle tree
M must be different.

Proof: Assuming n; u 2 0; 1f gn, a pseudo-random number
generator G : 0; 1f gn ! 0; 1f g2n is used to generate random num-
bers r1,r2, i.e., G uð Þ ! r1jjr2. Due to G being a secure pseudo-ran-
dom number generator, the generated r1 and r2 are random and
unpredictable. The structure of a Merkle tree is as follows: the leaf
nodes of M are in the order of r1, r2, H1 mð Þ, and CID from left to
right. The middle node 1 is H r1jjr2ð Þ, and the middle node 2 is
H H1 mð ÞjjCIDð Þ. The root hash value CHM is the hash result of these
nodes. Although the inputm and CID are the same, the combination
H r1jjr2ð Þ of r1 and r2 is also different because they are generated
randomly and differently each time, which leads to different root

hash values CHM . If there are two identical root hash values
CHM , it means that different inputs r1; r2ð Þ generated the same hash
value, which violates the collision resistance of the hash function H.

Theorem 1: Assuming that hash functions H1 and H have
collision-resistant properties, and G is a secure pseudo-random
number generator, then the system has revocability. During the proof
process, this will be verified through a game between challenger C,
adversary A, and adversary B.

Proof: Assuming there exists a polynomial-time adversary A
that can effectively attack revocability, construct adversary B to
use the result of A to attack the collision resistance of hash function
H. In this setting, A is allowed to perform multiple Oupdate queries,
with a frequency of q 2 poly λð Þ.
① Setting stage: Challenger C first provides adversary B with a col-

lision-resistant hash function H1 : 0; 1f gn ! G. Then, B con-
structs DTCH through H1 and initializes parameters according
to the requirements of revocability experiments.

② Query phase: Allow A to perform an Oupdate query and provide
feedback toA on the output result ri; tkið Þ of the i-th query, where
i 2 0; q½ �. Additionally, maintain a table Q to store tki.

③ Challenge stage: When A outputs tk; CH;m; rð Þ;m0ð Þ to B, B
checks the validity of CH;m; rð Þ and verifies whether tk is the
user key of CH;m; rð Þ, querying whether it exists in table Q. If
the verification is successful, B will run the UpdateEtd algorithm
and input CH;m; rð Þ and m0 to generate a new user key tk0.
Among them, tk ¼ hx ¼ H CIDjj ctimeðÞ=hvalid½ �ð Þx and r ¼ gαx.
Verify the correctness of the input through the verification
function VerifyCollision hk;CH;m; rð Þ. At the same time, verify
the equation e g; tk0H1 mð Þ� � ¼ e gx

0
;H CIDð j CHMj ÞH1 mð Þ� �

to
confirm whether tk is the user key for CH;m;ð Þ. At the same time
as generating a new user key tk0,Bwill construct aMerkle treeM0,
where the left leaf node is the random number generated by the
pseudo-random number generator G, the two nodes on the right
are H1 m0ð Þ and the custom identity CID0, the root hash value is
CH0M , and the user key tk0 ¼ h0x0 .

④ Finally, B outputs H CID
0 jjCH0M

� �
and H CIDjjCHMð Þ to

challenger C.

If A has a significantly higher probability of winning in a
challenge than B, then the probabilities of the new and old trapdoors
are equal in that challenge. Here, CID and CID

0
can be equal, and

A can use the previously queried m0 in the challenge. However,
according to Lemma 1, the two hash values H CID

0 jjCH0M
� �

and
H CIDjjCHMð Þ obtained by B are different, so the same m and
CID produce different CHM . Therefore, CID

0 jjCH0M is not equal
to H CIDjjCHMð Þ, meaning that B successfully destroyed the
collision resistance of H1 and won the challenge. Therefore, B
and A have the same advantage in winning this game.

5.3. Collision resistance

Theorem 2: If there exists an effective adversaryA that can success-
fully find a collision of chameleon hash functions, construct an
adversary B to solve the problem of computing discrete logarithm
(CDH). Specifically, adversary A is capable of generating effective
collisions, and adversary B can utilize this ability to solve the CDH
problem.

Proof: Provide an example of a CDH problem g; ga; gb
� �

,
construct B, which can use a to calculate gab. For constructing
adversary B as follows:

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

05

① Setting stage: B runs CHInit to generate common parameters,
selects information m, runs ModKGen and CHGen to obtain the
identity parameter IDpp and the hash value CH corresponding
to m. At this point, B does not know the specific value of key
x, while the public key value y and the α in r are random numbers.
B sends the identity parameters IDpp and CH to A.

② Query stage: A queries the hash key and chameleon hash CH
based on the identity identifier CID and information m. Hash
value calculation CH mð Þ ¼ e hk; hH1 mð Þ� � � e g; rð Þ, where r is a
randomly selected integer. Adversary B can request the
generation of a user key. In this process, the authorization agency
generates the user key tk and identity parameter IDpp using the
master key mtk and identity identifier CID.

③ Challenge stage: In the challenge stage, adversaryA proposes two
different messages m1 and m2 and obtains their corresponding
hash values. Adversary A takes these messages and their hash
values as a challenge. Select two messages m1 and m2, calculate
the hash value: CH ¼ e hk; hH1 mð Þ� � � e g; rð Þ, where r is a random
number corresponding to m. In the computation phase, the colli-
sion found by adversaryA is used to solve the discrete logarithm
(CDH) problem. Collision calculation assumes that adversary A
successfully finds a collision, i.e., finds two different messagesm1

and m2, such that CH m1ð Þ ¼ CH m2ð Þ. Calculate collision
hash value: e hk; hH1 m1ð Þ� � � e g; r1ð Þ ¼ e hk; hH1 m2ð Þ� � � e g; r2ð Þ,
because r1 and r2 are random numbers, they can be simplified as:

e g;r1ð Þ
e g;r2ð Þ ¼

e hk;hH1 m1ð Þ
� �
e hk;hH1 m2ð Þ
� � ; (4)

r ¼ e hk;hH1 m2ð Þ
� �
e hk;hH1 m1ð Þ
� � � e g;r2ð Þ

e g;r1ð Þ (5)

Use the above calculation results to solve the CDH problem:
calculate gxy using r and the master key x, which belongs to solving
the CDH problem.

(4) If adversary A can successfully find a collision, even if
CH m1ð Þ ¼ CH m2ð Þ, then adversary B can use this collision to
solve the discrete logarithm problem.

Due to the difficulty of the CDH problem, the collision
resistance of the chameleon hash function is also effective.
Through the above process, it has been proven that the collision
resistance of the chameleon hash function depends on the
difficulty of the CDH assumption. If the CDH problem is
unsolvable under given security parameters, then the chameleon
hash function will also be collision-resistant.

6. Performance Evaluation

In this section, the theoretical analysis of DTCH is carried out to
evaluate the function and computational complexity of the scheme.
Then through experimental simulation and research comparison, we
present the computation time of the scheme with experiments, and
compared with the computation cost of each algorithm of other
related schemes to evaluate the efficiency of DTCH.

6.1. Theoretical analysis

6.1.1. Functionality comparison
In terms of functionality, this article compares DTCH with other

related schemes and analyzes the performance advantages of DTCH.
Table 1 shows the functional comparison between this scheme and

various schemes. It can be seen from Table 1 that TCH [11] uses
verifiable secret sharing technology to distribute chameleon hash
trapdoor shares to other nodes, but this scheme relies on a trusted
third party to distribute chameleon hash keys, which belongs to a
centralized redactable blockchain scheme. Although RCH [12]
implements trapdoor revocation and trapdoor updatability, the
modification mechanism is not flexible enough and there is trapdoor
exposure. KERB’s [16] scheme has no trapdoor exposure problem,
but it fails to realize trapdoor revocation and trapdoor updatability,
and cannot solve the problem of loss of editing rights after key
destruction. RPCH [14] scheme, ReTRACe [15] scheme, and
RCHLR [19] scheme have no trapdoor exposure problem and can
realize trapdoor revocation. However, trapdoors cannot be updated
and are not flexible enough to respond to changing requirements,
and may not adapt to new situations or new business requirements,
thus affecting their long-term availability. However, the scheme
proposed in this paper has no trapdoor exposure problem and has
both trapdoor revocation and trapdoor updating functions. The
scheme proposed in this paper can meet all expected characteristics.

6.1.2. Computational complexity
Because RPCH [14] and KERB [16] are based on ABE

implementation, their algorithms involve a large number of group
operations and bilinear pairing operations, while ReTRACe [15]
does not provide concrete construction, these three algorithms are
ignored in comparison. Compare the main algorithms of DTCH
with the main algorithms in TCH [11], RCH [12], and RCHLR
[19] schemes in Table 1. The focus of the comparison is on the
number of complex operations, where Te represents group exponen-
tiation, Tm represents group multiplication, and Tp represents bilinear
pairing operation. Due to the fact that the trapdoors in TCH are divided
into k parts, the computational cost of this scheme will depend on the
parameter k. Table 2 shows that the DTCH scheme proposed in this
paper requires slightly more operations of group exponentiation on
theCHGen algorithmbut has fewer operations of group exponentiation
and group multiplication on the FindCollision and UpdateEtd algo-
rithms. In the VerifyCollision algorithm, there is a user key expiration
verification operation, which improves security and does not generate
too many group exponentiation and bilinear pairing operations. Over-
all, the computational complexity of this scheme is relatively low.

6.2. Experimental results and analyses

6.2.1. Simulation environment
This article conducted real experiments to test the efficiency of

the proposed chameleon hash scheme. The experiment was
conducted on laptops equipped with PBC library (version 0.5.14)
and openssl library (version 1.1.1). The device is configured with

Table 1
Functionality comparison of different schemes

Schemes

No key
exposure
problem

Revocation
of trapdoor

Trapdoor
can be
updated

DTCH
p p p

TCH [11] × × ×
RCH [12] ×

p p
RPCH [14]

p p
×

ReTRACe [15]
p p

×
KERB [16]

p
× ×

RCHLR [19]
p p

×

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

06

a 1.6-GHz 4-core CPU and 4GB RAM, using Ubuntu 18.04 LTS (64
bit) operating system.

6.2.2. Computation cost
The experimental results are provided here to further analyze

and compare the computation cost of different schemes. Figure 2
shows the actual computation cost of the main algorithms in the
constructed DTCH scheme, compared with the TCH [11] scheme
and RCH [12] scheme in Table 1 on CHGen, FindCollision,
VerifyCollision, and UpdateEtd algorithms, using a messagem size
of 1KB. In order to prevent trapdoor owners from abusing trapdoors,
TCH divides trapdoors into k parts and hands them over to k trusted
organizations. In this experiment, we set k to a small value (k ¼ 10)
because TCH requires a lot of exponential calculations, and the larger
k, the worse the performance of TCH.

As shown in Figure 2, in the UpdateEtd algorithm, compared
with RCH and RCHLR [19], the DTCH scheme has the shortest run-
ning time and the best efficiency; In the FindCollision algorithm, this
paper has a smaller time cost compared to its proposed schemes, and
is significantly more efficient than TCH; In CHGen and
VerifyCollision algorithms, there is also a smaller time overhead.

Because in practical applications, the frequent execution of
FindCollision and VerifyCollision can better reflect the efficiency
of the chameleon hash scheme. This experiment will execute
FindCollision and VerifyCollision multiple times and combine their
computation cost. Figure 3 shows the computation cost of different
schemes after multiple runs. The message used in this experiment is

randomly generated and has a size of 1KB. The value of k in TCH
remains at 10.

The trapdoor in TCH cannot be updated, and the problem of
trapdoor abuse still exists. RCH has implemented regular updates of
trapdoors, but the misuse of trapdoors within their validity period is
still inevitable. RCHLR has implemented trapdoor undo, but
trapdoor undo can only be done after a certain number of edits,
which lacks flexibility. Our scheme does not allow the reuse of the
same trapdoor, which fundamentally solves the problem of trapdoor
abuse and allows for flexible updating of trapdoors. At the same
time, compared to other schemes, it does not incur excessive
computation cost. This article imposes strict restrictions on the use
of trapdoors without affecting the performance of the scheme.

7. Discussion

In order to solve the contradiction between the immutability of
data on the blockchain and data supervision, scholars have proposed
the concept of redactable blockchain, and it has been continuously
studied and developed in recent years. Although Chameleon hash
function provides technical support for redactable blockchain,
there are security risks of trapdoor abuse and trapdoor leakage in
existing redactable blockchain schemes [23]. In this paper,
chameleon hash function is introduced to construct redactable
blockchain, and a redactable blockchain scheme DTCH is
designed. The system model and concrete construction of the
proposed scheme are given, and the chameleon hash with
dynamic trapdoor is used to restrict the editing permission of data
modifier. For the proposed scheme, a detailed security analysis

Table 2
Computational complexity of different algorithms

Schemes

Algorithms

CHGen FindCollision VerifyCollision UpdateEtd

DTCH 4Te þ Tmþ2TP 2Te þ Tm 2Te þ Tmþ3TP 3Te þ 3Tm

TCH [11] 3Te þ Tm kþ 1ð ÞTe þ 3Tmþ2TP Te þ Tmþ2TP N=A
RCH [12] 5Te þ 2Tmþ2TP 2Te þ 2Tm 2Te þ Tmþ4TP 8Te þ 7Tm

RCHLR [19] 3Te þ 2Tmþ3TP 2Te þ 3Tmþ3TP Te þ 2Tmþ3TP 3Te þ 4Tmþ3TP

Figure 2
Computation cost of algorithms for DTCH

Figure 3
Computation cost of key algorithms for different schemes

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

07

was given, and the functional characteristics and computational
overhead of the scheme were evaluated through experimental
simulation and research, which proved the effectiveness and
feasibility of the scheme. We believe that the proposed scheme is
a very promising solution that can be extended to many
blockchain systems for efficient and secure transaction rewriting,
providing a valuable resource for academics and practitioners.

The proposed scheme still has further research significance. The
single data modification in this scheme lacks diverse perspectives
and experiences, which may lead to one-sidedness and limitations
in decision-making and fail to fully consider the needs of different
stakeholders. Therefore, when extending to the blockchain
application system, designing a multi-party data modification
mechanism is also a key research direction.

8. Conclusion

This paper elaborates on the background of redactable blockchain
schemes based on chameleon hashing and analyzes the security issues
in existing schemes. The advantage of blockchain is data tamper-proof,
and editability seems to break this advantage, which is easy to cause
data trust problems. Therefore, redactable blockchains that support
data modification need to establish secure and perfect trust and
supervision mechanisms to prevent the abuse of editing
permissions. In this paper, we propose DTCH, a dynamic trapdoor
redactable blockchain scheme, and give a concrete construction
with provable security based on bilinear map.

Although the existing schemes solve some difficult problems faced
by redactable blockchain, they still do not establish a secure and reliable
trust environment, and the modification mechanism is not flexible
enough to solve the problem of loss of editing rights after key
destruction. In addition, the existing redactable blockchain schemes
that can realize trapdoor retracement are not flexible enough to
respond to changing requirements because the trapdoor cannot be
updated. It may not be able to adapt to new situations or new
business requirements, thus affecting issues such as its long-term
availability. The DTCH proposed in this paper utilizes controllable
randomness, allowing only users with valid trapdoor keys to make
changes to the uploaded data, and the user keys are time-sensitive.
When the user key expires or is used, the system will generate new
trapdoors to abolish the old ones, reducing the risk of editing
permission abuse and effectively solving security issues after trapdoor
leakage. Security analysis and related experimental results show that
compared with other existing schemes, the proposed scheme can
manage the trapdoor in a fine-grained manner, realize the flexible
update of trapdoor, and have good efficiency in each stage, which
achieves higher security guarantee with a smaller computational cost.

Looking into the future, considering that there is only one data
modifier in this paper and the editing power is too centralized, in the
next work, the trapdoor key will be fragmented and distributed to
multiple data modifiers. When an editing request occurs, the
trapdoor key can be reconstructed to edit the blockchain only
when the threshold is reached.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

Author Contribution Statement

Shuqiao Li: Conceptualization, Methodology, Software,
Validation, Formal analysis, Formal analysis, Resources, Data
curation, Writing – original draft, Writing – review & editing,
Visualization, Supervision, Project administration. Xiaoming Hu:
Conceptualization, Methodology, Resources, Writing – original
draft, Writing – review & editing, Visualization, Supervision,
Project administration. Yan Liu: Formal analysis, Formal
analysis, Resources, Writing – review & editing, Visualization,
Supervision. Shuangjie Bai: Validation, Formal analysis, Writing
– review & editing, Visualization.

References

[1] Nakamoto, S. (2008). A peer-to-peer electronic cash system.
Retrieved from: https://www.klausnordby.com/bitcoin/Bitcoin_
Whitepaper_Document_HD.pdf

[2] Ismail, L., & Materwala, H. (2019). A review of blockchain
architecture and consensus protocols: Use cases, challenges,
and solutions. Symmetry, 11(10), 1198.

[3] Zhang, X., Xu, F., & Qin, W. (2023). The important value and
application of blockchain in the field of network security [qū
kuài liàn zài wǎnɡ luò ān quán lǐnɡ yù dě zhònɡ yào jià zhí
yǔ yìnɡ yònɡ]. Journal of the Chinese Academy of
Electronic Sciences, 18(06), 566–572.

[4] Zhang, C. C., Li, L. X., Du, J. Z., & Shi, J. P. (2024). A review of
redactable blockchain research [kě biān jí qū kuài liàn yán jiū zōnɡ
shù]. Computer Engineering and Applications, 60(18), 32–49.

[5] Luo, B., Wen, J. M., Mu, Y. D., & Chen, J. (2023). State of the
art and challenges of redactable blockchain [kě biān jí qū kuài
liàn de yán jiū xiàn zhuànɡ yǔ tiǎo zhàn]. Journal of Cyber
Security, 8(4), 62–84.

[6] Zhang, D., Le, J., Lei, X., Xiang, T., & Liao, X. (2021).
Exploring the redaction mechanisms of mutable blockchains:
A comprehensive survey. International Journal of Intelligent
Systems, 36(9), 5051–5084.

[7] Gao, W., Chen, L. Q., Tang, C. M., & Li, F. (2021). One-time
chameleon hash function and its application in redactable
blockchain [yí cì biàn sè lónɡ hā xī hán shù jí qí zài kě xiū
zhènɡ qū kuài liàn zhōnɡ de yìnɡ yònɡ]. Journal of
Computer Research and Development, 58(10), 2310–2318.

[8] Politou, E., Casino, F., Alepis, E., & Patsakis, C. (2019).
Blockchain mutability: Challenges and proposed solutions.
IEEE Transactions on Emerging Topics in Computing, 9(4),
1972–1986.

[9] Ashritha, K., Sindhu, M., & Lakshmy, K. V. (2019).
Redactable blockchain using enhanced chameleon hash
function. In 2019 5th International Conference on Advanced
Computing & Communication Systems, 323–328.

[10] Derler, D., Samelin, K., Slamanig, D., & Striecks, C. (2019).
Fine-grained and controlled rewriting in blockchains:
Chameleon-hashing gone attribute-based. Cryptology ePrint
Archive.

[11] Huang, K., Zhang, X., Mu, Y., Wang, X., Yang, G., Du, X.,
: : : , & Guizani, M. (2019). Building redactable consortium
blockchain for industrial Internet-of-Things. IEEE
Transactions on Industrial Informatics, 15(6), 3670–3679.

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

08

https://www.klausnordby.com/bitcoin/Bitcoin_Whitepaper_Document_HD.pdf
https://www.klausnordby.com/bitcoin/Bitcoin_Whitepaper_Document_HD.pdf

[12] Huang, K., Zhang, X., Mu, Y., Rezaeibagha, F., Du, X., &
Guizani, N. (2019). Achieving intelligent trust-layer for
Internet-of-Things via self-redactable blockchain. IEEE
Transactions on Industrial Informatics, 16(4), 2677–2686.

[13] Jia, Y., Sun, S. F., Zhang, Y., Liu, Z., &Gu,D. (2021). Redactable
blockchain supporting supervision and self-management. In
Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security, 844–858.

[14] Xu, S., Ning, J., Ma, J., Xu, G., Yuan, J., & Deng, R. H. (2021).
Revocable policy-based chameleon hash. In Computer
Security–ESORICS 2021: 26th European Symposium on
Research in Computer Security, 327–347. https://doi.org/10.
1007/978-3-030-88418-5_16

[15] Panwar, G., Vishwanathan, R., & Misra, S. (2021). ReTRACe:
Revocable and traceable blockchain rewrites using attribute-
based cryptosystems. In Proceedings of the 26th ACM
Symposium on Access Control Models and Technologies,
103–114. https://doi.org/10.1145/3450569.3463565

[16] Xu, S., Ning, J., Ma, J., Huang, X., & Deng, R. H. (2021).
K-time modifiable and epoch-based redactable blockchain.
IEEE Transactions on Information Forensics and Security,
16, 4507–4520.

[17] Ma, J., Xu, S., Ning, J., Huang, X., & Deng, R. H. (2022).
Redactable blockchain in decentralized setting. IEEE Transactions
on Information Forensics and Security, 17, 1227–1242.

[18] Li, J., Ma, H., Wang, J., Song, Z., Xu, W., & Zhang, R. (2023).
Wolverine: A scalable and transaction-consistent redactable

permissionless blockchain. IEEE Transactions on
Information Forensics and Security, 18, 1653–1666.

[19] Chen, Y., Hao, Z. H., Wei, J. H., & Yang, D. M. (2023).
Redactable blockchain supporting trapdoor revocation and
limited number of redactions [zhī chí xiàn mén chè xiāo hé
biān jí cì shù xiàn zhì de kě biān jí qū kuài liàn]. Journal on
Communications, 44(07), 100–113.

[20] Zhao, L., Guo, D., Luo, L., Xie, J., Shen, Y., & Ren, B. (2024).
Tiger Tally: A secure IoT data management approach based on
redactable blockchain. Computer Networks, 248, 110500.

[21] Krawczyk, H., & Rabin, T. (1998). Chameleon hashing and
signatures. Cryptology ePrint Archive.

[22] Camenisch, J., Derler, D., Krenn, S., Pöhls, H. C., Samelin, K.,
& Slamanig, D. (2017). Chameleon-hashes with ephemeral
trapdoors: And applications to invisible sanitizable
signatures. In Public-Key Cryptography–PKC 2017: 20th
IACR International Conference on Practice and Theory in
Public-Key Cryptography, 152–182.

[23] Zhao, X. Q., Zhang, Z. H., & Li, Y. (2021). An editable and
accountable blockchain schemel [kě biān jí qiě kě zhuī zé de
qū kuài liàn fānɡ àn]. Journal of Information Security, 7(5),
19–28.

How to Cite: Li, S., Hu, X., Liu, Y., & Bai, S. (2024). A Dynamic Trapdoor
Redactable Blockchain Schemes. Journal of Data Science and Intelligent
Systems. https://doi.org/10.47852/bonviewJDSIS42024450

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

09

https://doi.org/10.1007/978-3-030-88418-5_16
https://doi.org/10.1007/978-3-030-88418-5_16
https://doi.org/10.1145/3450569.3463565
https://doi.org/10.47852/bonviewJDSIS42024450

	A Dynamic Trapdoor Redactable Blockchain Schemes
	1. Introduction
	2. Literature Review
	3. Preliminaries
	3.1. Bilinear map
	3.2. Chameleon hash function
	3.3. Security requirements

	4. Scheme Design
	4.1. System model
	4.2. Concrete construction

	5. Security Analysis
	5.1. Correctness
	5.2. Revocability
	5.3. Collision resistance

	6. Performance Evaluation
	6.1. Theoretical analysis
	6.1.1. Functionality comparison
	6.1.2. Computational complexity

	6.2. Experimental results and analyses
	6.2.1. Simulation environment
	6.2.2. Computation cost

	7. Discussion
	8. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

