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Low-Resource Chinese Named Entity
Recognition via CNN-based Multitask
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Abstract:Named entity recognition (NER) is a fundamental subtask for information extraction that aims to locate and classify named entities
in unstructured text into predefined categories. Recently, large-scale language models (LLMs) have achieved SOTA performance on a variety
of natural language processing tasks. However, because NER is a sequence labeling task in nature while LLMs is a text-generation model, the
performance of LLMs on NER is still significantly below supervised baselines, and NER remains a difficult task. Meanwhile, the word
boundary and semantic information of Chinese words are usually quite vague, as words contained in Chinese texts are not separated by
spaces. Thus, the NER task still requires supervised learning paradigm and heavily relies on large amounts of labeled data, such as
entity type and boundary information. However, the cost of labeling data can be prohibitively large, and the purely supervised
approaches usually suffer from poor generalization capability. In this article, we propose a multitask learning-based bidirectional iterated
dilated convolution model, BCNN-CWS, for low-resource NER via leveraging word boundary information of Chinese word
segmentation (CWS) task. Specifically, to efficiently recognize named entities, an iterated dilated convolutional model with a limited
number of layers is implemented. In addition, a bidirectional causal convolution mechanism is presented for contextual information
extraction. Results of extensive experiments on public Chinese datasets demonstrate that BCNN-CWS achieves superior performance
over state-of-the-art models, and it yields up to about 50% speed improvement over existing methods. It is worth noting that BCNN-
CWS can be further improved by combining with a pretrained model.
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1. Introduction

Named entity recognition (NER), also known as entity
recognition or entity extraction, aims to identify the boundaries of
entity names in unstructured texts and classify their types, such as
names of people, places, and organizations [1, 2]. Typically, NER
is considered an essential prerequisite for many downstream tasks
in natural language processing (NLP), such as relation extraction
[3], entity annotation [4], and entity linking [5, 6].

Conventionally, dictionary matching and the handcrafted rule-
based methods have been proposed for NER tasks. However,
building dictionaries and rules is time- and resource-consuming,
and it is often difficult to obtain good coverage for many named
entity types [7]. Subsequently, statistical learning-based methods
have been proposed to obtain ground-breaking results, such as
hidden Markov models (HMMs) [8], maximum entropy (ME)
models [9], and conditional random field (CRF) methods [10].
However, the methods always use one-hot vectors for word
representation, which loses the semantic information of sentences
and increases computational difficulty. To learn intricate features
from the context and generate useful representations, deep

learning-based entity recognition models have been proposed,
including CNN- and BiLSTM-based methods [11–13]. With the
proposal of BERT pre-trained language model [14], the deep
learning-based NER methods are enhanced by BERT model, so
the Bert-BilSTM-CRF [15] and other methods are proposed.
Recently, large-scale language models (LLMs) have achieved
SOTA performance on a variety of NLP tasks. However, because
NER is a sequence labeling task in nature while LLMs is a text-
generation model, the performance of LLMs on NER is still
significantly below supervised baselines [16].

Problem setting. Although effective in entity recognition tasks,
the success of deep-learning-based supervised methods depends
heavily on large-scale training instances with labels. However, the
cost of labeling data can be prohibitively large, and in annotated
sentences, only common entity types have relatively sufficient
labeled samples [17]. Meanwhile, the supervised methods usually
suffer from poor generalization capability. In addition, Chinese
entities lack strong indications compared with English text, such
as capitalization, and they are highly context-dependent in which
the same words can be used as names of different kind entities.
Moreover, there is no explicit delimiter to separate words, such as
whitespace [18], and identifying the boundary of entities is more
difficult in Chinese than in English texts. An example of Chinese
named entity recognition (CNER) is given in Table 1. According
to the different place, the word “ ” can be the name of
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organization entity (“ , ”), and
location entity (“ , ”). Due to
differences in segmentation boundary, “ ” will or will not
be recognized as named entity. As a result, the low-resource
CNER has become a major challenge.

Prior work and challenges. In this paper, we propose to learn
the representation of Chinese named entities adequately given
limited (low-resource) training samples. Currently, although
various methods have been proposed, most of them are designed
for NER of English text, and low-resource Chinese NER still
faces the following challenges: (1) Because of the discrepancy
between languages, the existing cross-language NER methods [19,
20] tend to introduce noise from the source language into the
training samples of the target languages; (2) Chinese NER is
essentially a character-level sequence labeling problem, and the
conventional word-level NER methods proposed for English texts
are not suitable. Meanwhile, the auxiliary tasks in many NER
methods learn sentence- or word-level features and cannot offer
rich information for entity boundary prediction and entity type
identification at the character-level [21]; (3) Most existing NER
models are based on a recurrent neural network (RNN)
architecture or its variants like LSTM to obtain sequence
information and cannot be computed in parallel, thereby always
requiring considerable computation time.

Main contributions. To solve the CNER task under low-
resource conditions, we propose a bidirectional iterated dilated
convolution-based model, BCNN-CWS, via multitask learning
with Chinese word segmentation (CWS). Given an input sentence,
CWS is used to predict the boundaries of words in raw texts,
which is highly related to extracting entity names from texts in the
CNER task. Meanwhile, CNER and CWS all aim to learn the
feature representation of input sentence at the character level, so
that they can provide each other with sufficient feature
information. Thus, the ability of CNER model to identify entity
boundaries can be enhanced via joint training with a CWS task.
Here, we assume that the upper hidden layers are responsible for
high-level processing and the lower layers perform basic feature
representations. Since the goals of CNER and CWS are different,
we propose to share only part of the hidden layers in the model.
Moreover, the use of CWS as an auxiliary task for CNER can
avoid the noise introduced by the cross-lingual transfer
approaches. Then, because CNN-based models have the capability
of parallel computation, a novel bidirectional iterated dilated
convolution model, called BCNN, is proposed to replace the
traditional RNN-based model by incorporating evidence from the
entire input sentence, where the effective input width can grow
exponentially with the depth. To learn contextual information and
ensure the model cannot violate the ordering in which we model
the sentence, the BCNN defines a bidirectional causal convolution
for the feature extraction of input sentences. The contributions of
our work can be summarized as follows:

1) A novel low-resource Chinese NER model based on multitask
learning that combines NER with the word segmentation task,
BCNN-CWS, is proposed. The model optimizes the hidden
representations of Chinese characters for entity boundary
prediction by sharing the embedding layer between CNER and
CWS tasks.

2) To extract contextual information from the entire sentence while
reducing time consumption of CNER, a novel convolutional
neural network model BCNN is proposed by stacking a limited
number of iterated dilated convolution layers.

3) To characterize the dependency between Chinese characters and
model the Markov property of sentences, a bidirectional causal
convolution mechanism is adopted, in which the information
from both directions is utilized to learn past and future input
features for a given time.

4) Extensive experiments on three representative Chinese NER
datasets verify the feasibility of the proposed methods. The
effectiveness of the proposed mechanisms is illustrated by
ablation experiments and model analysis.

The remainder of this paper is organized as follows. Section 2
discusses related studies. Section 3 presents the problem definitions
and preliminaries. In Section 4, the proposed method is introduced.
Section 5 presents the experimental results. Finally, conclusions and
discussion are presented in Section 6.

2. Related Work

NER has been extensively investigated in the NLP field. A
literature overview of recent advances in entity recognition is
provided below.

2.1. Named entity recognition

Studies on NER can be broadly classified into three categories:
rule-, statistical learning-, and deep learning-based approaches.
Specifically, rule-based NER methods rely on handcrafted rules,
such as domain-specific gazetteers and syntactic-lexical patterns.
Well-known rule-based NER systems include Brill [22], ProMiner
[23], and NetOwl [24]. However, rule-based methods work well
only when the lexicon is exhaustive and always requires
considerable labor [25]. Statistical learning-based methods depend
on feature engineering, which represents annotated training
samples as vectors. A straightforward option for vector
representation is one-hot encoding. Based on feature vectors, many
NER methods have been proposed using statistical learning
algorithms, including hidden Markov models, ME models, support
vector machines, and conditional random fields [26–28]. However,
these methods require feature engineering to represent texts, and
the generated high-dimensional sparse vectors are difficult to
compute and lack contextual information. Deep-learning-based
NER methods have become dominant and have achieved excellent
results recently. A BiLSTM-CRF model for NER is proposed [29],
which can efficiently make use of past and future information. The
score of the label sequence y for the input sentence x is defined as
the sum of the transition matrix A and output matrix F of BiLSTM:

score x; yð Þ ¼
Xn
i¼0

Ayi;yiþ1 þ
Xn
i¼0

Fi;yi (1)

Inspired by the outstanding performance of gated recurrent units
(GRU) in sequence modeling, a neural network architecture based
on a bidirectional GRU combined with CRF for Arabic NER is

Table 1
Examples of context dependence and entity boundary

Categories Sentence

Context-dependence 1 [Organization]

Context-dependence 2 [Location]
Entity boundary 1
Entity boundary 2
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proposed [30, 31]. Recently, a body of works [32, 33] using BiLSTM
as basic architecture have been proposed for NER. Meanwhile, an
increasing number of entity extraction methods based on
transformer and pretrained models, as well as multimodal
information extraction methods, have been proposed [34–37].
Compared with the feature engineering-based methods, deep
learning-based methods are useful for discovering hidden feature
representations automatically.

Inspired by iterated dilated convolution [38], this study
proposes a bidirectional convolutional neural network (BCNN). In
contrast to traditional methods, our model can be trained using an
end-to-end paradigm. Moreover, compared with RNN-based
methods, our model is capable of learning contextual information
and effectively reducing the time cost.

2.2. Data augmentation

Data augmentation techniques, as a general approach for
generating additional training samples, are commonly used in the
low-resource domain to alleviate the data-scarcity problem. Data
augmentation methods in NLP can be generally divided into three
categories: paraphrasing-based, noising-based, and sampling-based
methods [39]. Specifically, paraphrasing-based methods rephrase
the original text with proper and restrained changes, while
maintaining the same semantics. The mainstream techniques for
paraphrasing-based data augmentation include thesaurus, semantic
embeddings, language models, heuristics rules, and machine
translation [39]. Noising-based methods add noise to the original
text to generate effective augmented samples, which involves
more changes than paraphrasing-based methods. The specific
operations of noising-based methods include swapping, deletion,
insertion, and substitution [40, 41]. Sampling-based methods
master the distribution of the original text to sample new data as
augmented samples, and the methods for sampling-based data
augmentation include the Seq2Seq model [42] and self-training [43].

Data augmentation methods add slightly modified copies of
existing data or create synthetic data to increase the diversity of
training samples. In contrast to these methods, our work adopts a
multitask learning framework to solve the low-resource NER
tasks, which learn from multiple related tasks simultaneously
using a shared model to produce a better hidden representation.

2.3. Multitask learning

Multitask learning aims to train multiple different yet related
tasks and optimize more than one loss function simultaneously to
improve the capability of models. For NER task, [44] proposed a
multitask learning model to improve the performance of NER
using sentence classification as auxiliary task, in which the hidden
representation H ¼ h1;h2; . . . ;hT½ �, ht ¼ concat h̃t ;  ~ht

� �
, is

shared between the two tasks. In Ref. [45] proposed a stack-
LSTM-based model that jointly performed NER and entity linking
to improve the performance of both tasks. In Ref. [46] developed
a multitask learning framework that utilizes comparable corpora to
jointly train the bilingual word embedding and the downstream
NER task. In Ref. [47] proposed amultitask learning architecture that
predicts the labels for both full sentences and individual tokens. The
model aims to learn better language representations and composition
functions by combining the objectives at different granularities.

In contrast to the above approaches, word segmentation is used
as the auxiliary task in this study. Similarly, [48] proposed a CNN-
LSTM-CRF architecture to jointly train Chinese NER and word
segmentation models, in which the CNN and Bi-LSTM layers are

used to learn hidden representations from local and long-distance
contexts, respectively. Unlike CNN-LSTM-CRF model, we
propose a bidirectional dilated causal convolutional neural
network (BCNN) to learn hidden representations from both local
and long-distance contexts. The proposed method shares only the
character embedding layer between the Chinese NER and word
segmentation tasks to improve the ability of the NER model to
predict entity boundaries.

3. Problem Definition and Preliminaries

3.1. Problem definition

Definition 1 (Named Entity Recognition). Given a sentence
E ¼ w1;w2; . . . ;wNf g, where wi is a vector representation of the
ith word in a sentence, NER aims to identify the boundaries and types
of entities with specific meanings from the sentence and outputs the
token label yi of the wordwi. Thus, the sentence E has a sequence of
labels Y ¼ y1; y2; . . . ; yNf g. Given M sentences and their label
sequences, denoted as f Em;Ymð ÞgMm¼1, the training process of
NER model minimizes the following loss function:

θ̂ ¼ arg min
θ

1
Mj j
XM
i¼1

‘ Ym; f Em; θð Þð Þ (2)

where ‘ �ð Þ is the loss function, and f Em; θð Þ is the NER model.

Definition 2 (Chinese Named Entity Recognition). For Chinese
NER, the task aims to separate Chinese characters to extract
entities, that is, a span of tokens ci; . . . ; cj

� �
, 0 � i � j � Nð Þ,

and obtain their type labels from the Chinese sentence
S ¼ c1; c2; . . . ; cNf g, where ci denotes the vector representation of
the ith Chinese character in a sentence.
Definition 3 (Chinese Word Segmentation). CWS is typically
modeled as a sequence-labeling problem at the character level.
Given a sequence of tokens S ¼ c1; c2; . . . ; cNf g, the purpose of
Chinese-word segmentation is to divide Chinese characters into
words. Suppose that L is the possible syncopated path on sentence
S, the purpose of CWS is to find the cut path L� that maximizes the
conditional probability P; that is,

L� ¼ arg max
L

PðLjSÞ (3)

where PðLjSÞ is the likelihood that cut path L is the true output of
sequence S.

Definition 4. (Low-Resource Chinese NER). Given a corpus set T
that includes a limited number of sentences S1; . . . ;Snf g, the purpose
of low-resource Chinese NER is to generate entity labels for charac-
ter ci in the sentence S based on T , thereby identifying entities
ci; . . . ; cj
� �

with specific meanings.

3.2. Entity recognition process

The NER model often comprises of the embedding, encoding,
and decoding layers, as shown in Figure 1.

Embedding layer. The input to the embedding layer is a
sentence S ¼ c1; c2; . . . ; cNf g, where ci 2 Rv is the one-hot vector
representation of ith character, the v is vocabulary size. The output
of this layer is a real-valued dense vector, ei, where each dimension
represents a latent feature. Thus, the embedding representation of the
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sentence S is E ¼ e1; e2; . . . ; eNf g. The embedding representation ei
captures the semantic and syntactic properties of sentences automati-
cally, which are not explicitly present in the one-hot vector represen-
tation ci. Subsequently, the resulting embedding representation E is
transmitted to the encoding layer as an input.

Encoding layer. In this layer, the input vector representation
e1; e2; . . . ; eNf g is processed by encoding models, such as CNN

and RNN. The model captures the local and global contextual infor-
mation in the sentence and generates a hidden representation
H ¼ h1;h2; � � � ;hnf g. For example, in the sentence
“ ,” the hidden representation of
characters in “ ” contains the contextual information “ ”

via the encoding model. Thus, the characters would be inferred as
an organization entity rather than a fruit.

Decoding layer. In the decoding layer, the decodingmodel uses
context-dependent hidden representation H as input and produces
tags for tokens (words in English or characters in Chinese). Thus,
the model outputs a tag sequence for the input sentence, and entities
with boundaries and types can be extracted from the sentence
accordingly.

3.3. Tag schemes

The NER task, as a type of sequence labeling task, requires
labeling each token in sentences using a tagging scheme to
determine the type and position of entities. Representative tag
schemes include BIO, IOB, and BIOES. Specifically, the BIO

scheme uses B (begin) to indicate the beginning character of an
entity, I (inside) to indicate the other characters of an entity, and
O (outside) to indicate non-entity characters. The IOB scheme
represents all entity characters using I; however, when two
consecutive entities of the same type exist, the beginning
character of the latter is represented by B. The BIOES scheme
adopts E (end) to indicate the last character of an entity and
represents the single-character entity using S (single); the other
tokens are labeled as in the BIO tag scheme. In this study, the
BIO tag scheme is adopted to label tokens.

4. Methodology

In this section, we describe the proposed multitask learning-
based BCNN-CWS model in detail. Deep learning methods can
automatically learn contextual information and thus perform well
in NER tasks. However, a deep-learning-based NER system may
not achieve a satisfactory performance if its hidden representations
cannot be learned adequately, which frequently occurs in low-
resource scenarios. To this end, the proposed BCNN-CWS model
adopts a multitask learning framework that allows the embedding
representation to acquire more feature information from the
auxiliary task. Here, we first introduce the proposed learning
model, which unites CNER and CWS by sharing a multilayer
perception (MLP)-based embedding layer. Then, we describe our
bidirectional iterated dilated convolution network. Figure 2
illustrates the overall architecture of the BCNN-CWS.

Figure 2
Model architecture of BCNN-CWS. The input sentences for the NER and CWS tasks are represented in the shared embedding layer.
The embedded representations of the two tasks are fed to different encoding layers. The results are output in the decoding layer and

the loss of the two tasks are combined as the loss of the joint model

Figure 1
Entity recognition process: input M sentences; the embedding layer represents each word as a 1* d vector; hidden feature

representations are generated in encoding layer; finally, the corresponding tags are the output in decoding layer
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4.1. Multitask learning framework

Essentially, CWS is a part of the CNER process, in which the
characters in the same group are represented with a higher transitional
probability between them. A better hidden representation improves
the performance of word segmentation models. For example, in the
sentence “ ,” the characters will be
grouped into “ ,” and the
hidden representations of the tokens in a same group, such as “ ”

and “ ,” will be closer together in the probability space compared
with the other tokens. Thus, the hidden representations learned from
the CWS can reduce the difficulty of CNER task. In low-resource
scenarios, the combination of the CWS can improve the performance
of CNER.

However, they have differences between CNER and CWS that
prevent them from completely sharing the underlying model
architecture. Specifically, compared with CWS, CNER tasks should
determine the categorical tags of named entities (e.g., names of
people, places, and organizations) based on contextual information,
in addition to their boundaries. For example, in the sentence
“ ,” the result of CWS
is “ ”. CNER
aims to discover the named entity “ ” and “ ” and determine
their type “organization” based on contextual information. Thus,
sharing all hidden layers [21, 44, 48] may negatively affect the
performance of CNER task. Consequently, we propose a multitask
learning framework that shares only the embedding layer of both
tasks and combines their losses to jointly optimize the model.

Shared embedding layer. The shared embedding layer uses
sentences for CNER and CWS as input so that the layer can be
optimized jointly for both tasks. Let S ¼ c1; c2; . . . ; cNf g be the input
sequence, where ci denotes the ith token in the sequence. Using a
MLP-based embedding layer, the input sequence can be represented
as E ¼ e1; e2; . . . ; eNf g, where ei 2 Rd is the embedding represen-
tation vector of the ith token, d is the embedding dimension. That is,
each token in the input sentence can be embedded as

ei ¼Weci (4)

whereWe 2 Rd�v denotes the trainable weight matrix. The output is
subsequently transmitted to the encoding layer.

NER. The NER model comprises an encoding and a decoding
layer. In the encoding layer, the embedding representation vectors
are fed into the proposed bidirectional convolution network
(BCNN) model to generate the hidden feature representation
H ¼ h1;h2; � � � ;hnf g, where hi denotes the encoded representation
of the token ci. Then, following [29, 44], we feedH 2 Rn�d from the
encoding layer to a CRF-based decoding layer to obtain the proba-
bility of a label sequence Y. Typically, the characters in a sentence
are not independent and have strong dependency relationships
among them. Thus, a desirable NER model should be able to capture
the dependency among characters, thereby deciding the current label
based on past and future labels. The CRF [49] layer defines the prob-
ability of the label sequence Y given H as

PðYjHÞ ¼ exp score H;Yð Þð ÞP
Y0 exp score H;Y0ð Þð Þ (5)

where the score score H;Yð Þ is defined as

score H;Yð Þ ¼
XN
i¼0

Ayi;yiþ1 þ
XN
i¼1

FH;yi (6)

whereA is the transition score matrix,Ayi;yiþ1 represents the score of
a transition from the label yi to label yiþ1. Further, FH is the emission
score matrix, FH;yi represents the score of label yi. To train the NER
model, the negative log-likelihood of the correct label sequences is
minimized over the training set:

LNER ¼ �
1
Tj j
X
s2T

logðYner
s jHs; θnerÞ (7)

where T is the set of sentences in the training data; Hs and Yner
s are

the hidden representation and label sequence of the sentence s,
respectively; and θner is the parameter set of the NER model.

Wordsegmentation.Becauseword segmentation task is similar
in nature to NER, we treat the word segmentation task the same as
NER, and the loss function of word segmentation is defined as

LCWS ¼ �
1
Tj j
X
s2T

logðYcws
s jHs; θ

cwsÞ (8)

where ycwss is the label sequence of the sentence s for word segmenta-
tion, and θcws is the parameter set of the CWS model.

Joint loss function.The final objective loss function of the joint
model is defined by combining Equations (8) and (9) as follows:

LJOINT ¼ LNER þ λLCWS (9)

where λ is the balancing parameter used to adjust the influence of word
segmentation on entity recognition. To avoid the risk of overfitting,we
add a residual connection to the model by summing the output of the
embedding layer with the results of the encoding layer. Moreover, we
set up a dropout layer between the decoding and encoding layers. The
trainingprocess of theBCNN-CWSmodel is presented inAlgorithm1.

Algorithm 1 Training framework of model BCNN-CWS

Input: Input sequence S ¼ c1; c2; . . . ; cNf g, and its word
segmentation label sequence ycwsS and Chinese NER label
sequence Yner

S , and maximum training times T.
Output: The parameter of shared component ω, and the parameters

of the unshared part ϑ1 and ϑ2.
1: Embedding characters to generate representation vector

E ¼ e1; e2; . . . ; eNf g via Equation (5).
2: while training times < T do
3: Encoding embedding representation E to generate hidden rep-

resentation H with the BCNN model;
4: Decoding H to generate probability labels ŷner , ŷcws with the

CRF model for NER and word segmentation;
5: Calculating loss via Equations (8), (9), and (10);
6: Updating model parameters ω, ϑ1, and ϑ2;
7: end while
8: Return the optimal model parameters ω�, ϑ�1, and ϑ�2.

4.2. Bidirectional convolution neural network
(BCNN)

As a powerful RNN architecture, the BiLSTM-CRF [29] is the
most widely used model for NER. In particular, the BiLSTM
architecture has become the de facto standard for encoding
sequence contextual information. Although BiLSTM-based
models are expressive and accurate, the inherent sequential
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property, by which the input of the current step requires the output of
the previous step, prevents them from fully exploiting GPU
parallelism, thus limiting their computational efficiency. Because
CNN models have the ability of parallel computation and
significantly reduce the time cost, this study used a CNN as the
basic architecture for the NER task.

Because a CNN does not have the capacity for long-term
memory, stacking multiple convolutional layers is required to
capture the contextual information from the entire input sequence.
Thus, the number of convolutional layers increases linearly with
the length of the sequence, thereby also increasing the time
complexity of the NER method. Although the pooling mechanism
is always adopted to obtain a large receptive field in CNN
models, it reduces the resolution of the representation and is not
appropriate for the sequence-labeling tasks. To this end, we utilize
an iterated dilated convolutional network [50] to encode the
embedding representation of input sentences, which is defined as

ht ¼ f Wc �
k¼0

n=2
et	kδ þ b

� �
(10)

where the dilated window skips over δ inputs at a time, n is the width
of the convolutional sliding window,Wc is the convolutional kernel,
f �ð Þ is the activation function, � is the vector concatenation, δ is the
dilation width, and b is the bias. When δ > 1, the dilated convolution
incorporates a broader context into the representation of a token than
the conventional convolution. Thus, the size of the receptive field
increases exponentially with the number of dilated convolution
layers, and the contextual information from the entire sequence
for the NER task can be captured with a limited number of dilated
convolution layers.

In NLP tasks, the words in a sentence are generally assumed to
obey the Markov assumption. That is, the probability of the n-th
word is based on the n� 1 previous words in the sentence. However,
traditional CNN models do not satisfy the Markov assumption. In
this study, we adopt causal convolution to characterize the Markov
properties of sentences. The difference between causal and tradi-
tional convolutions is that each causal convolution contains current,
past, or future information, and no information can be transmitted in
the opposite direction. For example, the forward causal convolution
considering the current and past information can be defined as

ht ¼ f Wc �
k¼0
n
et�kδ þ b

� �
(11)

where t-kδ denotes the past direction of the current position t.
Because each character in a sentence depends on both its past

and future contexts, the BCNN model has a bidirectional
architecture, which consists of a forward convolution component
and a backward convolution component. The forward convolution
component consists of three convolutional layers, of which the
first two use forward dilated causal convolution, and the last layer
is a fully dilated convolution, which can be formulated as

htf ¼ f W000 �
k¼0

n=2
f W00 �

k¼0

n
f W0 �

k¼0

n
et�kδ1

� �� �
t�kδ2

 !
t	kδ3

0
@

1
A
(12)

where the bias term is not explicitly expressed. Similarly, the
backward convolution component includes backward dilated
causal and full dilation convolutions.

hbf ¼ f W000 �
k¼0

n=2
f W00 �

k¼0
n

f W0 �
k¼0
n
etþkδ1

� �� �
tþkδ2

 !
t	kδ3

0
@

1
A
(13)

To ensure the fusion of context information, we concatenate the
representations obtained from the forward and backward
convolution components.

ht ¼ htf � hbf (14)

5. Experiments

In this section, we describe extensive experiments conducted on
three public datasets to verify the performance of the proposed
methods. We analyze the experimental results to find answers to
the following questions:

1) Q1: Does the proposed joint model BCNN-CWS improve the
performance of low-resource Chinese NER compared to state-
of-the-art methods?

2) Q2: How does the proposed BCNN affect the performance of
low-resource Chinese NER?

3) Q3: How does the proposed shared mechanism in the joint
training framework improve the performance of low-resource
Chinese NER?

4) Q4:What is the effect of the parameters on the performance of the
proposed model?

5.1. Experimental settings

Datasets. Experiments are conducted on three benchmark
datasets, namely, MSRA [51], PeopleDaily [52], and Ontonotes4
[53], which are representative of Chinese NER. Here, the entity
type person, location, organization, and BIO tag scheme are used.
Table 2 shows the detailed statistics, including the number of
sentences, chars, and entities in the training and test sets.

Evaluation metrics and comparison methods. To evaluate
the performance of all NER methods, four evaluation metrics
accuracy, precision, recall, and F1 score that commonly used in
this field are adopted in this study. Moreover, to verify the
performance of the proposed models in low-resource CNER tasks,
the representative CNER models BiLSTM-CRF, BiGRU-CRF,
IDCNN-CRF, and CNN-LSTM-CWS are selected as the
comparison methods. These methods are described as follows:

Table 2
Statistic characteristics of the datasets

Dataset Type Train Test

MSRA Sentence Char
Entities

37,092 1,955,826
62,169

9,273 172,600
12,534

Ontonote4 Sentence Char
Entities

15,724 491,903
12,581

4,346 208,066
7,275

PeopleDaily Sentence Char
Entities

1,499,875 18,452
43,214

345,715 4,613
10,028
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1) BiLSTM-CRF [15]: This is the most commonly used model for
entity recognition tasks. It characterizes the past and future input
features of input sentence via a BiLSTM layer so that the hidden
representation of the sentences can fully obtain the contextual
information; it uses a CRF layer to decode the tag information.

2) BiGRU-CRF [30]: This method uses the bidirectional GRU
model to represent the contextual information of the input
sentence. GRU is an improved method of LSTM, which yields
a significant increase in computing speed compared with LSTM.

3) IDCNN-CRF [38]: This method is a sequence labeling model
based on dilated convolutions, which extracts the feature
information of long sequences by expanding the convolution
field of a CNN using a few layers. The purpose of this method
is to improve the speed of entity recognition by taking
advantage of CNN parallel computing.

4) CNN-LSTM-CWS [48]: This method consists of three layers:
CNN, BiLSTM, and CRF. The CNN and BiLSTM layers are
used to learn contextual representations from local and long-
distance contexts, and the CRF layer is used to decode
character labels. In this method, the character embeddings and
the CNN network all are shared between NER and word
segmentation models.

Implementation details. We use Keras 2.2.4 and Tensorflow
1.14 to implement our model in Windows 10 within 2080Ti GPU.
The embedding dimension of each character is 128, and the sentence
length is uniform at 100 characters. The redundant parts of sentences
with more than 100 characters are removed, and the sentences with
less than 100 characters are padded with zeros. There are three
convolution layers, and the dilation factor δi is set to 1, 2, and 4, respec-
tively. The dropout rate is set to 0.5. TheReLU is used as the activation
function, and the learning rate is set to 0.1. The batch size in the imple-
mentation is 64, and the number of epochs is 15. Moreover, we adopt
the glorot uniform to initialize the weights of our model.

5.2. Performance comparison

Effectiveness of BCNN-CWS. The performance of the
proposed method BCNN-CWS is shown in Figure 3. Compared to
other NER methods, BCNN-CWS generally achieves superior
results over all evaluation metrics on the three datasets, which
demonstrates that the multitask learning framework and
bidirectional convolution neural network in BCNN-CWS can
achieve excellent performance, especially when there are
insufficient training samples. From the perspective of model
mechanism, the combination with CWS can improve the
performance of entity recognition by optimizing entity boundary

identification, and the bidirectional causal convolution can
effectively characterize the contextual information of sentences.

To further verify the effectiveness of the proposed method in
generating hidden feature representations, we denote BCNN-CWS
model without the multitask learning mechanism as BCNN and
compare it with BiLSTM-CRF, BiGRU-CRF, IDCNN-CRF, and
CNN-LSTM-CRF. Here, to compare the effectiveness of the
encoding model, the multitask learning mechanism in CNN-
LSTM-CWS is also deleted and denoted as CNN-LSTM-CRF.
The results of this comparison are illustrated in Figure 4. The
experimental results demonstrate that BCNN generally performs
better than BiLSTM-CRF, BiGRU-CRF, IDCNN-CRF, and CNN-
LSTM-CRF. This implies that the design of iterated dilated
convolution and bidirectional causal convolution is effective in
capturing contextual information from the entire sentence. In
particular, compared with IDCNN-CRF, our BCNN method performs
better for the NER task. This demonstrates the effectiveness of
forward and backward dilated causal convolutions in the BCNN to
characterize the dependency of characters. Moreover, the top half of
Table 3 shows the entity tags generated by the NER methods for the
test samples selected from the MSRA dataset. For example, in
the sentence “ ,” the BiGRU-
CRF model incorrectly identifies “ ” as an entity, and the
BCNN model correctly identifies them as a non-entity. The results
show that the BCNN performs better than the other methods.

Efficiency of BCNN-CWS. Table 4 shows the training times of
the methods on the PeopleDaily, MSRA, and Ontonote4 datasets.
The proposed BCNN method is more than 50% faster than the
BiLSTM-CRF and BiGRU-CRF methods. Similarly, BCNN-CWS
performs the best among all the joint models, exhibiting almost
40% improvement over BiLSTM-CWS, BiGRU-CWS, and CNN-
LSTM-CWS. The reason behind the improved performance of
BCNN-CWS is that BCNN adopts a CNN as the basic
architecture and uses dilation convolution operation to limit the
number of convolution layers. Moreover, because BCNN and
IDCNN are based on the same basic architecture, the running time
of them is about the same. At the same time, the above results
also show that CNN-based NER methods are significantly more
efficient than those based on the RNN model.

Effectiveness of BCNN-CWS in Low-Resource Cases. To
evaluate the effectiveness of the proposed model under low-
resource conditions, we construct training samples by gradually
increasing the amount of data. Table 5 shows the experimental
results of the NER methods with various amounts of data. From
Table 5, it can be seen that our proposed method BCNN-CWS in
general achieves the best results for the experiments in all the

Figure 3
Comparison of BCNN-CWS and state-of-the-art methods on datasets MSRA, PeopleDaily, and Ontonote4
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cases. This indicates that our proposed method can effectively solve
the low-resource problem.

5.3. Ablation experiment

Effects of the joint training mechanism with CWS. We
conduct an ablation experiment for the CWS module to verify
the contributions of the main components of our model to the
performance of the entity recognition task. According to the
sequence labeling underlying both NER and CWS tasks, our
model, BCNN-CWS, uses CWS as the auxiliary task and defines
a multitask learning framework to generate hidden representations
adequately for entity recognition. Moreover, although CNER and

CWS have common characteristics, they have differences that
prevent them from completely sharing the underlying model
architecture, that is, the embedding and encoding layers.
Therefore, we evaluate the proposed multitask learning framework
with CWS to verify its effectiveness for the CNER task. We then
conduct experiments with various sharing strategies for the
embedding and encoding layers between CNER and CWS to
explore their effects on entity recognition.

To evaluate the proposed multitask learning framework with
CWS for the CNER task, BiLSTM, BiGRU, IDCNN, and BCNN
are used as encoding layers in the framework to form the joint
CNER models BiLSTM-CWS, BiGRU-CWS, IDCNN-CWS, and
BCNN-CWS. Table 6 shows the NER results of the joint models

Figure 4
Comparison of BCNN and state-of-the-art methods on datasets MSRA, PeopleDaily, and Ontonote4

Table 3
Comparison of entity recognition results, where the red tags and the green tags are incorrect and correct
results, respectively. The top half presents the results without joint training, and the bottomhalf illustrates the

effectiveness of CWS module

Chinese Text
BiLSTM-CRF O O B-LOC I-LOC O B-LOC I-LOC I-LOC O B-LOC I-LOC O O O
BCNN O O B-LOC I-LOC B-LOC I-LOC I-LOC I-LOC O B-LOC I-LOC O O O
Chinese Text
BiGRU-CRF B-PER I-PER I-PER O O B-ORG I-ORG I-ORG I-ORG O O O O O O
BCNN B-PER I-PER I-PER O O O O O O O O O O O O
Chinese Text
IDCNN-CRF B-LOC O O O O O O O O O O O O O O O O O
BCNN B-LOC I-LOC O O O O O O O O O O O O O O O O
Chinese Text
CNN-LSTM-CRF O O O O O B-ORG I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG O
BCNN O O O O O O O O O B-ORG I-ORG I-ORG O
Chinese Text
BiLSTM-CRF B-ORG I-ORG I-ORG I-ORG I-ORG I-LOC I-LOC

O B-LOC I-LOC I-LOC I-LOC O O O O O O
BiLSTM-CWS B-ORG I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG

O B-LOC I-LOC I-LOC O O O O O O O
Chinese Text
BiGRU-CRF O O O O B-ORG I-ORG I-ORG I-ORG O O O O O O O
BiGRU-CWS O O O O O O O O O O O O O O O
Chinese Text
IDCNN-CRF B-LOC O O O O O O O O O O O O O O O O O
IDCNN-CWS B-LOC I-LOC O O O O O O O O O O O O O O O O
Chinese Text
BCNN B-LOC I-LOC I-LOC O O O O O O O O O O O O O O O
BCNN-CWS B-LOC I-LOC I-LOC O O O O O B-LOC I-LOC I-LOC O O O O O O O
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Table 4
Efficiency of the NER methods on datasets MSRA, PeopleDaily, and Ontonote4. The top and bottom half present the results of the

methods without and with joint training with CWS module. Bold numbers denote the best results

Model Dataset

PeopleDaily MSRA Ontonote4

BiLSTM-CRF 1186s 1449s 1143s
BiGRU-CRF 1018s 1189s 977s
IDCNN-CRF 556s 703s 539s
CNN-LSTM-CRF 1523s 1865s 1508s
BCNN 544s 686s 535s
BiLSTM-CWS 2524s 3027s 2500s
BiGRU-CWS 2270s 2512s 2267s
IDCNN-CWS 1377s 1798s 1405s
CNN-LSTM-CWS 2340s 2774s 2370s
BCNN-CWS 1364s 1760s 1332s

Table 5
Effectiveness of the NER methods with various amounts of training data. Bold numbers denote the best results

Models MSRA(5k) PeopleDaliy(5k) Ontonote4(5k)

F1
Score Recall Precision Accuracy

F1
Score Recall Precision Accuracy

F1
Score Recall Precision Accuracy

BiLSTM 0.6797 0.6370 0.7316 0.5817 0.7849 0.7737 0.7973 0.7229 0.5164 0.5164 0.5690 0.5025
BiGRU 0.6837 0.6708 0.7003 0.5987 0.7863 0.7490 0.8328 0.7597 0.5342 0.4901 0.5940 0.4610
IDCNN 0.6819 0.6387 0.7360 0.6069 0.7842 0.7496 0.8271 0.7249 0.5290 0.5056 0.5581 0.4582
CNN-LSTM-
CWS

0.6962 0.6515 0.7522 0.5616 0.7914 0.7391 0.8551 0.7035 0.5290 0.5031 0.5875 0.5011

BCNN-CWS 0.7004 0.6771 0.7273 0.6095 0.7942 0.7742 0.8181 0.7342 0.5605 0.5556 0.5674 0.5286

Models MSRA(10k) PeopleDaliy(10k) Ontonote4(10k)

F1
Score Recall Precision Accuracy

F1
Score Recall Precision Accuracy

F1
Score Recall Precision Accuracy

BiLSTM 0.7533 0.7224 0.7870 0.7923 0.8395 0.8189 0.8612 0.8637 0.5974 0.5622 0.6373 0.6477
BiGRU 0.7565 0.7280 0.7873 0.7834 0.8388 0.8092 0.8706 0.8739 0.6080 0.5755 0.6444 0.6451
IDCNN 0.7662 0.7307 0.8055 0.8074 0.8422 0.8262 0.8588 0.8731 0.5925 0.5505 0.6414 0.6541
CNN-LSTM-
CWS

0.7673 0.7398 0.8014 0.7169 0.8523 0.8295 0.8773 0.7966 0.5397 0.5031 0.5875 0.6538

BCNN-CWS 0.7709 0.7503 0.7927 0.7934 0.8532 0.8405 0.8663 0.8686 0.6438 0.6377 0.6500 0.6521

Models MSRA(all) PeopleDaliy(all) Ontonote4(all)

F1
Score Recall Precision Accuracy

F1
Score Recall Precision Accuracy

F1
Score Recall Precision Accuracy

BiLSTM 0.8714 0.8647 0.8794 0.8294 0.8795 0.8696 0.8898 0.8513 0.6178 0.5821 0.6725 0.6151
BiGRU 0.8713 0.8424 0.9027 0.8436 0.8757 0.8683 0.8838 0.8488 0.6187 0.5668 0.6933 0.5723
IDCNN 0.8699 0.8545 0.8867 0.8495 0.8790 0.8558 0.9043 0.8191 0.6086 0.5787 0.6499 0.6149
CNN-LSTM-
CWS

0.8759 0.8448 0.9114 0.8429 0.8843 0.8525 0.9193 0.8499 0.6335 0.6112 0.6594 0.5483

BCNN-CWS 0.8792 0.8661 0.8933 0.8573 0.8896 0.8793 0.9017 0.8518 0.6501 0.6373 0.6649 0.6875

Table 6
Ablation experiment about multitask learning with CWS. Bold numbers denote the best results

Models MSRA PeopleDaliy Ontonote4

F1 Score Recall Precision Accuracy F1 Score Recall Precision Accuracy F1 Score Recall Precision Accuracy

BiLSTM 0.7533 0.7224 0.7870 0.7923 0.8395 0.8189 0.8612 0.8637 0.5974 0.5622 0.6373 0.6477
BiLSTM-CWS 0.7607 0.7291 0.7952 0.7997 0.8464 0.8290 0.8645 0.8655 0.6134 0.5833 0.6468 0.6550
BiGRU 0.7565 0.7280 0.7873 0.7834 0.8388 0.8092 0.8706 0.8739 0.6080 0.5755 0.6444 0.6451
BiGRU-CWS 0.7645 0.7334 0.7984 0.8059 0.8417 0.8223 0.8620 0.8637 0.6098 0.5842 0.6377 0.6514
IDCNN 0.7662 0.7307 0.8053 0.8074 0.8422 0.8262 0.8588 0.8607 0.5925 0.5505 0.6414 0.6541
IDCNN-CWS 0.7697 0.7452 0.7959 0.7973 0.8457 0.8214 0.8715 0.8731 0.5956 0.5767 0.6158 0.6203
BCNN 0.7680 0.7460 0.7913 0.7927 0.8504 0.8376 0.8636 0.8645 0.6187 0.6066 0.6313 0.6362
BCNN-CWS 0.7709 0.7503 0.7927 0.7934 0.8532 0.8405 0.8663 0.8686 0.6438 0.6377 0.6500 0.6521
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compared with the original methods. We can find that the joint
models BiLSTM-CWS, BiGRU-CWS, IDCNN-CWS, and BCNN-
CWS performed better than the non-joint models on all datasets.
The average improvements of all the joint models over the non-
joint models on the PeopleDaily, MSRA, and PeopleDaily
datasets are 0.4%, 0.66%, and 1.4%, respectively. These results
demonstrate that multitask learning with CWS task can effectively
improve the performance of CNER in low-resource scenarios.
Moreover, to evaluate the proposed multitask learning framework,
the bottom half of Table 3 also shows the entity tags generated by
the CNER methods. The results show that the joint models

combining with word segmentation tasks obtain better entity
recognition results.

To verify the rationality of the sharing mechanism in BCNN-
CWS, we compare the non-joint models, the joint models sharing
only the embedding layer with CWS, and the joint models sharing
both embedding and encoding layers with CWS. According to the
results of this comparison, shown in Figure 5, it can be concluded
that the models sharing only the embedding layer with CWS
generally perform best on all datasets, which proves the
effectiveness of the sharing mechanism proposed in this paper.
Moreover, we can observe from the results that the models

Figure 5
Effects of various sharing mechanisms between NER and CWS in the proposed joint training framework
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sharing both layers perform worse than the models sharing only the
embedding layer and even worse than the non-joint models in most
cases. This observation demonstrates that fully sharing the
underlying mechanisms of CNER and CWS negatively affects the
performance of the CNER task.

Effects of the BCNN model. The proposed method BCNN-
CWS mainly includes the joint training mechanism with CWS and
the BCNN model. Besides the joint training mechanism with
CWS, here we evaluate the contribution of the BCNN model to
the proposed method. To this end, BiLSTM, BiGRU, IDCNN,
and BCNN are used as the encoding layers in our joint training
framework, denoted by BiLSTM-CWS, BiGRU-CWS, IDCNN-
CWS, and BCNN-CWS, respectively. Thus, the encoding models
of the methods are fairly compared under the same calculation
scenario, and the results on the PeopleDaily, MSRA, and
Ontonote4 datasets are displayed in Figure 6. Evidently, the
proposed BCNN model performs better than the comparison
models. This indicates that BCNN model significantly contributes
to the performance advantages of the BCNN-CWS model.

5.4. Model analysis

Impact of the balance coefficient. The balance coefficient λ in
Equation (9) is used to adjust the influence of the word segmentation
task on the performance of entity recognition methods. That is, the
coefficient λ determines the influence of the CWS module on the

learned hidden representation for entity recognition. Figure 7 shows
the results of BCNN-CWSmodel under various ratios between LNER

and LCWS in Equation (9). The results show that BCNN-CWSmodel
achieves the best results on the datasets when the weights of the loss
functions for entity recognition and word segmentation are similar,
i.e., λ approaches 1, which is the choice made in this study.

Effectiveness of the bidirectional layers. To improve the
performance of the CNER method, we propose a bidirectional
convolutional model to comprehensively learn the contextual
information of the sentences. To verify whether the
bidirectional convolutional model is effective and outperforms
the unidirectional convolutional model for entity recognition,
we conduct experiments on the PeopleDaily, MSRA, and
Ontonote4 datasets. The experimental results, shown in
Figure 8, prove that the bidirectional model outperformed the
unidirectional model in all datasets. Thus, it is experimentally
demonstrated that the proposed bidirectional convolutional
model may compensate for the shortcomings of the
unidirectional convolutional model and has a better capability
for characterizing contextual information.

Impact of convolutional layer dilation factors. Table 7 shows
the results of BCNN-CWS under various dilation factors δ. Accord-
ing to Table 7, the performance of the BCNN-CWS for entity recog-
nition varies as the value of the dilation factors changes. Here, the
best performance is achieved when the dilation factors are equal
to 1, 2, 4, which is the choice in this study.

Figure 6
Ablation experiment about BCNN model on datasets MSRA, PeopleDaily, and Ontonote4

Figure 7
Effect of balance coefficient λ. The horizontal axis indicates the ratio between NER and CW loss functions
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6. Conclusions and Discussion

In this study, we investigated the low-resource CNER problem
and presented a novel bidirectional dilated convolution-based
entity recognition model called BCNN-CWS. Based on multitask
learning, auxiliary data on CWS were incorporated into the
training process to learn high-quality hidden representations,
thereby improving the performance of entity recognition.
Specifically, considering the relatedness and difference between
entity recognition and word segmentation tasks, a joint training
framework that shares only the embedding layer was developed
to learn the hidden representations. To increase the efficiency of
entity recognition methods, we defined a CNN architecture by
stacking convolutional layers, in which dilated convolution was
used to capture contextual information from the entire input
sequence using only a limited number of convolutional layers.
Moreover, to characterize the dependency of characters and
model the Markov property of sentences, a bidirectional causal
convolution mechanism was proposed. Extensive experiments
shown that the BCNN-CWS model outperforms state-of-the-art
entity recognition methods; it yields up to about 50% speed
improvement over existing methods. According to ablation
experiments and model analysis, the multitask learning
framework and encoding model BCNN of BCNN-CWS
exhibited satisfactory performance. This work provides a new
reference for the subsequent research of deep learning-based
methods and lays a foundation for NER research based on new
technologies such as pretraining. In addition, the proposed
method can be used in machine translation, question answering,

and knowledge graph construction to promote the construction
and application of intelligent systems.

This study focused on the problem of non-nested entity
recognition. Similar to existing works on this topic, the auxiliary
task for joint training in this study is selected manually.
Therefore, it is heavily dependent on domain knowledge and is a
trial-and-error process. In the future, the proposed entity
recognition model can be optimized using a learning mechanism
to automatically determine optimal auxiliary tasks. Moreover, the
proposed BCNN-CWS model assumes that all input sentences are
reliable. However, the vulnerability of entity recognition methods
under adversarial attacks has received little attention. Thus, the
evaluation and development of robust entity recognition methods
should be considered in future research.
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Table 7
Impact of convolutional layer dilation factor

Dilate MSRA PeopleDaliy Ontonote4

F1 Score Recall Precision Accuracy F1 Score Recall Precision Accuracy F1 Score Recall Precision Accuracy

1,2,4 0.7080 0.6774 0.7415 0.6249 0.7934 0.7738 0.8140 0.7276 0.5588 0.5397 0.5793 0.5377
1,3,5 0.7036 0.6739 0.7360 0.6174 0.7895 0.7689 0.8112 0.7343 0.5486 0.5366 0.5611 0.5583
1,4,6 0.6947 0.6784 0.7118 0.6271 0.7872 0.7732 0.8017 0.7364 0.5582 0.5428 0.5745 0.5407
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