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Abstract: The advancement of technologies such as IoT, Big Data, Data Science, Augmented Reality/Virtual Reality, and cloud computing
has transformed the manufacturing sector through the Digital Twin (DT), serving as a potent instrument for simulating concepts into practice.
Recently, artificial intelligence has been merged with digital technology to conduct research in the healthcare sector, facilitating judgments on
the planning of patients’ clinical courses and the allocation of available medical resources. DTs can be utilized in the medical industry to
facilitate clinical decision-making, providing prognoses and personalized treatment for patients. Multiple sclerosis (MS) is an
autoimmune neurological disorder that impacts the central nervous system, potentially resulting in neurological impairment and mortality
if left untreated. [X1]. In this research study, magnetic resonance imaging (MRI) samples collected from the E-Health lab and IXI
databases are used to construct the DT empowered with artificial intelligence for the diagnosis of MS in a robust manner. We propose a
hybrid CNN-RNN model for detecting MS in two phases. In the first phase, the deep features of the MRI modalities are extracted by
two transfer learning models, m-InceptionV3 and m-DenseNet121. In the second phase, the classification of extracted features to either
healthy or MS is performed by the Long Short-Term Memory RNN model. Deep learning metrics like precision, recall, F1 score, and
accuracy are used to validate the performance of the proposed model. The proposed model outperformed the other state-of-the-art
models achieving a good performance of 99.67% in validation accuracy. This healthcare DT pipeline may assist in clinical decision-
making for MS detection and planning post-MS rehabilitation.
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1. Introduction

Multiple sclerosis (MS) is a severe demyelinating disorder that
impacts the central nervous system, encompassing the brain, spinal
cord, and optic nerves. The nerve fibers and the cells responsible for
producing the myelin sheath in the brain are damaged in individuals
withMS. If ignored, this injury will affect the spinal cord, potentially
resulting in gait abnormalities and physical handicap as the condition
advances [1]. The impairment of cells and nerve fibers manifests as
lesions in various regions of the brain’s gray and white matter, thus
the designation “MS”.

The National Multiple Sclerosis Society (2022) reports that
more than 2.6 million individuals globally are afflicted with MS.
Globally, around 280 individuals are diagnosed with MS daily,
with a new diagnosis occurring every five minutes, according to
the Atlas of MS study, 2022. The Multiple Sclerosis International
Federation indicates that the nations with the highest prevalence
of MS are predominantly located in northern Europe, specifically
Norway, Sweden, Denmark, and Iceland. Countries with a
significant prevalence of MS include Canada, the United States,
Australia, and New Zealand.

MS infection comprises four stages: (i) Clinically isolated
syndrome (CIS) – This is the initial stage of MS, characterized by
minimal damage to nerve fibers and the myelin sheath, sometimes
undetectable in a magnetic resonance imaging (MRI) scan [2];
(ii) Relapsing-Remitting MS – In this phase, symptoms exacerbate
and subsequently improve, often adhering to a consistent pattern
that will eventually progress to Secondary Progressive MS
(SP-MS); (iii) Primary Progressive MS – This variant of MS is
characterized by a continuous progression of the disease without
periods of remission. This indicates heightened neurological
impairment and physical incapacity; and (iv) SP-MS – It is the most
aggressive form of MS, and it often happens within 10 to 25 years
of the first diagnosis. If left untreated, it may progress to permanent
physical handicap or possibly result in the individual’s death.

Currently, there are no clinical manifestations or laboratory
evaluations that may precisely identify MS. Consequently,
multiple approaches were implemented for diagnosing MS,
including the examination of the patient’s medical history,
analysis of sMRI and fMRI modalities, cerebrospinal fluid
analysis, and blood testing. Currently, MRI modalities are
regarded as the most effective non-invasive method for detecting
MS. In a MRI scan, MS activity manifests as either hyperintense
or hypointense lesions. Oval or frame-shaped lesions are prevalent
among patients with MS. Both the white and gray matter of the
brain can manifest MS lesions. Gadolinium is a chemical contrast
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agent utilized by medical professionals to augment the contrast of
MRI scan images.

Modern healthcare leans towards a preventive,
multidisciplinary approach to deliver personalized and precise
treatment to people. The advent of artificial intelligence (AI)
facilitated the amalgamation of complex insights on human
physiology, behavior, and medicine. Digital twin (DT) models for
healthcare have been suggested in various medical domains,
including the development of DTs for the liver [1] and the heart
[3, 4]. Considering the dominance of MRI procedures and the
scarcity of radiologists and neurologists, the need to build an
AI-based tool for accurate and early diagnosis of MS is inevitable.
The developed Healthcare Digital Twin (HDT) model will aid
clinicians in detecting MS.

The following are the major contributions of the research work:

1) MRI modalities from large EHealth Lab and IXI datasets are
collected and pre-processed for use in this study.

2) A DT framework enabled with AI for detecting MS is proposed.
3) Deep features fromMRI samples are extracted using two transfer

learning models with customized layers. The extracted features
are stacked up and given as input to the Recurrent Neural
Network (RNN) model to make the final prediction.

4) Measured the performance of the trained hybrid CNN-RNN
model with the training dataset and achieved ideal accuracy,
F1 score, precision, recall, and ROC.

The remaining sections of the paper are organized asmentioned.
Section 2 analyzes the associated research works for MS detection
using deep learning and the DT concept. Section 3 highlights the
enabling technologies for building DT. Section 4 describes the
proposed DT framework based on InceptionV3 and DenseNet121
CNN models and the Long Short-Term Memory (LSTM) model.
Section 5 presents the experimental setup, datasets, performance
metrics, discusses the results, and compares them with the state-
of-the-art methods. Finally, Section 6 concludes the paper and
plans the future research opportunities.

2. Related Work

This research work introduces CloudDTH, a novel and
extensible cloud healthcare system framework that integrates DT
technology for diagnosing individual health, particularly focusing
on elderly healthcare. The framework addresses the challenges of
managing the health of elderly patients and integrating the
medical physical world with the virtual world for smart healthcare
solutions. CloudDTH utilizes technologies like big data, cloud
computing, and IoT, emphasizing precision medicine, and
efficient service delivery. The proposed DT healthcare (DTH)
developed by Liu et al. [5] concept and model forms the
foundation of CloudDTH, enabling interaction between physical
and virtual spaces. The paper also explores key enabling
technologies, outlines a reference framework, and demonstrates
the feasibility through application scenarios and a real-time
supervision case study. Laamarti et al. [6] introduce an ISO/IEEE
11073 standardized DT pipeline for well-being of senior citizens,
expanding the application of DT technology beyond industry into
smart healthcare services for smart cities. The framework involves
a cyclic process, which includes gathering healthcare data from
personal health analyzing IoT devices, analyzing them, and
providing feedback to the user. Notably, the framework
accommodates both X73-compliant and noncompliant healthcare
devices through the integration of an X73 wrapper module.

Additionally, a configurable X73 mobile application is proposed,
designed to interface with any X73-compliant device. The paper
describes the design and implementation of this framework, along
with a proof-of-concept experiment, demonstrating effective
results and the potential for gaining valuable insights into
individual health while providing feedback to users and caregivers.

In this research study, Hussain et al. [7] explore the use of EEG
monitoring as a diagnostic tool for neurological impairment in stroke
patients, aiming to create a proof-of-concept healthcare “DT”. The
research, involving 48 stroke patients and 75 healthy individuals,
utilized portable EEG devices to capture data from various
cortical electrodes. Key characteristics identified for classification
included the revised brain-symmetry index, theta, and delta
activities in both motor and cognitive states. Applying support
vector machine in a machine-learning approach, the study
achieved a 76% accuracy in classifying EEG features, effectively
distinguishing between stroke patients and the control group. The
proposed healthcare DT framework, based on EEG data and
machine learning, holds promise for aiding clinical decisions for
stroke patients. Overall, the findings suggest a potential
application of DT technology in enhancing diagnostics and
personalized care for individuals with neurological impairments,
particularly in the context of stroke management. This study
addresses the urgent need for early detection of chronic kidney
disease using deep learning utilizing CT scan images of the
abdomen and urogram. The dataset comprises 12,446 images, with
varying distributions for cysts, normal cases, kidney stones, and
tumors. Sasikaladevi and Revathi [8] develop a deep learning model
where complex features are extracted from these images, forming
hypergraphs for representation. The hypergraphs are utilized in a
hypergraph convolutional neural network, showcasing superior
performance with a validation accuracy of 99.71%. Validation
metrics include precision, recall, accuracy, and the F1 score,
demonstrating the model’s robustness. The proposed digital twin
model proves to be a promising tool for nephrologists in the early
diagnosis and prognosis of kidney diseases. Ojo et al. [9] introduce
FAD, a hybrid deep neural network and artificial neural network
model, to detect MS using gene expression data from the GEO
GSE17048 dataset. Pre-processing included encoding, scaling, and
feature selection, yielding a 96.55% accuracy and 96.71% F1 score,
outperforming prior methods. Zhang et al. [10] employed enhanced
convolutional neural network for detecting MS from brain slices.
On training the proposed model with 676 MRI modalities of MS
patients and 681 MRI modalities of healthy control subjects, the
model incorporates data augmentation, parametric rectified linear
unit (PReLU), and dropout approaches for improving the
performance. The final 10-layer deep convolutional neural network
achieves exceptional performance, with a sensitivity of 98.21%, a
specificity of 98.25%, and an accuracy of 98.21%, outperforming
four related approaches. Notably, the inclusion of dropout and
PReLU techniques contributes to significant accuracy improvements
compared to conventional methods.

Özkaraca et al. [11] proposed a novel modular deep learning
model developed to enhance the classification of MRI images for
chronic nerve ailments like brain tumors, strokes, dementia, and
MS. Leveraging transfer learning techniques from established
methods like DenseNet, VGG16, and basic CNN architectures, the
model aimed to improve classification performance while
addressing inherent limitations. Evaluation using both traditional
train-test splits (80:20) and cross-validation (10 folds) demonstrated
superior performance compared to existing transfer learning
methods, albeit with increased processing time. Jain et al. [12]
proposed an ensemble-based classification framework to classify
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healthy individuals from MS patients using MRI samples from the E-
Health Lab data repository. Feature Extraction is performed using the
Gray Level Co-occurrence matrix and three boosting techniques are
performed on the Decision Tree Classifier achieving an accuracy of
94.91% when compared to previous related works. Öztürk and
Özkaya [13] built a hybrid model for classifying gastrointestinal
infections by combining CNN with RNN. The model performance
is equated with various pre-trained models like AlexNet, Google
Net, and ResNet architectures to assess its classification performance.

Ekmekyapar and Taşcı [14] proposed the MobileNetV2 model
combined with IMrMr feature selection and KNN Nearest Neighbors
classification method to detect MS. The method is conducted in two
different datasets, comprising 1373 and 1385 MRI samples,
respectively. The proposed model attained an accuracy efficacy of
98.76% on applying exemplar-based learning to the MobileNetV2
model. Ambayiram and Ganesan [15] developed a hybrid deep
convolution network (HD-CNN) for MS classification. The model
employed the Chaotic Leader-Selective Particle Swarm Optimization
method for extracting white regions in brain MRI. Later on, Refined
Slime Mold selects salient features needed for better segmentation.
Finally, the maximum bidirectional gradient classifier categorizes MS
lesions by detecting white matter spots in the target region.

3. Enabling Technologies for Virtualizing Patient’s
Medical Condition

3.1. Digital twin

A DT is a dynamic, changing, and intelligent digital
representation of a physical object or process that is frequently
likened to a “Product Avatar”. While DT has gained recognition in
manufacturing for enhancing failure management, boosting
productivity, and streamlining processes to cut costs, its application
in healthcare is still in the early stages and requires substantial
research [16]. Building a DT for a patient’s health condition
involves two pivotal components as depicted in Figure 1 [17]. First,
as requested by healthcare professionals, the physical realm contains
a variety of data types, such as clinical records, laboratory test
results, and patient-reported outcome measures, which are carefully
gathered during the many stages of MS therapy. Subsequently,
these reports are transmitted to the digital realm, where the patient’s
DT is crafted, leveraging AI to analyze and propose clinical
treatments tailored to MS patients. Finally, these recommendations
are relayed back to the physical world to guide healthcare
interventions and strategies for optimal patient care.

3.2. Role of artificial intelligence

AI, IoT, AR/VR, wireless technologies, and other fields have all
contributed to recent developments in DT technology. Future DT
research and development will be greatly influenced by these
areas. A model that combines DT and AI was presented by Derraz
et al. [18] to suggest individualized medication regimens for
everyone. Similarly, Angulo et al. [19] developed a DT model to
monitor lung cancer progression in patients, offering tailored
recommendations. Integrating DT with AI creates opportunities to
generate personalized recommendations based on the patient’s
actual health status, enabling doctors to make more accurate,
individualized, and efficient clinical decisions for improved
treatment quality.

4. Proposed Methodology

The proposed HDT for detecting MS infection is shown in
Figure 2. The workflow involves several components which include
dataset collection, data preparation and pre-processing, splitting the
data for training, validation, and testing, building CNN models
m-InceptionV3, m-DenseNet101 on applying transfer learning for
feature extraction, stacking up of extracted features to train RNN
classifier, LSTM, and performance measure. The input data from
the IXI database and E-Health lab repository undergo various image
preparation and pre-processing procedures to make it suitable for
training the CNN models. Subsequently, the pre-processed image
data is fed as input to two CNN models m-Inception-V3 and m-
DenseNet121 which serve as the base models for applying the
transfer learning approach. To adapt the pre-trained models to the
specific task of MS detection, additional layers are added to the top
of the models upon removing the top layer. These layers will
extract the features relevant to MS detection. The features from the
two transfer learning models are then stacked up and fed as input to
the LSTM model to make the final classification. By combining the
features of multiple models to train the meta-classifier, this
approach aims to increase the accuracy and robustness of MS
detection. As new patient data emerge, the DTs will adjust and
refine to align with the specific conditions of the patients, thereby
enhancing the accuracy and relevance of the model. This DT model
will be available for clinicians to enhance their clinical decisions
and follow up the treatment outcomes.

4.1. Data pre-processing

Data pre-processing is a crucial step to prepare the input data
more suitable for training deep learning models. In this research
work, the MRI modalities are collected from two unique datasets
EHealth lab [21] and IXI dataset [21] which vary in format,
dimensions, and resolution. Therefore, several pre-processing
procedures are applied which include 3D-2D conversion, resizing,
normalization, and data augmentation.

4.1.1. 3D to 2D conversion
In the IXI dataset, each MRI NIfTI volume consists of 256

slices. To facilitate analysis, these volumes were initially
converted to PNG format using a Python code leveraging the
nifti2png package. Subsequently, for each MRI volume, four
specific slices were selected based on the clarity of the substantia
nigra. The conversion process to PNG format enables easier
visualization and manipulation of the MRI data, which is essential
for subsequent analysis.

Figure 1
Digital twinning of patient health condition

for planning treatment
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4.1.2. Image resizing and normalization
To avoid dimension mismatch and ensure consistent input, all

the MRI samples are resized to a fixed dimension of 224 × 224. The
pixel values of all the collected MRI modalities are adjusted to be
within the standard range of 0–1 using the min-max scaling
procedure. The normalized images improved the training stability
and convergence of the neural network built.

4.2. Transfer learning

Transfer learning is a machine-learning procedure where
knowledge gained by a model in a specific task is applied to solve
another, associated task. It typically involves utilizing a pre-trained
model, such as VGG16, ResNet, or Inception, which has already
learned to extract meaningful features from input data. To adapt the
pre-trained model to a new but related problem, additional layers
such as the convolution layer, dense layer, dropout layer, and
pooling layer are added to the existing model, or existing layers are
fine-tuned to extract complex features from the new input data.

4.3. Modified Inception V3 network architecture
(m-InceptionV3)

Inception V3, the third iteration of Inception architecture, was
pre-trained on the large image dataset ImageNet [20], making it a
widespread option for transfer learning-related applications. The
InceptionV3 architecture is distinguished by its use of multiple
parallel convolutional layers of varying sizes within a single layer.
This design enables the network to capture features at multiple
scales simultaneously. The input dimension for the model is
adjusted to 224 × 224 × 3 to match the pre-processed MRI images
consistently. The top layer of the pre-trained network is removed,
and additional layers are added to customize the learning for MS
detection as depicted in Figure 3. The extracted features are then
fed into the GlobalAveargePooling layer to reduce the
dimensionality of features. Later on, the dimensionality-reduced

features pass through a fully connected layer comprising of 1024
neurons which learn complex patterns in the data by applying a
series of linear and non-linear transformations. Subsequently, a
dropout of 0.5 is connected to randomly drop neurons while
learning to avoid model overfitting. The output is then connected to
another dense layer comprising of 512 neurons.

4.4. Modified denseNet121 network architecture
(m-DenseNet121)

Dense Net, including the DenseNet-121 architecture, was
introduced by Huang et al. [21] in 2017 which specializes in the
dense connectivity pattern in which each layer is linked to every
single other layer in a feed-forward manner. This connectivity
pattern fosters feature reuse and facilitates gradient flow throughout
the network, addressing the vanishing gradient problem commonly
encountered in deep networks. The top layer of the pre-trained
model is removed, and additional layers are added to enhance the
learning for MS detection as depicted in Figure 4.

4.5. LSTM model

The LSTM Model is a kind of RNN, widely used in deep
learning. A LSTM unit, with its input, forget, and output gates
and memory cell, resembles a layer of neurons in a traditional
feed-forward neural network, albeit with specialized mechanisms
for handling sequential data. Each LSTM unit has three gates.
First, the forget gate for deciding which information should be
remembered and which irrelevant information can be dropped.
Second, the input gate is responsible for learning new features
from the input, and the third one is the output gate that computes
the final output after combining the outputs from the other two
gates. The extracted features from the CNN module, comprising
m-InceptionV3 and m-DenseNet121 models, are flattened and
reshaped before being fed into the RNN module. This RNN
module consists of 150 LSTM cells utilizing a rectified linear

Figure 2
Envisioned workflow of Healthcare Digital Twin (HDT) for detecting MS infection

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2025

04



activation function (ReLU) and Batch Normalization. Subsequently,
a Flatten layer is added, followed by two blocks of Dense layers with
ReLU activation and Batch Normalization layers to improve the
training process. To prevent overfitting, a Dropout layer is
inserted between the two Dense layers. Finally, the output layer is
a Dense layer with 2 units and a Softmax activation function. The
architecture of the proposed LSTM model with custom layers is
depicted in Figure 5.

4.6. Stacked ensemble learning

The concept of ensemble learning is that training data is analyzed
bymultiple deep learningmodels to extract features. These features are

then stacked up and utilized as meta-features to train a final ensemble
classifier. We use a hybrid CNN-RNN model in our study which has
two stages. In the first stage, twoCNNmodels extract features from the
training and validation data. These features are then stacked up to
create complex feature representations. In the second stage,
resulting features which capture essential information from the
original high-dimensional feature space are then utilized as meta-
features for training a final RNN classifier. Deep learning models
(also referred to as first-stage CNN models) and a meta-learner
(or, final-stage RNN classifier) that learns from the CNN model
predictions make up the hybrid model. The algorithm of the
proposed hybrid model is presented in appendix section.

Figure 4
m-DenseNet121 architecture for feature extraction

Figure 3
m-InceptionV3 architecture for feature extraction
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5. Results and Discussion

In this section, we provide an analysis of performance
improvement in MS detection accuracy with the proposed hybrid
CNN-RNN model. This improvement is achieved by stacking up
the features extracted by the two transfer learning models and
feeding them to the RNN model for final classification.

5.1. Dataset

5.1.1. EHealth
This dataset consists of MRI scans from 38 patients, comprising

17 males and 21 females, diagnosed with CIS of MS and presenting
with MRI-detected brain lesions. The patients have a mean age of
34.1 years, with a standard deviation of 10.5 years. Each patient’s
MRI data were captured twice, with intervals of 6 to 12 months
between the scans. The MRI scans were acquired using a 1.5
Tesla protocol to ensure consistency in imaging quality and
resolution. All the images were in .TIFF and .PLQ format. This
repeated imaging aids in observing lesion progression and
evaluating the course of MS in each patient.

5.1.2. IXI dataset
This dataset involved the collection of approximately 600 MR

images from normal, healthy subjects, providing a robust dataset for
analysis. Each subject underwent an extensive MR imaging protocol,
which included T1, T2, and PD-weighted images, along with
magnetic resonance angiography and diffusion-weighted images
captured in 15 directions. The data was gathered across three
hospitals in London, ensuring diversity in acquisition environments
and equipment. Hammersmith Hospital contributed images using a
Philips 3T system, with scanner parameters documented for

reference. Guy’s Hospital and the Institute of Psychiatry used Philips
1.5T and GE 1.5T systems, respectively. The sample MRI samples
used for research study are depicted in Figure 6.

5.2. Experimental setup

All the models are trained over the desktop with core i3 10th
generation CPU and 8GB RAM memory. The implementation is
done in Python version 3.8.3 in Google Colab Notebook
environment. The models are constructed using the Keras API,
which is imported from TensorFlow. All the models are trained
using the hyperparameters listed in Table 1.

5.3. Data pre-processing & data splitting

To further enhance the generalization and robustness of the
proposed hybrid model, a mix-up data augmentation procedure is
applied. This step involves randomly selecting a pair of images from
the training set and mixing them by assigning weights to each of
them based on the alpha value generated by the beta generation

Figure 5
Proposed LSTM architecture for feature classification

Figure 6
Sample test images from EHealth Lab & IXI dataset

Table 1
Hyper-parameters of the proposed model

Activation function ReLu, Softmax

Loss function Binary cross-entropy
Optimizer Adam
Learning rate 1 × 10−6

Batch size 32
Number of epochs 25
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technique. Figure 6 depicts the samples of MRI images used for a
research study, showcasing the diversity and quality of the images.

By incorporating these data pre-processing steps, the dataset
becomes most suitable for training the proposed hybrid CNN-
RNN model as it promotes consistency and increases the diversity
of training samples. Through the mix-up data augmentation
process, approximately 4 additional images are generated for each
pair of images from the training samples. Figure 7 shows the
visual illustration of mix-up augmentation applied for a pair of
images selected from the training set.

The pre-processed data are then split for training, validation, and
testing in the ratio 75:10:15, respectively. The amount of image
samples for training, validation, and testing is shown in Table 2.

5.4. Feature extraction using transfer learning
models

In the first phase of the proposed hybrid model for MS
detection, two transfer learning CNN models are built.
m-Inception V3 model is constructed by adding custom layers on
top of the network after removing the classification layer. This
modified architecture extracts a total of 12,800 features.
Additionally, a m-DenseNet 121 model is built using transfer
learning, leveraging knowledge gained from the ImageNet
database. Custom layers are added to the top of this pre-trained
model, resulting in the extraction of approximately 25,088
features. The features extracted by both transfer learning CNN
models are then stacked up using a feature concatenation process.
This approach aims to create a more informative representation of
the captured information, which has demonstrated improved
results in enhancing the model’s performance.

5.5. Feature classification using RNN model

The stacked features are flattened and then passed to the LSTM
model, which includes an LSTM layer with 100 units. These LSTM

units are responsible for capturing temporal dependencies within the
input sequences derived from the two CNN models. The model is
trained for 10 epochs with a batch size of 32. We utilize sparse
categorical cross-entropy as the loss function and the Adam
optimizer to adjust the learning rate, initially set to 0.0001. The
training and validation accuracy achieved by the proposed model
is depicted in Figure 8. The training and validation loss achieved
by the proposed model is depicted in Figure 9. The model
achieved an impressive score of 99.67% accuracy on the test data.

5.6. Ablation study on varying data augmentation
procedure

We conducted an ablation study where we evaluated the
performance of our proposed hybrid CNN-RNN model using
pre-processed MRI samples alone, as well as in combination with
mix-up data augmented MRI samples. Table 3 shows the
confusion metric of the proposed model with pre-processed MRI
samples. Type-I (Healthy misclassified as MS) and Type–II (MS
misclassified as Healthy) errors are 17.18% and 4.13%,
respectively. Table 4 shows the confusion metric of the proposed
hybrid CNN-RNN model where both MRI samples and mix-up
augmented MRI samples are used for training the model.

The measure indicates the model’s performance in classifying
cases as “Healthy” or “MS”. Out of total cases, 149 were correctly
predicted as “Healthy” with a rate of 99.33%, and all 150 were
correctly classified as “MS” with a rate of 100%. There is one
case of “Healthy” that is misclassified as “MS” (false positive)
constituting a 0.66% error rate. There is no false negative
observation by the model (MS predicted as healthy) resulting in a
0% error rate. These values are critical for assessing the
diagnostic accuracy and precision of the model, showing a high
rate of correct classifications and a low rate of errors. The
performance measures of the proposed model for performing an
ablation study are listed in Table 5.

Figure 7
Mix-up data augmentation on training samples showing

variations in texture

Table 2
Dataset used for training the proposed model

Category Training Validation Testing

MS 1578 210 316
Healthy 1578 210 316

Figure 8
Training and validation accuracy
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Type-I and Type-II errors are reduced when mix-up augmented
data is used along with pre-processed data for training the proposed
model. This approach enhances the model’s generalizability and
helps prevent overfitting. From the results, it is evident that our
proposed hybrid CNN-RNN model achieves better performance in
classifying MS samples as “MS” or “Healthy”. We have selected
two pre-trained models InceptionV3 and DenseNet121 for
extracting features from the MRI modalities. To further enhance
the performance of the model, we incorporated LSTM
components into our architecture. LSTMs are renowned for their
ability to capture intricate temporal dependencies within data,
making them exceptionally valuable in medical imaging. By
integrating both custom CNN and LSTM components, our hybrid
model strives to elevate the accuracy and resilience of medical
image analysis. This combination makes use of the strengths of
individual architecture, culminating in a robust framework capable
of extracting intricate features and discerning complex patterns
inherent in medical images.

5.7. Comparison with related works

We evaluated the performance of our proposed hybrid CNN-
RNN model for MS detection with related research works. To
evaluate performance, we use a comprehensive set of metrics
including accuracy, precision, recall, F1 score, and the AUC-ROC
curve. Table 6 presents a comparative analysis of the performance
metrics for the proposed CNN-RNN model with a few state-of-
the-art related models for MS detection.

The comparative results confirm that the proposed model
outdoes the mentioned state-of-the-art methods achieving better
performance measures. We have conducted an experimental study
with and without applying a mix-up data augmentation procedure
and got an effective classification performance of 99.67% on
applying augmentation. Amalgaming CNN with the RNN model
has shown improved performance in MS detection.

The proposed model extracts the features from two transfer
learning employed CNN models which are then fed into the RNN
model to predict MS detection. CNN is good at capturing spatial
features of the image, whereas RNN adapts to capture temporal
features of the image. The proposed hybrid model leverages the
strength of both CNN and RNN models and achieves good
performance in MS detection from MRI samples.

Table 4
Confusion matrix (with mix-up data

augmentation)

Healthy MS

Healthy 42.6% 0.4%
MS 0.0% 48.0%

Figure 9
Training and validation loss

Table 3
Confusion matrix (without mix-up data

augmentation)

Healthy MS

Healthy 42.6% 7.3%
MS 2.1.% 48.0%

Table 5
Performance measure of the proposed model

DL Model Accuracy Precision Recall AUC

Hybrid CNN-RNN model (without mix-up augmentation) 0.9871 0.9843 0.9754 0.9816
Hybrid CNN-RNN model (with mix-up augmentation) 0.9966 0.9918 0.9846 0.9902

Table 6
Comparison with state-of-the-art methods

Reference Model Accuracy

Ekmekyapar and Tasci [14] Feature Extraction using Mobile NetV2 with exemplar-based
learning & classification using KNN classifier

98.42

Ambayiram and Ganesan [15] White matter segmentation using Chaotic Leader-Selective
Particle Swarm Optimization & classification using a hybrid supervised model

98.36

Proposed Hybrid CNN-RNN model Feature Extraction using two transfer learning applied CNN
models & classification using the LSTM model

99.67
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However, there are limitations to consider. The proposed model
is trained and tested on the limited dataset. To improve the
generalizability of the system, the model has to be trained on
multiple diverse datasets. Interpretability of the proposed model’s
decision is a big challenge, and efforts should be made to develop
an explainable AI model to improve the trustworthiness of AI
involved in clinical workflow by medical practitioners.

This digital replica created by analyzing medical images using a
deep learning model behaves as a DT of patients with MS. This
allows clinicians to anticipate potential complications in patients
sharing similar health conditions to the DT. Consequently,
clinicians can take proactive measures to plan treatments and
prevent health complications.

6. Conclusion

In this research, an HDT framework is proposed for detecting
MS. The model comprises two main components: feature
extraction and feature fusion for classification. Modified versions
of InceptionV3 and DenseNet121 models are utilized to extract
features from MRI samples, which are then stacked up and fed
into the LSTM RNN model to capture temporal dependencies
within MRI modalities. Dropout layers are included to prevent
overfitting in the LSTM layer. This hybrid approach outperforms
existing models, achieving an accuracy of 99.67%. This model
will aid the Clinicians to detect MS and plan treatments to
improve their well-being. Future work will involve integrating
MRI data with patient disability scores to predict disease severity,
with the ultimate goal of developing a web-based tool for
clinicians to offer personalized treatment and rehabilitation
recommendations to MS patients.
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Appendix

Algorithm 1: Hybrid CNN-RNN model for MS detection

Input: Training Dataset D = {(x1, y1), (x2, y2) ..(xn, yn)}
First-level feature extractors: C1, C2 : : : . Ck
Meta-level classifier: Cˆ

Output: Trained Ensembled Classifier Mˆ

Begin
Step-1: Train first-level classifiers on training dataset D

for i= 1,2 : : : . k
Fi = Ci(D) % Extract features

end for

Step 2: Construct a new meta-dataset from predictions
extracted from D
Dˆ= F1+ F2+ : : : . + Fk % Stack up extracted features

Step 3: Train meta-level classifier on a new dataset
Mˆ= Cˆ (Dˆ) % Classification
Return Mˆ

End
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