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Vision-Based Fall Detector for Elderly Based
on Sliding Window Approach and Feature
Engineering
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Abstract:A new vision-based fall detector is proposed that uses the tsfresh tool to generate features from the bounding boxmotion parameters of
an object and performs classification in a sliding windowmode. The efficiency of the generated features is demonstrated compared to the primary
ones. Using the auto-sklearn library and a generalized dataset compiled from the UR Fall Detection and CAUCAFall datasets, the best human fall
detectionmodel is found. Thismodel based on a gradient boosting classifier achieved 96% accuracy,which is not inferior towell-known detection
algorithms, but uses only two primarymotion parameters to generate secondary features. A principal component analysis-based class separability
study showed that for secondary features 99%of the variance is captured by the first 4 principal components, while for primary features, the first 10
principal components contain only 80% of the data variance. Furthermore, the processing time for generating secondary features and making
predictions was found to be relatively short, taking only a few seconds per sequence, highlighting the practical applicability of the proposed
approach in real-time fall monitoring systems.
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1. Introduction

Monitoring the activity of the elderly has gained significant
attention in recent years. One significant concern for individuals
over 70 is losing balance and falling, which is particularly
perilous for those living alone as they may not receive timely
assistance. This issue has sparked a surge in studies focused on
remote fall detection enabling fast and qualified help for the elderly.

Falls are indeed a significant public health concern, particularly
among the elderly population. According to the World Health
Organization, falls are the second-leading cause of injury-related
death worldwide among people aged 65 and older [1].

Fall detection systems can use both invasive, based on wearable
sensor devices, and non-invasive methods, based on computer vision
(CV) or so-called vision-based technology. It is obvious that in many
practical situations, remote CV control is preferable. Additionally
vision-based fall detection can provide feedback and training to
individuals to improve their balance and reduce the risk of falls.
This technology has immense potential to revolutionize fall
control and improve the lives of vulnerable individuals.

This paper proposes a new vision-based fall detector using
tsfresh tool to generate secondary features from motion parameters
and perform classification in a sliding window mode. This will
allow detecting a person’s fall based on a limited sequence of
frames, which will reduce the time of detection and response to
the fact of a fall. The implementation of the detector is based on

machine learning methods using freely available datasets and
setting up a computational experiment. The choice of the fall
detector model is based on the use of the AutoML tool, which is
used in the comparison of the proposed method for the primary
and secondary features of the motion parameters during a fall.

2. Literature Review

A comprehensive revision of many published papers regarding
this area has been made by Gutiérrez et al. [2], where the main
characteristics of more than 80 similar systems were described
including their classification and performance. The review of
Jesús Gutiérrez et al. analyzed almost 500 papers, most of which
were based on machine learning and the use of neural networks.
Recently, Alam et al. [3] presented a survey discussing deep
learning-based fall detection methods in which they evaluate the
performance of fall detection systems, their performance metrics,
and the related datasets. Analysis has shown that many modern
systems have a sensitivity of over 90% for fall detection. In
general current system State of Art that perform fall detection
includes three main procedures: (1) video signal preprocessing
including image transformation and its segmentation; (2)
extracting features (descriptors) by highlighting local or global
features of the image; (3) actual fall detection based on the
obtained features and classification algorithms [3]. Research on
fall detection has explored various approaches including CV and
image processing. Redmon et al. [4] utilized a convolutional
neural network (CNN) to analyze images from videos, leveraging
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optical flow to detect motion between frames. Several cameras were
used to detect changes from frame to frame.While thismethod achieved
high accuracy, it requires special cameras or multiple devices. Lezzar
et al. [5] proposed a simpler algorithm for determining falls by
comparing them to normal activities of daily living (ADL). They
used a 2D camera and occlusion recognition achieving 93.94%
accuracy with the SVM classifier by increasing the number of
supervised states.

Researchers from the University of Burgundy prepared so-called
ImViA Fall detection dataset, which contained 191 different activities
including ADLs and 143 falls. Charfi et al. [6] performed a fairly
detailed analysis to identify low-level features and evaluate fall
detection using the SVM classifier, which was later compared with
Adaboost-based classification in another work from the same
university [7]. In this work researchers experimentally proposed to
construct special spatiotemporal human fall descriptors. For this
purpose, they used to find the best combination of several features
(horizontal and vertical projection histograms, parameters of the
rectangle that bounds the object, a number of suitable parameters of
the fitting ellipse, etc.,) and their transformations. The proposed fall
detection protocols used the combinations of selected features and
the same dataset, which was later called L2i, allowed achieving a
resulting classification error of about 1%. However, the approaches
to feature selection in the publications discussed above are quite
resource-intensive and require a manual selection procedure.

Later a number of other methods appeared based on searching
for key points (KP) of the human body, analyzing their relationships,
and obtaining a number of associated features to perform
classification and detect a person’s fall. In Beddiar et al. [8], it is
showed that the combination of an SVM classifier with LSTM
neural networks using such features as distances and angles
between different points of the human body can improve the
overall performance of a fall detection system. At the same time,
for training and testing, both the L2i dataset and the UR Fall
Detection Dataset were used, which contained data received from
the accelerometer and Microsoft Kinect cameras [9].

Recently in Zhang et al. [10], the authors constructed a new
inverted pendulum model for the human body and the corresponding
spatiotemporal pose evolution map. The authors proposed several
fall detection algorithms based on Lagrangian mechanics of human
body motion and achieved excellent detection accuracy of 0.958–
0.979 for their proposed algorithms. Unfortunately, the authors did
not disclose the implementation details except that they used a multi-
stage CNN consisting of two branches to extract the KP of the
human body or skeleton showing spatial relationships between body
parts used for pose estimation systems.

Today the application of new computer technologies has made
it possible to improve the algorithms for human KP data processing,
which is confirmed by the implementation of a series of YOLO
models including specially trained structures for detecting falls
[11]. However, as we know, these models are quite complex and
resource-intensive.

To reduce the time of the fall detection process, the sliding
window algorithm can be effective which is widely used in
machine learning together with feature engineering. Recent
publications have shown their use not just in detecting the state of
a person by wearable sensors [12], but also in diagnosing the
abnormal state of machine elements [13]. However, according to
our information, this technique is not sufficiently represented by
researchers in vision-based monitoring of the activity of the
elderly. In this paper we make an attempt to fill this gap and

consider its application in detecting falls based on the groundwork
we have previously made.

In our previous paper [14], we have used both the L2i dataset
and the UR Fall Detection Dataset to compare the performance of a
LSTM neural network detector working with the basic CV features:
Bounding box (BB) height to width ratio or so-called aspect ratio
(AR) and speed or velocity of BB movement with several other
classification methods. The other classifiers (support vector
machine, decision tree, and random forest) were trained using
secondary features generated by the tsfresh library for the time
series analysis [15]. The results allowed achieving accuracy up to
1.0. However, the experiments were carried out on the basis of a
rather small set of 70 selected video sequences with a length of
300 frames obtained from L2i dataset performing the analysis
within 10 s, which may be unacceptable for practical applications.

On the other hand, with the advent of new machine learning
tools such as AutoML, it has also been applied to fall detection.
Based on the analysis of data from wearable sensors, it was stated
in Kausar et al. [16] that it is possible to detect falls in elderly
individuals with an accuracy of about 99%, while spending about
6 s on processing at best. However, in publications covering the
results of code implementations of these methods, the detection
accuracy was 95–97% [3]. In this regard we decided to verify the
use of AutoML for vision-based technology.

In this study we improved a previously proposed fall detector
that uses tsfresh technology to obtain secondary features from
motion parameters and performs classification in a sliding window
mode. In addition, we compared the effectiveness of using
primary and secondary parameters for fall detection.

Our contribution to improving the detector is threefold. Firstly,
we proposed a sliding window algorithm to increase the amount of
both train and test data and speed up fall detection within a few
seconds. Secondly, we prepared the CAUCAFall dataset for
training and testing the proposed algorithm, on the basis of which
we generalized a dataset that combines sequences also from the
UR Fall dataset. And thirdly, an approach for automatically
selecting the most effective classification algorithm with its
optimal hyperparameters based on the auto-sklearn library for
vision-based fall detection has been exploited.

The article is organized as follows. The following section
describes the basic physics of human fall and the structure of the
system. Next, the description of the datasets, the selection of the
sliding window parameters, and the optimization of the fall
detector model are presented along with the experimental results,
their discussion, and their performance comparison. The last
section concludes the study.

3. Problem Overview and System Design

3.1. Theoretical framework

The location of the human body’s center of mass (COM) is
critical to maintaining its equilibrium both while standing and
while moving. The change in a person’s position during a fall is a
dynamic process that is determined by the transition from a stable
to an unstable state. However, the moment of a fall is uncertain:
the human body may be unstable due to the intervention of
external forces, or the balance may be disturbed due to the body’s
own causes. Fall behavior is time-varying and continuous: after a
fall, the human body’s posture changes dynamically, and each
part of the body can change its position in its own way. The
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connections of individual body parts correspond to a skeletal
structure consisting of a set of interconnected KP. In this regard,
recently there have been more and more studies examining
methods for fall detection and fall prevention based on the
analysis of the human body KPs [2]. However, the complexity of
such algorithms increases greatly compared to analyzing the
movement of COM only. Studies have shown that the dynamic
stability of a person while walking is determined by a sacral
marker (a point located at the base of the spine) which can be
replaced with fairly high accuracy by COM [17]. According to
the representation of the human body, consisting of individual
elements around a COM, the canonical shape of an object is
determined by the external forces acting on it d2R

dt2 ¼ Fext [18].
However, in practice, the determination of external forces Fext to
find the radius-vector R is virtually impossible and the calculation
of indirect parameters, such as speed (velocity) and acceleration of
COM, may be applied. At the same time, based on CV technology,
the location of a person can be detected assuming that his body is
inside the BB. Next, to simplify the development of a fall control
practical model, in this study we analyze the fall of a person whose
geometric center coincides with COM. For the most simple and
symmetrical figures, the geometric center coincides with COM
[19] and is called their centroid. Calculating the centroid speed
or the velocity of BB instead of COM motion characteristics
defines the following broad approach for a fall detection as
described below.

3.2. Research design

With the use of vision-based algorithm, the coordinates of the
BB within a frame as the fall occurs can be consistently updated. By
considering the uniformmotion of an object from frame to frame, we
can easily calculate the speed of the BB centroid based on the
changes in position over time. This can be done by calculating the
displacement between the consecutive frames and then dividing
by the time interval between frames. It is important to note that
while this calculation provides insights into the BB movement, it
may not reflect the actual position of the human body during a
fall. The AR representing the relationship between the BB width

and height is another important parameter for the human body
tracking. The AR of a BB is a valuable feature in fall detection, as
it can indicate the orientation of person and help distinguish
between falls and non-falls. For example, a sudden change in AR
can indicate a person falling, as the body tends to stretch out in
the direction of the fall.

Thus, the AR and centroid velocity (speed) are two valuable
features in fall detection. The AR is sensitive to changes in
orientation and COM velocity depends on the change in the center
of gravity. Combining these 2 features can provide a more
comprehensive understanding of the fall event. This is confirmed
by a number of previous studies. Gutiérrez et al. [2] and Lezzar
et al. [5] studied the human body COM trajectory that moves
along an arc during each step and proved that it can be an index
of both balance and the neural maturation of walking.

Consider for a while the free fall of a standing person with a loss
of balance. Then, knowing the distance fromCOM to ground (0.45m
on average) and neglecting air resistance, it is easy to see that the fall
time can be approximately 0.3 s. Further, if the frame rate (fps) of
video camera is 30 fps, then for this time we would get only
about 10 frames. This simplification reinforces the need to quickly
respond to a fall with an alarm signal.

Therefore, this study proposes a fall detection approach based
on the use of a sliding window algorithm. In this case, the window
is a time interval containing a set of values that are used to form a
training or test example when performing classification. For this
purpose, the most informative parameters are selected from the
time series corresponding to the video surveillance data for the
elderly. Next, video sequences are splitted using a sliding
window algorithm that selects the data subsequences allowing
detecting a fall. For every obtained subsequence, secondary
features are generated with the use of tsfresh library. It should
be noted that the classification model is selected using the auto-
sklearn tool based on the analysis of an ensemble of supervised
machine learning models. The block diagram of the proposed
detector and the corresponding data processing steps are shown
in Figure 1. The principle of data preparation, processing, and
model selection is shown in Figure 1 in the form of separate
steps and includes two stages: detector training, and detector

Figure 1
Data processing by fall detector

Journal of Data Science and Intelligent Systems Vol. 3 Iss. 1 2025

29



testing. First, the video surveillance data (testing stage) are pre-
processed, then primary features are extracted and buffered for
the sliding window algorithm, secondary features are generated,
and fall detection is performed based on the selected model. The
model is built at the training stage using the auto-sklearn tool.
The details of choosing the best parameters for the sliding
window algorithm and the classifier type are presented in the
next section.

4. Research Methodology

4.1. Dataset contents and its cleaning

The UR Fall Detection Dataset [9], commonly known as the
UR Fall Dataset, is extensively utilized in machine learning and is
particularly valuable for those focusing on human activity
recognition, especially in healthcare and elderly care scenarios.
This dataset comprises 70 sequences (30 falls and 40 ADL). Fall
incidents are captured using two Microsoft Kinect cameras along
with corresponding accelerometer data, while ADL events are
recorded using only one device (camera 0) and an accelerometer.
The dataset includes files with features extracted from depth
maps, stored in CSV format. Each row represents a data sample
corresponding to a single depth image and includes features such
as the sequence name (e.g., ‘fall-01’, ‘adl-01’), frame number,
label (’-1’ indicates the person is not lying down, ‘1’ indicates the
person is lying on the ground, ‘0’ indicates a temporary pose
during a fall), HeightWidthRatio (AR) – the ratio of BB height to
width, MajorMinorRatio – the ratio of the major to minor axis
calculated from the segmented person’s BLOB, among others.
More about dataset can be found in Kwolek and Kepski [9] as
well as in Yhdego et al. [12]. The features extracted from the
videos are crucial for distinguishing between falls and other
activities.

CAUCAFall [20] is a database designed for recognizing
human falls in uncontrolled home environments featuring
diverse conditions such as occlusions, lighting changes, varied
clothing, background movement, different fall angles, and
distances from the camera. It includes segmentation labels for
each image, facilitating the implementation of human fall
recognition methods using YOLO detectors. The dataset
includes simulations of five different types of falls and five
ADLs. Falls are labeled as “fall”, while ADLs are labeled as
“no-fall”. The data are structured into 10 main directories, each
representing a different subject. Within each directory there are
10 folders corresponding to the various activities performed by
the participants. Each folder contains a video of the respective
action in.avi format, images of the actions in.png format, and
frame segmentation labels in.txt format.

For the UR Fall dataset, we combined the recordings into a
single data frame and added a variable-indicator “Fall” which
takes the values true/false for records with falls and without them
respectively. Each frame in the dataset is labeled −1; 0; 1 defining
that person is “not lying”, “lying”, and “falling/lying down”
correspondently. The data cleaning was also performed. Firstly,
for ADL videos the sequences were trimmed where the label 0
appeared after the label 1, indicating that person got up after lying
down since our system must immediately output signal about fall
not waiting for the end of record. Secondly, the sequences with
missing frames were also found as soon as we apply frame
numbering for calculation of BB velocity. In the experiments
conducted, this parameter was called “FrameSpeed” and was
calculated in one millisecond using the following formula:

FrameSpeed ¼ fps
1000df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2ð Þ

q
;

where dx, dy define corresponding coordinate change of BB center;
df – video frame number increment while their numbering

(records had missing frames);
fps – frame rate, which is 30 fps for the UR Fall dataset.
For CAUCAFall dataset the given information from files of all

folders has been combined into one dataset and a variable “fall” was
assigned true for video records with falls. Then, the BB coordinates
of each frame were converted fromYOLO format to absolute values.
The features HeightWidthRatio and FrameSpeedwere calculated for
fps= 23 in this dataset. For video recordings of CAUCAFall dataset
for the sequences corresponding to the fall process (“fall” dataset
folders), we selected the beginning of sliding window starting
from 5th frame, since the visual analysis of videos showed that
fall process has started from the very beginning of recordings.
The sliding window transformation procedure was then performed
similarly to that used for the UR Fall Dataset.

In this paper we conducted experiments to train the abovemodel
using primary video features (HeghtWidthRatio and FrameSpeed)
and secondary features generated by the tsfresh library [21],
which is used for systematic feature engineering from time series
and other sequential data.

Next, to prepare data to apply the fall detector parameters setup
(Figure 1), it was necessary to convert all records into output
sequences of a certain length. To do it, the sliding window
algorithm was used with the following parameters:

Window – width of the sliding window (equal to the length of the
output sequence);

Stride is the step by which the frames were converted into sequences;

Fall_Frames – number of falling frames (elements in the output
sequence marked as 0).

The operation of the method for Window=5, Stride=2,
Fall_Frames=2 is depicted in Figure 2 below. For this example,
our transformation algorithm returns only those sequences with
length 5 in which at least 2 elements have a label of 0 (fall).

4.2. Sliding window parameters configuration

To select the values of parametersWindow, Stride, Fall_Frames,
we trained a random forest model using cross-validation. The
parameter values were selected from the following ranges: Window
= (30, 40, 50), Stride = (3,5,7,10), Fall_Frames = (10,15,20).

Figure 2
Sliding window
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We used a brute-force approach to find the optimal combination
of parameters. For each combination we applied a sliding window
over the data based on the values of the Window, Stride, and
Fall_Frames parameters generating multiple sequences. Since the
number of ‘non-fall’ sequences was much larger than the number
of ‘fall’ sequences (in some parameter combinations, the AR was
as high as 4-to-1), we applied random sampling to the ‘non-fall’
sequences after splitting the data. The size of the random sample
was set equal to the number of ‘fall’ sequences to balance the dataset.

Then, for each obtained sequence, we transposed the
HeightWidthRatio and FrameSpeed columns into a feature row
vector and added a class label new_label that corresponds to
whether a “fall” was observed in that frame sequence. In this way
we obtained a dataset in which each sequence is represented by a
vector of length 2*Window+1, see Figure 3.

Next, we split the data into training and test sets in a ratio of
4:1. To evaluate the performance of each combination of Window,
Stride, and Fall_Frames parameters, we trained a RandomForest
classifier and used grid search to determine the best number of
estimators (trees) with 5-fold cross-validation. The best
combination was chosen based on the performance of the trained
RandomForest model on the test data. The best parameters are
presented in Table 1. The worst performance is highlighted in
red, and the best is highlighted in green.

For the generalized dataset with primary features, we chose
the parameters to ensure that the number of output sequences for
the UR Fall and CAUCAFall datasets was not too small and that

the test accuracy remained high. Therefore, for the generalized
dataset, we set the values Window=40, Stride=3,
Fall_Frames=20.

We performed the same procedure of selecting the best
parameters Window, Stride, Fall_Frames for secondary features
extracted from the sequences generated by the sliding window
using the tsfresh library. In this case the vector of secondary
features was generated automatically for each sequence. For
generating secondary features, we left only HeightWidthRatio and
FrameSpeed, since previous studies [14] have shown that these
features have the greatest impact on the classification accuracy.
The best parameters are presented in Table 2. For the CAUCAFall
dataset with Window >= 40 and any values of Stride,
Fall_Frames, we were able to train the model with 100%
accuracy on the test set.

For a generalized dataset with secondary features, the best
values Window=40, Stride=3, Fall_Frames=20.

4.3. Primary and secondary feature analysis

Correlation analysis showed that primary and secondary
features weakly correlate with the data class (“fall”/“not fall”):
the maximum correlation value for secondary features is 0.55
and for primary features – 0.5. At the same time, as expected for
primary features, HeightWidthRatio and FrameSpeed values in
later frames of the sequence correlate more strongly with the
class label. Thus, the cross-correlation of the primary features
HeightWidthRatio in neighboring frames is very high (more than
0.9 for ten neighboring frames). Statistical analysis of primary
and secondary features within different classes also revealed
large differences in secondary features. However, the
Kolmogorov-Smirnov and Mann-Whitney tests showed that the
differences between classes in terms of features are statistically
significant, both for primary and secondary features. In addition,
to test the hypothesis that secondary features are better than
primary ones for class separability, we performed their principal
component analysis (PCA). A 3D visualization of the PCA
transformation is shown in Figure 4. In the dataset with
secondary features, 99% of the variance is captured by the first
four principal components, while for primary features, the first
ten principal components account for only 80% of the variance.
This indicates that secondary features explain the behavior of
the target variable better than primary features.

Table 1
The best parameters for primary features

Window size Stride # Fall frames Accuracy, %
#Output
sequences

UR Fall Dataset
40 3 20 95 100
40 3 15 94 124
30 7 20 97 30
50 3 20 92 104
50 3 15 93 120

CAUCAFall Dataset
40 3 20 81 272
40 3 15 72 119
30 7 20 80 304
50 3 20 83 272
50 3 15 82 304

Table 2
The best parameters for secondary features

Window size Stride # Fall frames Accuracy, %
#Output
sequences

UR Fall Dataset
40 3 20 96 77
40 3 20 95 100
30 3 15 94 120
50 3 10 91 138
50 3 10 93 143

CAUCAFall Dataset
40 3 20 85 272
40 3 15 100 272
30 7 20 90 304
50 3 20 100 284
50 3 15 100 275

Figure 3
Transformation of features from frames
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4.4. Training and selecting the best model with
auto-sklearn

Then, we create 2 separate datasets with primary and secondary
features as described in Section 4.2.

After applying dataset construction and class balancing, we
obtained 2 datasets of size 1856 sequences each, where 498
sequences were from the UR Fall dataset and 1358 sequences
were from the CAUCAFall dataset.

The dataset with primary features has 80 features generated by
sliding window itself), and the dataset with secondary features
contains 585 features (generated by applying tsfresh tool to each
sequence). The datasets were split into train/test in the ratio of
80% to 20%.

To select the best model from the ensemble, we used the
auto-sklearn library, which provides ready-made supervised
machine learning. Built on top of the scikit-learn machine learning
library, auto-sklearn automatically searches for the correct

learning algorithm for a new machine learning dataset and
optimizes its hyperparameters [22].

Auto-sklearn starts by using meta-learning where it leverages a
database of previously evaluated datasets to make educated guesses
about good models for a new dataset. It extracts statistical properties
(meta-features) from the dataset, such as the number of features, data
sparsity, and correlations between features, to determine similarity to
past datasets. Based on these meta-features, it initializes the search
process by considering models and hyperparameter settings that
worked well on similar datasets. Auto-sklearn doesn’t rely on
random or grid search for hyperparameters; instead, it uses
Bayesian optimization to make intelligent guesses about which
hyperparameters will work best. As part of the pipeline search,
auto-sklearn also optimizes preprocessing steps and feature
engineering techniques. It can automatically handle missing
values, scale data, and select best features. After finding multiple
well-performing models, auto-sklearn uses a technique called
ensemble selection to create a weighted combination of these
models. This enhances the robustness and accuracy of predictions.

The optimal model trained on the primary feature dataset is a
VotingClassifier utilizing the sklearn gradient boosting algorithm,
specifically HistGradientBoostingClassifier, with the following
hyperparameters:

early_stopping=False,
l2_regularization=0.0015999096167997723,
learning_rate=0.024544266632179432,
max_iter=512, max_leaf_nodes=28,
min_samples_leaf=5,
random_state=1, validation_fraction=None, warm_start=True.

The model achieved an accuracy of 80% on the test set.
For the secondary feature dataset, the same model architecture

was identified as the best, but with adjusted hyperparameters:

early_stopping=True,
l2_regularization=2.22710531072698e-08,
learning_rate=0.02095996930896952,
max_iter=512, max_leaf_nodes=20,
min_samples_leaf=1,
random_state=1,
validation_fraction=None, warm_start=True.

This model attained a test accuracy of 96%.

4.5. Feature importance

In this paper the secondary feature importance has been
estimated using permutation feature importance technique.
Permutation feature importance is a model validation technique
that measures the contribution of each feature to the statistical
performance of a fitted model on a given tabular dataset. This
approach is especially valuable for models that are non-linear or
difficult to interpret. It works by randomly shuffling the values of
one feature at a time and then measuring the resulting decrease in
the model’s performance score [23]. By breaking the link between
a feature and the target, we can determine how much the model
relies on that particular feature.

The 6 most significant secondary features generated by the
tsfresh tool and ranked by their importance are shown in Table 3
below. The first two columns contain the primary features and the
names of secondary features, and the last 2 columns show their
average values and standard deviations.

We measured the time of secondary features generation and
class prediction for 1 sequence and 5 sequences of length 40

Figure 4
PCA transformation for primary features (top)

and secondary features (bottom)
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frames which took 1.3 s and 2.8 s, respectively. Thus, the processing
time of feature engineering and prediction is quite fast and takes a
few seconds.

The general meaning of the most significant secondary features
generated, ranked by their importance, is as follows:

HeightWidthRatio_minimum – represents the lowest value in the
time series x.

HeightWidthRatio_energy_ratio_by_chunks__num_segments_
10__segment_focus_9 – calculates the ratio of the sum of squares
for a specific segment i within N total segments to the sum of
squares for the entire series. In this case, the series is divided into
10 segments, and the feature is focused on the 9th segment
(counting starts from zero).

HeightWidthRatio_variation_coefficient – measures the
coefficient of variation, which is the ratio of the standard
deviation to the mean, providing a relative measure of variability
around the mean.

FrameSpeed_autocorrelation__lag_4 – computes the value of an
aggregation function (like variance or mean) over the
autocorrelation of the time series x with a lag of 4.

HeightWidthRatio_fft_coefficient__attr_“abs”__coeff_20 – refers to
the Fourier coefficients obtained from the one-dimensional discrete
Fourier Transform of the time series x, computed using the fast Fourier
transform algorithm. This specific feature corresponds to the 20th
coefficient and captures the absolute value.

FrameSpeed_change_quantiles__f_agg_“mean”_isabs_“ru”__
qh_0.4__ql_0.0 – first defines a range using the quantiles ql and qh of
the distribution of x. Then, it calculates the mean of the absolute values
of consecutive changes in the series x that fall within this defined range.

4.6. Results discussion

In this study we explored the effectiveness of primary and
secondary features in detecting falls, applying a sliding window
approach to enhance the size and variability of the training data. The
datasets were created by segmenting sequences from the UR Fall and
CAUCAFall datasets, resulting in two feature sets: the primary dataset
with 80 features generated directly by the sliding window, and the
secondary dataset with 585 features generated using the tsfresh tool.

After preprocessing and balancing the data, we employed the
AutoML approach via the auto-sklearn library to select the optimal
models for both datasets. This approach proved effective, with the best
model for the primary feature dataset achieving an 80% test accuracy
using a HistGradientBoostingClassifier. For the secondary features, the
same model setup with adjusted hyperparameters improved accuracy to
96%, demonstrating the advantages of secondary feature extraction.

The feature importance analysis for secondary features showed
a critical role of the first 6 features in the model’s performance. These

findings also indicate that secondary features derived from just two
primary features – BB AR and velocity – are highly informative for
building robust machine learning model for fall detection.

Moreover, the processing times for generating secondary
features and making predictions were found to be relatively fast,
taking only a few seconds per sequence, which highlights the
practical applicability of this approach in real-time fall
monitoring systems.

Overall, the use of secondary features and AutoML significantly
improved model accuracy compared to our previous work.

5. Conclusion

A new vision-based method for monitoring falls of elderly
people using machine learning techniques and an approach
based on the use of a sliding window and secondary feature
generation is proposed. The results obtained in this study are
more reliable compared to our previous work [14] due to the use
of 2 orders of magnitude more data for training and selection of
the best model. In addition, using a sliding window approach
allowed us to increase the number of sequences analyzed. In this
paper, it was shown that the proposed methodology for creating a
detector using a sliding window for data transformation is
promising. This is confirmed by recent publications that use a
similar approach to build a classifier for data obtained from
wearable sensors [24] and remote radar monitoring [25]. Our results
prove that the use of tsfresh tool, which generates new secondary
features from only 2 primary ones, related to the AR and velocity
of the BB covering a person, makes it possible to build an
ensemble of good machine learning models. Further use of the
auto-sklearn tool allows to select the best ensemble model with
histogram-based gradient boosting classifiers and achieve test
accuracy of 96%, that is slightly better compared to using a similar
model for sensor data in Nishiyama et al. [24]. In our study, the
effectiveness of tsfresh and auto-sklearn tools was confirmed using
data from two datasets UR Fall Dataset and CAUCAFall Dataset as
well as their combination.

The experiments conducted showed that secondary features
describe the behavior of the target variable better than primary
features, which actually led to an improvement in the accuracy of
the optimized model of 96% compared to using primary ones,
where it had a value of 80%.

This study underscores the potential of combining the sliding
window approach with automated feature extraction and model
selection techniques for fall detection providing a highly efficient
and accurate solution suitable for real-time applications.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Table 3
Top 6 most important secondary features generated by tsfresh tool

Primary features Secondary features Importance mean Importance Std

AR minimum 0.032 0.006
AR energy_ratio_by_chunks__num_segments_10__segment_focus_9 0.029 0.006
AR variation_coefficient 0.010 0.007
BB velocity autocorrelation__lag_4 0.010 0.004
AR fft_coefficient__attr_“abs”__coeff_20 0.008 0.003
BB velocity change_quantiles__f_agg_“mean”__isabs_“ru”__qh_0.4__ql_0.0 0.008 0.003
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