
Received: 15 August 2024 | Revised: 12 October 2024 | Accepted: 7 November 2024 | Published online: 13 November 2024

RESEARCH ARTICLE

Vision-Based Fall Detector for Elderly Based
on Sliding Window Approach and Feature
Engineering

Boris Assanovich1,* and Katsiaryna Kosarava2

1Information Systems and Technologies Department, Yanka Kupala State University of Grodno, Belarus
2Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University in Warsaws, Poland

Abstract:A new vision-based fall detector is proposed that uses the tsfresh tool to generate features from the bounding boxmotion parameters of
an object and performs classification in a sliding windowmode. The efficiency of the generated features is demonstrated compared to the primary
ones. Using the auto-sklearn library and a generalized dataset compiled from the UR Fall Detection and CAUCAFall datasets, the best human fall
detectionmodel is found. Thismodel based on a gradient boosting classifier achieved 96% accuracy,which is not inferior towell-known detection
algorithms, but uses only two primarymotion parameters to generate secondary features. A principal component analysis-based class separability
study showed that for secondary features, 99% of the variance is captured by the first 4 principal components, while for primary features, the first
10 principal components contain only 80% of the data variance. Furthermore, the processing time for generating secondary features and making
predictions was found to be relatively short, taking only a few seconds per sequence, highlighting the practical applicability of the proposed
approach in real-time fall monitoring systems.

Keywords: machine learning, sliding window, human fall detection, classification model, tsfresh, auto-sklearn

1. Introduction

Monitoring the activity of the elderly has gained significant
attention in recent years. One significant concern for individuals
over 70 is losing balance and falling, which is particularly
perilous for those living alone as they may not receive timely
assistance. This issue has sparked a surge in studies focused on
remote fall detection enabling fast and qualified help for the elderly.

Falls are indeed a significant public health concern, particularly
among the elderly population. According to the World Health
Organization, falls are the second-leading cause of injury-related
death worldwide among people aged 65 and older [1].

Fall detection systems can use both invasive, based on wearable
sensor devices, and non-invasive methods, based on computer vision
(CV) or so-called vision-based technology. It is obvious that in many
practical situations, remote CV control is preferable. Additionally,
vision-based fall detection can provide feedback and training to
individuals to improve their balance and reduce the risk of falls.
This technology has immense potential to revolutionize fall
control and improve the lives of vulnerable individuals.

This paper proposes a new vision-based fall detector using
tsfresh tool to generate secondary features from motion parameters
and perform classification in a sliding window mode. This will
allow detecting a person’s fall based on a limited sequence of
frames, which will reduce the time of detection and response to
the fact of a fall. The implementation of the detector is based on

machine learning methods using freely available datasets and
setting up a computational experiment. The choice of the fall
detector model is based on the use of the AutoML tool, which is
used in the comparison of the proposed method for the primary
and secondary features of the motion parameters during a fall.

2. Literature Review

A comprehensive revision of many published papers regarding
this area has been made by Gutiérrez et al. [2], where the main
characteristics of more than 80 similar systems were described
including their classification and performance. The review of
Jesús Gutiérrez et al. analyzed almost 500 papers, most of which
were based on machine learning and the use of neural networks.
Recently, Alam et al. [3] presented a survey discussing deep
learning-based fall detection methods in which they evaluate the
performance of fall detection systems, their performance metrics,
and the related datasets. Analysis has shown that many modern
systems have a sensitivity of over 90% for fall detection. In
general, current system State of Art that perform fall detection
includes three main procedures: (1) video signal preprocessing
including image transformation and its segmentation; (2)
extracting features (descriptors) by highlighting local or global
features of the image; (3) actual fall detection based on the
obtained features and classification algorithms [3]. Research on
fall detection has explored various approaches including CV and
image processing. Redmon et al. [4] utilized a convolutional
neural network (CNN) to analyze images from videos, leveraging

*Corresponding author:BorisAssanovich, InformationSystems andTechnologies
Department, Yanka Kupala State University of Grodno, Belarus. Email: bas@grsu.by

Journal of Data Science and Intelligent Systems
2024, Vol. 00(00) 1–8

DOI: 10.47852/bonviewJDSIS42024100

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

mailto:bas@grsu.by
https://doi.org/10.47852/bonviewJDSIS42024100
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

optical flow to detect motion between frames. Several cameras were
used to detect changes from frame to frame.While thismethod achieved
high accuracy, it requires special cameras or multiple devices. Lezzar
et al. [5] proposed a simpler algorithm for determining falls by
comparing them to normal activities of daily living (ADL). They
used a 2D camera and occlusion recognition achieving 93.94%
accuracy with the SVM classifier by increasing the number of
supervised states.

Researchers from the University of Burgundy prepared so-called
ImViA Fall detection dataset, which contained 191 different activities
including ADLs and 143 falls. Charfi et al. [6] performed a fairly
detailed analysis to identify low-level features and evaluate fall
detection using the SVM classifier, which was later compared with
Adaboost-based classification in another work from the same
university [7]. In this work, researchers experimentally proposed to
construct special spatiotemporal human fall descriptors. For this
purpose, they used to find the best combination of several features
(horizontal and vertical projection histograms, parameters of the
rectangle that bounds the object, a number of suitable parameters of
the fitting ellipse, etc.,) and their transformations. The proposed fall
detection protocols used the combinations of selected features and
the same dataset, which was later called L2i, allowed achieving a
resulting classification error of about 1%. However, the approaches
to feature selection in the publications discussed above are quite
resource-intensive and require a manual selection procedure.

Later, a number of other methods appeared based on searching
for key points (KP) of the human body, analyzing their relationships,
and obtaining a number of associated features to perform
classification and detect a person’s fall. In Beddiar et al. [8],
authors showed that the combination of an SVM classifier with
LSTM neural networks using such features as distances and
angles between different points of the human body can improve
the overall performance of a fall detection system. At the same
time, for training and testing, both the L2i dataset and the UR Fall
Detection Dataset were used, which contained data received from
the accelerometer and Microsoft Kinect cameras [9].

Recently, in Zhang et al. [10], the authors constructed a new
inverted pendulum model for the human body and the corresponding
spatiotemporal pose evolution map. The authors proposed several
fall detection algorithms based on Lagrangian mechanics of human
body motion and achieved excellent detection accuracy of 0.958–
0.979 for their proposed algorithms. Unfortunately, the authors did
not disclose the implementation details except that they used a multi-
stage CNN consisting of two branches to extract the KP of the
human body or skeleton showing spatial relationships between body
parts used for pose estimation systems.

Today, the application of new computer technologies has made
it possible to improve the algorithms for human KP data processing,
which is confirmed by the implementation of a series of YOLO
models including specially trained structures for detecting falls
[11]. However, as we know, these models are quite complex and
resource-intensive.

To reduce the time of the fall detection process, the sliding
window algorithm can be effective which is widely used in
machine learning together with feature engineering. Recent
publications have shown their use not just in detecting the state of
a person by wearable sensors [12] but also in diagnosing the
abnormal state of machine elements [13]. However, according to
our information, this technique is not sufficiently represented by
researchers in vision-based monitoring of the activity of the
elderly. In this paper, we make an attempt to fill this gap and
consider its application in detecting falls based on the groundwork
we have previously made.

In our previous paper [14], we have used both the L2i dataset
and the UR Fall Detection Dataset to compare the performance of a
LSTM neural network detector working with the basic CV features:
Bounding box (BB) height to width ratio or so-called aspect ratio
(AR) and speed or velocity of BB movement with several other
classification methods. The other classifiers (support vector
machine, decision tree, and random forest) were trained using
secondary features generated by the tsfresh library for the time
series analysis [15]. The results allowed achieving accuracy up to
1.0. However, the experiments were carried out on the basis of a
rather small set of 70 selected video sequences with a length of
300 frames obtained from L2i dataset performing the analysis
within 10 s, which may be unacceptable for practical applications.

On the other hand, with the advent of new machine learning
tools such as AutoML, it has also been applied to fall detection.
Based on the analysis of data from wearable sensors, it was stated
in Kausar et al. [16] that it is possible to detect falls in elderly
individuals with an accuracy of about 99%, while spending about
6 s on processing at best. However, in publications covering the
results of code implementations of these methods, the detection
accuracy was 95–97% [3]. In this regard, we decided to verify the
use of AutoML for vision-based technology.

In this study, we improved a previously proposed fall detector
that uses tsfresh technology to obtain secondary features from
motion parameters and performs classification in a sliding window
mode. In addition, we compared the effectiveness of using
primary and secondary parameters for fall detection.

Our contribution to improving the detector is threefold. Firstly,
we proposed a sliding window algorithm to increase the amount of
both train and test data and speed up fall detection within a few
seconds. Secondly, we prepared the CAUCAFall dataset for
training and testing the proposed algorithm, on the basis of which
we generalized a dataset that combines sequences also from the
UR Fall dataset. And thirdly, an approach for automatically
selecting the most effective classification algorithm with its
optimal hyperparameters based on the auto-sklearn library for
vision-based fall detection has been exploited.

The article is organized as follows. The following section
describes the basic physics of human fall and the structure of the
system. Next, the description of the datasets, the selection of the
sliding window parameters, and the optimization of the fall
detector model are presented along with the experimental results,
their discussion, and their performance comparison. The last
section concludes the study.

3. Problem Overview and System Design

3.1. Theoretical framework

The location of the human body’s center of mass (COM) is
critical to maintaining its equilibrium both while standing and
while moving. The change in a person’s position during a fall is a
dynamic process that is determined by the transition from a stable
to an unstable state. However, the moment of a fall is uncertain:
the human body may be unstable due to the intervention of
external forces, or the balance may be disturbed due to the body’s
own causes. Fall behavior is time-varying and continuous: after a
fall, the human body’s posture changes dynamically, and each
part of the body can change its position in its own way. The
connections of individual body parts correspond to a skeletal
structure consisting of a set of interconnected KP. In this regard,
recently there have been more and more studies examining
methods for fall detection and fall prevention based on the

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

02

analysis of the human body KPs [2]. However, the complexity of
such algorithms increases greatly compared to analyzing the
movement of COM only. Studies have shown that the dynamic
stability of a person while walking is determined by a sacral
marker (a point located at the base of the spine) which can be
replaced with fairly high accuracy by COM [17]. According to the
representation of the human body, consisting of individual
elements around a COM, the canonical shape of an object is
determined by the external forces acting on it d2R

dt2 ¼ Fext [18].
However, in practice, the determination of external forcesFext to find
the radius-vector R is virtually impossible and the calculation of
indirect parameters, such as speed (velocity) and acceleration of
COM, may be applied. At the same time, based on CV technology,
the location of a person can be detected assuming that his body is
inside the BB. Next, to simplify the development of a fall control
practical model, in this study we analyze the fall of a person whose
geometric center coincides with COM. For the most simple and
symmetrical figures, the geometric center coincides with COM
[19] and is called their centroid. Calculating the centroid speed or
the velocity of BB instead of COM motion characteristics defines
the following broad approach for a fall detection as described below.

3.2. Research design

With the use of vision-based algorithm, the coordinates of the
BB within a frame as the fall occurs can be consistently updated. By
considering the uniformmotion of an object from frame to frame, we
can easily calculate the speed of the BB centroid based on the
changes in position over time. This can be done by calculating the
displacement between the consecutive frames and then dividing
by the time interval between frames. It is important to note that
while this calculation provides insights into the BB movement, it
may not reflect the actual position of the human body during a
fall. The AR representing the relationship between the BB width
and height is another important parameter for the human body
tracking. The AR of a BB is a valuable feature in fall detection, as
it can indicate the orientation of person and help distinguish
between falls and non-falls. For example, a sudden change in AR
can indicate a person falling, as the body tends to stretch out in
the direction of the fall.

Thus, the AR and centroid velocity (speed) are two valuable
features in fall detection. The AR is sensitive to changes in
orientation and COM velocity depends on the change in the center
of gravity. Combining these 2 features can provide a more
comprehensive understanding of the fall event. This is confirmed
by a number of previous studies. Gutiérrez et al. [2] and Lezzar
et al. [5] studied the human body COM trajectory that moves
along an arc during each step and proved that it can be an index
of both balance and the neural maturation of walking.

Consider for a while the free fall of a standing person with a loss
of balance. Then, knowing the distance fromCOM to ground (0.45m
on average) and neglecting air resistance, it is easy to see that the fall
time can be approximately 0.3 s. Further, if the frame rate (fps) of
video camera is 30 fps, then for this time we would get only
about 10 frames. This simplification reinforces the need to quickly
respond to a fall with an alarm signal.

Therefore, this study proposes a fall detection approach based
on the use of a sliding window algorithm. In this case, the window is
a time interval containing a set of values that are used to form a
training or test example when performing classification. For this
purpose, the most informative parameters are selected from the
time series corresponding to the video surveillance data for the
elderly. Next, video sequences are splitted using a sliding window
algorithm that selects the data subsequences allowing detecting a
fall. For every obtained subsequence, secondary features are
generated with the use of tsfresh library. It should be noted that
the classification model is selected using the auto-sklearn tool
based on the analysis of an ensemble of supervised machine
learning models. The block diagram of the proposed detector and
the corresponding data processing steps are shown in Figure 1.
The principle of data preparation, processing, and model selection
is shown in Figure 1 in the form of separate steps and includes
two stages: detector training, and detector testing. First, the video
surveillance data (testing stage) are pre-processed, then primary
features are extracted and buffered for the sliding window
algorithm, secondary features are generated, and fall detection is
performed based on the selected model. The model is built at the
training stage using the auto-sklearn tool. The details of choosing
the best parameters for the sliding window algorithm and the
classifier type are presented in the next section.

Figure 1
Data processing by fall detector

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

03

4. Research Methodology

4.1. Dataset contents and its cleaning

The UR Fall Detection Dataset [9], commonly known as the
UR Fall Dataset, is extensively utilized in machine learning and is
particularly valuable for those focusing on human activity
recognition, especially in healthcare and elderly care scenarios.
This dataset comprises 70 sequences (30 falls and 40 ADL). Fall
incidents are captured using two Microsoft Kinect cameras along
with corresponding accelerometer data, while ADL events are
recorded using only one device (camera 0) and an accelerometer.
The dataset includes files with features extracted from depth
maps, stored in CSV format. Each row represents a data sample
corresponding to a single depth image and includes features such
as the sequence name (e.g., ‘fall-01’, ‘adl-01’), frame number,
label (’-1’ indicates the person is not lying down, ‘1’ indicates the
person is lying on the ground, ‘0’ indicates a temporary pose
during a fall), HeightWidthRatio (AR) – the ratio of BB height to
width, MajorMinorRatio – the ratio of the major to minor axis
calculated from the segmented person’s BLOB, among others.
More about dataset can be found in Kwolek and Kepski [9] as
well as in Yhdego et al. [12]. The features extracted from the
videos are crucial for distinguishing between falls and other
activities.

CAUCAFall [20] is a database designed for recognizing human
falls in uncontrolled home environments featuring diverse conditions
such as occlusions, lighting changes, varied clothing, background
movement, different fall angles, and distances from the camera. It
includes segmentation labels for each image, facilitating the
implementation of human fall recognition methods using YOLO
detectors. The dataset includes simulations of five different types
of falls and five ADLs. Falls are labeled as “fall”, while ADLs are
labeled as “no-fall”. The data are structured into 10 main
directories, each representing a different subject. Within each
directory, there are 10 folders corresponding to the various
activities performed by the participants. Each folder contains a
video of the respective action in.avi format, images of the actions
in.png format, and frame segmentation labels in.txt format.

For the UR Fall dataset, we combined the recordings into a
single data frame and added a variable-indicator “Fall” which
takes the values true/false for records with falls and without them
respectively. Each frame in the dataset is labeled −1; 0; 1 defining
that person is “not lying”, “lying”, and “falling/lying down”
correspondently. The data cleaning was also performed. Firstly,
for ADL videos the sequences were trimmed where the label 0
appeared after the label 1, indicating that person got up after lying
down since our system must immediately output signal about fall
not waiting for the end of record. Secondly, the sequences with
missing frames were also found as soon as we apply frame
numbering for calculation of BB velocity. In the experiments
conducted, this parameter was called “FrameSpeed” and was
calculated in one millisecond using the following formula:

FrameSpeed ¼ fps
1000df

ffi
dx2 þ dy2ð Þ

q
;

where dx, dy define corresponding coordinate change of BB center;
df – video frame number increment while their numbering

(records had missing frames);
fps – frame rate, which is 30 fps for the UR Fall dataset.
For CAUCAFall dataset, the given information from files of all

folders has been combined into one dataset, and a variable “fall”was

assigned true for video records with falls. Then, the BB coordinates
of each frame were converted fromYOLO format to absolute values.
The features HeightWidthRatio and FrameSpeedwere calculated for
fps= 23 in this dataset. For video recordings of CAUCAFall dataset
for the sequences corresponding to the fall process (“fall” dataset
folders), we selected the beginning of sliding window starting
from 5th frame, since the visual analysis of videos showed that
fall process has started from the very beginning of recordings.
The sliding window transformation procedure was then performed
similarly to that used for the UR Fall Dataset.

In this paper, we conducted experiments to train the above
model using primary video features (HeghtWidthRatio and
FrameSpeed) and secondary features generated by the tsfresh
library [21], which is used for systematic feature engineering from
time series and other sequential data.

Next, to prepare data to apply the fall detector parameters setup
(Figure 1), it was necessary to convert all records into output
sequences of a certain length. To do it, the sliding window
algorithm was used with the following parameters:

Window – width of the sliding window (equal to the length of the
output sequence);

Stride is the step by which the frames were converted into sequences;

Fall_Frames – number of falling frames (elements in the output
sequence marked as 0).

The operation of the method for Window=5, Stride=2,
Fall_Frames=2 is depicted in Figure 2 below. For this example,
our transformation algorithm returns only those sequences with
length 5 in which at least 2 elements have a label of 0 (fall).

4.2. Sliding window parameters configuration

To select the values of parametersWindow, Stride, Fall_Frames,
we trained a random forest model using cross-validation. The
parameter values were selected from the following ranges: Window
= (30, 40, 50), Stride = (3,5,7,10), Fall_Frames = (10,15,20).

We used a brute-force approach to find the optimal combination
of parameters. For each combination, we applied a sliding window
over the data based on the values of the Window, Stride, and
Fall_Frames parameters generating multiple sequences. Since the
number of ‘non-fall’ sequences was much larger than the number
of ‘fall’ sequences (in some parameter combinations, the AR was
as high as 4-to-1), we applied random sampling to the ‘non-fall’
sequences after splitting the data. The size of the random sample
was set equal to the number of ‘fall’ sequences to balance the dataset.

Then, for each obtained sequence, we transposed the
HeightWidthRatio and FrameSpeed columns into a feature row

Figure 2
Sliding window

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

04

vector and added a class label new_label that corresponds to whether
a “fall” was observed in that frame sequence. In this way, we
obtained a dataset in which each sequence is represented by a
vector of length 2*Window+1, see Figure 3.

Next, we split the data into training and test sets in a ratio of 4:1. To
evaluate the performance of each combination of Window, Stride, and
Fall_Frames parameters, we trained a RandomForest classifier and
used grid search to determine the best number of estimators (trees)
with 5-fold cross-validation. The best combination was chosen based
on the performance of the trained RandomForest model on the test
data. The best parameters are presented in Table 1. The worst
performance is highlighted in red, and the best is highlighted in green.

For the generalized dataset with primary features, we chose the
parameters to ensure that the number of output sequences for the UR
Fall and CAUCAFall datasets was not too small and that the test
accuracy remained high. Therefore, for the generalized dataset, we
set the values Window=40, Stride=3, Fall_Frames=20.

We performed the same procedure of selecting the best
parameters Window, Stride, Fall_Frames for secondary features
extracted from the sequences generated by the sliding window
using the tsfresh library. In this case, the vector of secondary
features was generated automatically for each sequence. For
generating secondary features, we left only HeightWidthRatio and
FrameSpeed, since previous studies [14] have shown that these
features have the greatest impact on the classification accuracy.
The best parameters are presented in Table 2. For the CAUCAFall
dataset with Window >= 40 and any values of Stride,

Fall_Frames, we were able to train the model with 100%
accuracy on the test set.

For a generalized dataset with secondary features, the best
values Window=40, Stride=3, Fall_Frames=20.

4.3. Primary and secondary feature analysis

Correlation analysis showed that primary and secondary features
weakly correlate with the data class (“fall”/“not fall”): the maximum
correlation value for secondary features is 0.55 and for primary
features – 0.5. At the same time, as expected for primary features,
HeightWidthRatio and FrameSpeed values in later frames of the
sequence correlate more strongly with the class label. Thus, the
cross-correlation of the primary features HeightWidthRatio in
neighboring frames is very high (more than 0.9 for ten neighboring
frames). Statistical analysis of primary and secondary features
within different classes also revealed large differences in secondary
features. However, the Kolmogorov-Smirnov and Mann-Whitney
tests showed that the differences between classes in terms of
features are statistically significant, both for primary and secondary
features. In addition, to test the hypothesis that secondary features
are better than primary ones for class separability, we performed
their principal component analysis (PCA). A 3D visualization of the
PCA transformation is shown in Figure 4. In the dataset with
secondary features, 99% of the variance is captured by the first four
principal components, while for primary features, the first ten
principal components account for only 80% of the variance. This
indicates that secondary features explain the behavior of the target
variable better than primary features.

4.4. Training and selecting the best model with
auto-sklearn

Then, we create 2 separate datasets with primary and secondary
features as described in Section 4.2.

After applying dataset construction and class balancing, we
obtained 2 datasets of size 1856 sequences each, where 498
sequences were from the UR Fall dataset and 1358 sequences
were from the CAUCAFall dataset.

The dataset with primary features has 80 features generated by
sliding window itself), and the dataset with secondary features
contains 585 features (generated by applying tsfresh tool to each
sequence). The datasets were split into train/test in the ratio of
80% to 20%.

Table 1
The best parameters for primary features

Window size Stride # Fall frames Accuracy, %
#Output
sequences

UR Fall Dataset
40 3 20 95 100
40 3 15 94 124
30 7 20 97 30
50 3 20 92 104
50 3 15 93 120

CAUCAFall Dataset
40 3 20 81 272
40 3 15 72 119
30 7 20 80 304
50 3 20 83 272
50 3 15 82 304

Table 2
The best parameters for secondary features

Window size Stride # Fall frames Accuracy, %
#Output
sequences

UR Fall Dataset
40 3 20 96 77
40 3 20 95 100
30 3 15 94 120
50 3 10 91 138
50 3 10 93 143

CAUCAFall Dataset
40 3 20 85 272
40 3 15 100 272
30 7 20 90 304
50 3 20 100 284
50 3 15 100 275

Figure 3
Transformation of features from frames

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

05

To select the best model from the ensemble, we used the
auto-sklearn library, which provides ready-made supervised
machine learning. Built on top of the scikit-learn machine learning
library, auto-sklearn automatically searches for the correct
learning algorithm for a new machine learning dataset and
optimizes its hyperparameters [22].

Auto-sklearn starts by using meta-learning where it leverages a
database of previously evaluated datasets to make educated guesses
about good models for a new dataset. It extracts statistical properties
(meta-features) from the dataset, such as the number of features, data
sparsity, and correlations between features, to determine similarity to
past datasets. Based on these meta-features, it initializes the search
process by considering models and hyperparameter settings that
worked well on similar datasets. Auto-sklearn doesn’t rely on
random or grid search for hyperparameters; instead, it uses
Bayesian optimization to make intelligent guesses about which
hyperparameters will work best. As part of the pipeline search,
auto-sklearn also optimizes preprocessing steps and feature
engineering techniques. It can automatically handle missing

values, scale data, and select best features. After finding multiple
well-performing models, auto-sklearn uses a technique called
ensemble selection to create a weighted combination of these
models. This enhances the robustness and accuracy of predictions.

The optimal model trained on the primary feature dataset is a
VotingClassifier utilizing the sklearn gradient boosting algorithm,
specifically HistGradientBoostingClassifier, with the following
hyperparameters:

early_stopping=False,
l2_regularization=0.0015999096167997723,
learning_rate=0.024544266632179432,
max_iter=512, max_leaf_nodes=28,
min_samples_leaf=5,
random_state=1, validation_fraction=None, warm_start=True.

The model achieved an accuracy of 80% on the test set.
For the secondary feature dataset, the same model architecture

was identified as the best, but with adjusted hyperparameters:

early_stopping=True, l2_regularization=2.22710531072698e-
08, learning_rate=0.02095996930896952,
max_iter=512, max_leaf_nodes=20,
min_samples_leaf=1,
random_state=1,
validation_fraction=None, warm_start=True. T

This model attained a test accuracy of 96%.

4.5. Feature importance

In this paper, the secondary feature importance has been
estimated using permutation feature importance technique.
Permutation feature importance is a model validation technique
that measures the contribution of each feature to the statistical
performance of a fitted model on a given tabular dataset. This
approach is especially valuable for models that are non-linear or
difficult to interpret. It works by randomly shuffling the values of
one feature at a time and then measuring the resulting decrease in
the model’s performance score [23]. By breaking the link between
a feature and the target, we can determine how much the model
relies on that particular feature.

The 6 most significant secondary features generated by the
tsfresh tool and ranked by their importance are shown in Table 3
below. The first two columns contain the primary features and the
names of secondary features, and the last 2 columns show their
average values and standard deviations.

We measured the time of secondary features generation and
class prediction for 1 sequence and 5 sequences of length 40
frames which took 1.3 s and 2.8 s, respectively. Thus, the
processing time of feature engineering and prediction is quite fast
and takes a few seconds.

• HeightWidthRatio_minimum – represents the lowest value in
the time series x.

• HeightWidthRatio_energy_ratio_by_chunks__num_
segments_10__segment_focus_9 – calculates the ratio of the sum
of squares for a specific segment i within N total segments to the
sum of squares for the entire series. In this case, the series is divided
into 10 segments, and the feature is focused on the 9th segment
(counting starts from zero).

• HeightWidthRatio_variation_coefficient – measures the

The general meaning of the most significant secondary features
generated, ranked by their importance, is as follows:

coefficient of variation, which is the ratio of the standard

Figure 4
PCA transformation for primary features (top)

and secondary features (bottom)

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

06

deviation to the mean, providing a relative measure of variability
around the mean.

• FrameSpeed_autocorrelation__lag_4 – computes the value of
an aggregation function (like variance or mean) over the
autocorrelation of the time series x with a lag of 4.

• HeightWidthRatio_fft_coefficient__attr_“abs”__coeff_20 – refers
to the Fourier coefficients obtained from the one-dimensional
discrete Fourier Transform of the time series x, computed using the
fast Fourier transform algorithm. This specific feature corresponds to
the 20th coefficient and captures the absolute value.

• FrameSpeed_change_quantiles__f_agg_“mean”_isabs_“ru”__
qh_0.4__ql_0.0 – first defines a range using the quantiles ql and qh
of the distribution of x. Then, it calculates the mean of the absolute
values of consecutive changes in the series x that fall within this
defined range.

4.6. Results discussion

In this study, we explored the effectiveness of primary and
secondary features in detecting falls, applying a sliding window
approach to enhance the size and variability of the training data. The
datasets were created by segmenting sequences from the UR Fall and
CAUCAFall datasets, resulting in two feature sets: the primary dataset
with 80 features generated directly by the sliding window, and the
secondary dataset with 585 features generated using the tsfresh tool.

After preprocessing and balancing the data, we employed the
AutoML approach via the auto-sklearn library to select the
optimal models for both datasets. This approach proved effective,
with the best model for the primary feature dataset achieving an
80% test accuracy using a HistGradientBoostingClassifier. For the
secondary features, the same model setup with adjusted
hyperparameters improved accuracy to 96%, demonstrating the
advantages of secondary feature extraction.

The feature importance analysis for secondary features showed
a critical role of the first 6 features in the model’s performance. These
findings also indicate that secondary features derived from just two
primary features – BB AR and velocity – are highly informative for
building robust machine learning model for fall detection.

Moreover, the processing times for generating secondary features
and making predictions were found to be relatively fast, taking only a
few seconds per sequence, which highlights the practical applicability
of this approach in real-time fall monitoring systems.

Overall, the use of secondary features and AutoML significantly
improved model accuracy compared to our previous work.

5. Conclusion

A new vision-based method for monitoring falls of elderly
people using machine learning techniques and an approach based
on the use of a sliding window and secondary feature generation
is proposed. The results obtained in this study are more reliable

compared to our previous work [14] due to the use of 2 orders of
magnitude more data for training and selection of the best model.
In addition, using a sliding window approach allowed us to
increase the number of sequences analyzed. In this paper, it was
shown that the proposed methodology for creating a detector
using a sliding window for data transformation is promising. This
is confirmed by recent publications that use a similar approach to
build a classifier for data obtained from wearable sensors [24] and
remote radar monitoring [25]. Our results prove that the use of
tsfresh tool, which generates new secondary features from only 2
primary ones, related to the AR and velocity of the BB covering a
person, makes it possible to build an ensemble of good machine
learning models. Further use of the auto-sklearn tool allows to
select the best ensemble model with histogram-based gradient
boosting classifiers and achieve test accuracy of 96%, that is
slightly better compared to using a similar model for sensor data
in [24]. In our study, the effectiveness of tsfresh and auto-sklearn
tools was confirmed using data from two datasets UR Fall Dataset
and CAUCAFall Dataset as well as their combination.

The experiments conducted showed that secondary features
describe the behavior of the target variable better than primary
features, which actually led to an improvement in the accuracy of
the optimized model of 96% compared to using primary ones,
where it had a value of 80%.

This study underscores the potential of combining the sliding
window approach with automated feature extraction and model
selection techniques for fall detection providing a highly efficient
and accurate solution suitable for real-time applications.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

Data available on request from the corresponding author upon
reasonable request.

Author Contribution Statement

Boris Assanovich: Conceptualization, Methodology,
Validation, Investigation, Resources, Writing – original draft,
Writing – review & editing, Visualization, Project administration.
Katsiaryna Kosarava: Methodology, Software, Validation,
Formal analysis, Investigation, Data curation, Writing – review &
editing, Visualization.

Table 3
Top 6 most important secondary features generated by tsfresh tool

Primary features Secondary features Importance mean Importance Std

AR minimum 0.032 0.006
AR energy_ratio_by_chunks__num_segments_10__segment_focus_9 0.029 0.006
AR variation_coefficient 0.010 0.007
BB velocity autocorrelation__lag_4 0.010 0.004
AR fft_coefficient__attr_“abs”__coeff_20 0.008 0.003
BB velocity change_quantiles__f_agg_“mean”__isabs_“ru”__qh_0.4__ql_0.0 0.008 0.003

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

07

References

[1] World Health Organization. (2021). Falls. Retrieved from:
https://www.who.int/news-room/fact-sheets/detail/falls

[2] Gutiérrez, J., Rodríguez, V., &Martin, S. (2021). Comprehensive
review of vision-based fall detection systems. Sensors, 21(3), 947.
https://doi.org/10.3390/s21030947

[3] Alam, E., Sufian, A., Dutta, P., & Leo,M. (2022). Vision-based
human fall detection systems using deep learning: A review.
Computers in Biology and Medicine, 146, 105626. https://
doi.org/10.1016/j.compbiomed.2022.105626

[4] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016).
You only look once: Unified, real-time object detection. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, 779–788.

[5] Lezzar F., Benmerzoug, D., & Kitouni, I. (2020). Camera-
based fall detection system for the elderly with occlusion
recognition. Applied Medical Informatics, 42(3), 169–179.

[6] Charfi, I., Miteran, J., Dubois, J., Atri M., & Tourki, R. (2012).
Definition and performance evaluation of a robust SVM based
fall detection solution. In 2012 Eighth International
Conference on Signal Image Technology and Internet Based
Systems, 218–224. https://doi.org/10.1109/SITIS.2012.155

[7] Charfi, I., Miteran, J., Dubois, J., Atri, M., & Tourki, R. (2013).
Optimized spatio-temporal descriptors for real-time fall detection:
Comparison of support vector machine and Adaboost-based
classification. Journal of Electronic Imaging, 22(4), 17.

[8] Beddiar, D. R., Oussalah, M., & Nini, B. (2022). Fall detection
using body geometry and human pose estimation in video
sequences. Journal of Visual Communication and Image
Representation, 82, 103407.

[9] Kwolek, B., & Kepski, M. (2014). Human fall detection on
embedded platform using depth maps and wireless accelerometer.
Computer Methods and Programs in Biomedicine, 117(3),
489–501. http://doi.org/10.1016/j.cmpb.2014.09.005

[10] Zhang, J., Wu, C., & Wang, Y. (2020). Human fall detection
based on body posture spatio-temporal evolution. Sensors,
20(3), 946. https://doi.org/10.3390/s20030946

[11] Zhao, D., Song, T., Gao, J., Li, D., & Niu, Y. (2024).
YOLO-fall: A novel convolutional neural network model for
fall detection in open spaces. IEEE Access, 12,
26137–26149. http://doi.org/10.1109/ACCESS.2024.3362958

[12] Yhdego, H., Paolini, C., & Audette, M. (2023). Toward
real-time, robust wearable sensor fall detection using deep
learning methods: A feasibility study. Applied Sciences,
13(8), 4988. https://doi.org/10.3390/app13084988

[13] Shukla, K., Holderbaum, W., Theodoridis, T., & Wei, G.
(2024). Enhancing gearbox fault diagnosis through advanced

feature engineering and data segmentation techniques.
Machines, 12(4), 261.

[14] Kosarava, K., & Assanovich, B. (2021). A simple indoor fall
control system for the elderly based on the analysis of
object bounding box parameters. In Proceedings of the
International Conference on Pattern Recognition and
Information Processing, 92–96.

[15] tsfresh. (n.d.). Introduction-why tsfresh? Retrieved from:
https://tsfresh.readthedocs.io/en/latest/text/introduction.html

[16] Kausar, F., Awadalla, M., Mesbah, M., & AlBadi, T. (2022).
Automated machine learning based elderly fall detection
classification. Procedia Computer Science, 203, 16–23.
https://doi.org/10.1016/j.procs.2022.07.005

[17] Reimann, H., & Bruijn, S. M. (2024). The condition for
dynamic stability in humans walking with feedback control.
PLOS Computational Biology, 20(3), e1011861. http://doi.org
/10.1371/journal.pcbi.1011861

[18] Kamberaj, H. (2021). Classical mechanics. Germany: Walter
de Gruyter GmbH & Co KG.

[19] Gahramanova, A. (2019). Locating centers of mass with image

processing. Undergraduate Journal of Mathematical Modeling:One+
Two, 10(1), 1. http://doi.org/10.5038/2326-3652.10.1.4906

[20] Eraso, J. C., Muñoz, E., Muñoz, M., & Pinto, J. (2022).
Dataset CAUCAFall. Mendeley Data, 4. http://doi.org/10.17632/
7w7fccy7ky.4

[21] tsfresh. (n.d.). Overview on extracted features. Retrieved from:
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html

[22] Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., &
Hutter, F. (2022). Auto-Sklearn 2.0: Hands-free AutoML via
meta-learning. Journal of Machine Learning Research,
23(261), 1–61.

[23] Breiman, L. (2001). Random forests. Machine Learning,
45(2001), 5–32.

[24] Nishiyama,D., Arita, S., Fukui, D., Yamanaka,M.,&Yamada,H.
(2024). Accurate fall risk classification in elderly using one gait
cycle data and machine learning. Clinical Biomechanics, 115,
106262. https://doi.org/10.1016/j.clinbiomech.2024.106262

[25] Rodriguez, J., Mercuri, M., Karsmakers, P., Soh, P. J., Leroux,
P., & Schreurs, D. (2013). Automatic fall detector based on
sliding window principle. In 34th WIC Symposium on
Information Theory in the Benelux and the Third joint WIC/
IEEE SP Symposium on Information Theory and Signal
Processing in the Benelux, 215–219.

How to Cite: Assanovich, B., & Kosarava, K. (2024). Vision-Based Fall
Detector for Elderly Based on Sliding Window Approach and Feature
Engineering. Journal of Data Science and Intelligent Systems. https://doi.org/
10.47852/bonviewJDSIS42024100

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

08

https://www.who.int/news-room/fact-sheets/detail/falls
https://doi.org/10.3390/s21030947
https://doi.org/10.1016/j.compbiomed.2022.105626
https://doi.org/10.1016/j.compbiomed.2022.105626
https://doi.org/10.1109/SITIS.2012.155
http://doi.org/10.1016/j.cmpb.2014.09.005
https://doi.org/10.3390/s20030946
http://doi.org/10.1109/ACCESS.2024.3362958
https://doi.org/10.3390/app13084988
https://tsfresh.readthedocs.io/en/latest/text/introduction.html
https://doi.org/10.1016/j.procs.2022.07.005
http://doi.org/10.1371/journal.pcbi.1011861
http://doi.org/10.1371/journal.pcbi.1011861
http://doi.org/10.5038/2326-3652.10.1.4906
http://doi.org/10.17632/7w7fccy7ky.4
http://doi.org/10.17632/7w7fccy7ky.4
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://doi.org/10.1016/j.clinbiomech.2024.106262
https://doi.org/10.47852/bonviewJDSIS42024100
https://doi.org/10.47852/bonviewJDSIS42024100

	Vision-Based Fall Detector for Elderly Based on Sliding Window Approach and Feature Engineering
	1. Introduction
	2. Literature Review
	3. Problem Overview and System Design
	3.1. Theoretical framework
	3.2. Research design

	4. Research Methodology
	4.1. Dataset contents and its cleaning
	4.2. Sliding window parameters configuration
	4.3. Primary and secondary feature analysis
	4.4. Training and selecting the best model with auto-sklearn
	4.5. Feature importance
	4.6. Results discussion

	5. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

