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Abstract:Nuclear magnetic resonance (NMR) spectroscopy is a highly sensitive analytical technique essential for precise molecular identification
and quantification. However, accurate results depend on effective pre-processing to correct for various types of errors. Phase error correction, in
particular, is crucial for ensuring the reliability of NMRdata. Currentmethods often rely on a single linearmodel, whichmay not adequately address
all types of phase errors. As a result, this limitation frequently requires manual intervention, making the process both time-consuming and prone to
errors. To address these limitations, we propose three modeling approaches for NMR phase error correction: nonlinear shrinkage, multiple models,
and a new optimization function called delta absolute net minimization (DANM). Our comparison of seven methods revealed that nonlinear
shrinkage outperformed others in both simulated spectra and a case study, followed by multiple models with DANM. Additionally, our spike-
in experiments demonstrated that DANM performed quite well in approaches using both a single model and multiple models. Our nonlinear
shrinkage approach is a simple yet effective solution. We provide an open-source R package, NMRphasing, available on CRAN (https://cran.
r-project.org/web/packages/NMRphasing/) and on GitHub (https://github.com/ajiangsfu/NMRphasing).
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1. Introduction

Nuclear magnetic resonance (NMR) applies the electromagnetic
properties of atomic nuclei to diverse fields, including chemistry,
physics, biology, material science, and engineering [1–22]. When
samples are exposed to a strong magnetic field and a radio
frequency pulse, certain atomic nuclei are temporarily excited to a
higher energy state. As these nuclei relax back to their original,
lower energy state, they emit radio frequency signals, which are
detected and used to produce raw time-domain data [23]. These
data are then Fourier transformed to produce frequency-domain
spectral data, where the peaks are used to identify and quantify the
molecules within the sample. However, if left uncorrected, the
shapes and locations of the spectral peaks can be inaccurate due to
unavoidable errors during signal acquisition.

To address these challenges, this paper introduces NMR signals
and phase error issues, reviews current correction methods, proposes

new correction approaches, and evaluates the proposed correction
approaches through simulations, a case study, and two spike-in
experiments.

1.1. NMR signals and phase error challenges

NMR raw data are recorded with complex numbers to represent
nuclei energy changes in two orthogonal directions, as shown in
Figure 1A. Phase, which refers to the timing or position within a
time-domain signal, is an important source of error in NMR.
Phase is defined as the angle between a data point’s vector and
the x-axis in the complex plot, as illustrated in blue in Figure 1A.
Mathematically, it is expressed as the inverse tangent of the ratio
of the imaginary part to the real part: Phase ¼ tan�1 Imaginary

Real .
With a Fourier transform, the time-domain data in Figure 1A are

converted into frequency-domain data (Figure 1B). Frequency-domain
data are also represented by complex numbers, where the real part
corresponds to absorption and the imaginary part corresponds to
dispersion. The definition of phase remains the same in the
frequency domain, still representing the angle between a data
point’s vector and the x-axis, as shown in purple in Figure 1B.

Furthermore, each component of the time-domain data
(Figure 1A) can be plotted separately, resulting in the real part,
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imaginary part, and phase plots shown in Figure 1C–E. The red
starting point in Figure 1A corresponds to the maximum
amplitude in the real part (Figure 1C), with an imaginary
amplitude of zero (Figure 1D) and a phase value of zero
(Figure 1E), as tan−1( 0

max amplitudeð Þ) = tan−1(0)= 0.
Similarly, for the frequency-domain data (Figure 1B), we can

plot the absorption, dispersion, and phase separately, as shown in

Figures 1F–H. The orange point with the maximum absorption
value in Figure 1B corresponds to the maximum absorption
shown in Figure 1F, with zero dispersion in Figure 1G and a
phase value of zero in Figure 1H.

Phase errors represent discrepancies between the measured and
true phase values [24]. These errors primarily arise from factors such
as field distortions and eddy currents [25], as well as baseline

Figure 1
Illustration of NMR data with a simulated signal

A Time-domain complex plot. X-axis: Real amplitude, Y-axis: Imaginary amplitude. B Frequency-domain complex plot. X-axis: Absorption
—real intensity, Y-axis: Dispersion—imaginary intensity. In both A and B, arrows show vectors of example data points, and the angles
between the vectors and the X-axes are the corresponding phase values. C Time domain—Real part of the signal.
D Time domain—Imaginary part of the signal. E Time domain—Phase. The X-axis in C–E is time in seconds. F Frequency domain—
Absorption. G Frequency domain—Dispersion. H Frequency domain—Phase. The X-axis in F–H is frequency (Hz), where 1 Hz is
cycles per second. Red dots in A, C–E indicate the first data point in the time domain, while orange dots in B, F–H show the peak
maximum point.
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correction processes that may inadvertently alter phase values. Noise
and distortions during signal acquisition further contribute to phase
errors, impacting the accuracy of phase measurements [24].

Phase cycling has been proposed as an efficient method for
addressing phase errors [25, 26]. However, repeating experiments
with multiple-phase pulses is often too costly, and such data are
rarely available.

There are three types of phase errors. Zero-order phase errors
introduce a constant phase shift across the spectrum, while first-order
phase errors cause a linear phase shift that varies with frequency.
Nonlinear phase errors, on the other hand, produce phase shifts that
vary in amore complex, nonlinearmanner as the frequency changes [27].

In ideal conditions, when there are no phase errors, NMR signal
analysis can focus on the real part in the frequency domain because
real part peaks are sharp, concentrated, and easier to quantify, as
shown in Figure 1F. The position of the absorption peak is used
for molecule identification, while the area under the peak’s curve
is used for quantification. Even when multiple signals are present,
as shown in Figure 2A–D, the absorption spectrum (Figure 2A) is
still relied upon for identification and quantification.

However, real-worldNMRdata often contain phase errors, which
distort the real parts and lead to a nonlinear combination of pure
absorption and pure dispersion. This results in distorted absorption
peaks, as shown in Figure 2E. The observed dispersion is also
affected, as seen in Figure 2F. The phase pattern (Figure 2G)
deviates significantly from the ideal phase pattern (Figure 2C).
These phase errors (Figure 2H) affect both the accuracy of peak
locations and the areas under the curves (Figure 2E), making
molecule identification and quantification unreliable.

Correcting phase errors before analysis is essential to ensure
accurate results [24, 28]. Although various correction approaches
have been proposed, there is no consensus on a universal
protocol, highlighting the challenges posed by phase errors [29].
The lack of standardized correction methods necessitates further
research to develop effective, tailored strategies that can adapt to
the specific characteristics of different datasets. In the following

sections, we will review existing phase error correction methods
and propose our own approaches.

1.2. Current phase error correction methods

Most existing methods for NMR phase error correction rely on a
linear model to address phase errors [26, 30–41]. These methods
account for zero-order and first-order phase errors by assuming a
linear relationship between phase error and frequency. In NMR,
frequency represents both the number of cycles per second in the
time domain and the position of a signal’s peak in the frequency domain.

For example, in Figure 1C, a signal with a frequency of 10 cycles
per second corresponds to a peak at 10 Hz (Hertz, indicating cycles per
second) in Figure 1F. Frequency-domain data are indexed by
frequency, with a linear relationship between the data index (from 1
to N, where N is the total number of data points) and frequency. To
simplify analysis, a scaled data index is often used to represent
frequency in phase error correction models, expressed as [31]:

Pc � b0 þ b1 � f (1)

where f is the scaled data index related to frequency, and b0 and b1
represent the intercept and slope, respectively.

However, this linear assumption fails to address nonlinear phase
errors, as illustrated in Figure 2H. While earlier computational
limitations hindered the development of more complex models, recent
efforts have proposed higher-order polynomial models to incorporate
local phase variations [27, 39, 42–47]. Unfortunately, these models
often fall short in fully correcting phase errors, particularly in the
presence of baseline bias and noise. Furthermore, the inclusion of
higher-order terms in linear models tends to be unreliable [27].

Since the dependent variable, the phase correction value (Pc), is
unobservable, regression techniques are not applicable, making
optimization necessary. However, this optimization process can be
slow. To accelerate it, a recent approach involves optimizing a
linear phase correction model using only two peaks [36]. While

Figure 2
Illustration of NMR phase errors in the frequency domain

Panels A–D show simulated frequency-domain absorption, dispersion, phase, and phase error plots without phase errors. Panels E–H show
simulated frequency-domain absorption, dispersion, phase, and phase error plots with phase errors.
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this method increases speed, it requires specific metabolites in a
spectrum and less efficient, leading us to advise against its use.

Many algorithms employ various optimization functions to
conduct the optimization process efficiently while maintaining
good quality [23, 30–33, 35, 48–50]. Nonetheless, no single
optimization function can universally optimize the parameters of
linear models to correct all phase errors.

Of the 20 optimization functions we reviewed [51], 15 primarily
work with a linear model, with a few incorporating higher-order
terms. These functions can be categorized into six groups:

1) Integral of the imaginary component [52]
2) Integral of the real or absolute real part [32, 43, 53, 54]
3) Entropy-based [31, 52]
4) Absolute errors or squared errors [30, 34, 35, 38, 39, 54, 55]
5) Bayesian approach [49]
6) Pearson’s correlation between absorption andmagnitude spectra [40]

Each group has inherent limitations. Methods based on absolute or
squared errors rely on ground truth, which is difficult to obtain for
real-world data. Bayesian approaches require extensive model
assumptions, and Pearson’s correlation is unsuitable due to the
nonlinear relationship between absorption and magnitude spectra.

Given the limitations of these three groups of optimization
functions, we have decided to focus our analysis on the remaining
three groups—namely, the integral of the imaginary component,
the integral of the real or absolute real part, and entropy-based
methods—as a basis for comparing them with our new approaches.

Among them, studies suggest that entropy-based methods [31]
often outperform other approaches [56, 57]. However, even these
methods fail to comprehensively correct all phase errors.

In summary, current phase error correction methods face three
primary challenges:

1) They often rely on only one part of complex data, resulting in
information loss.

2) A single linear model, even with higher-order terms, cannot fully
correct all phase errors.

3) No individual optimization function can adequately optimize
linear model parameters to correct all phase errors.

As a result, manual adjustments are frequently necessary following
automated phase correction or as a standalone process [50, 58–62].
However, manual phase error correction is time-consuming and
relies on the personal experiences of experts, making it difficult to
reproduce and potentially unreliable.

Recently, neural networks have been applied to phase error
correction [45, 47, 63–65]. While this approach shows promise in
addressing nonlinear phase errors, phase errors can vary
significantly based on NMR machines, sample types, and
measurement conditions [27]. Without a diverse and extensive
training dataset, neural networks struggle to generalize effectively.

Furthermore, for neural networks to be effective, they require a
well-defined loss function. Current loss functions are typically based
on absolute or squared errors, which rely on ground truth spectral
data and their associated phases, often unavailable. Simulations or
manually phased spectra are frequently used as substitutes for
ground truth [45, 66], but they serve only as approximations.

These issues can result in noticeable phase errors that may
persist even after neural network-based phasing [63, 65].

In this study,we concentrate on developing phase correctionmodels
and a new optimization function. Both approaches can be employed for
traditional statistics-based phase error correction and integrated with
neural networks to further improve phase error correction.

2. Proposed Approaches

We propose two novel modeling approaches to overcome
specific limitations in current phase error correction methods: (1)
a nonlinear intensity shrinkage method that utilizes both
absorption and dispersion spectra, and (2) multiple models to
handle different signals separately. We also present a new
optimization function that simultaneously considers both positive
and negative values as well as peak shapes.

2.1. Nonlinear intensity shrinkage (NLS)

While traditionalmethods struggle to correct phase errors through
optimization, our shrinkage method leverages theoretically phase-
error-free spectra to estimate the real part of signals without
requiring a complex optimization process for phase error correction.

Absorption (A) and dispersion (D) spectra represent the real and
imaginary parts of NMR frequency-domain data, respectively. Two
important quantities in our model, the magnitude (M) and power (P)
spectra, are derived from these components. The magnitude (M) is
the absolute value of a complex number:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ D2

p
, and the power

(P) is the squared value of M, reflecting the sum of the squares of the
real (A) and imaginary (D) parts. Both M and P are theoretically free
of phase errors and relate to A and D via the Pythagorean theorem:

P ¼ M2 ¼ A2 þ D2 (2)

At any index k, and a phase value at k: θk, we have:

Ak ¼ Mk cos θk

Dk ¼ Mk sin θk

Using Equation (2), we can express Pk as:

Pk ¼ A2
k þ D2

k

¼ Mk cos θkð Þ2 þ M sin θkð Þ2

¼ M2
k cos θkð Þ2 þ sin θkð Þ2ð Þ

¼ M2
k

This proves that P and M are independent of the phase θ, and thus,
they are not affected by phase errors in theory.

Figure 3A demonstrates the comparable shapes and widths of
the power peak and its corresponding absorption peak, while the
magnitude peak matches the height of its corresponding
absorption peak. Additionally, as shown in Figure 3B, the
calculation formula for the full width at half maximum, which is
used to measure two times the shape parameter (scale) for a
Cauchy-Lorentzian function often employed to describe a phase
error-free signal, is identical for both power and absorption peaks.

Based on these characteristics, our nonlinear intensity shrinkage
method allows one to derive absorption spectra from phase-free
magnitude and power spectra, enabling phase error correction
without optimization.

2.1.1. Nonlinear shrinkage overview
Our method estimates absorption peaks within sub-ranges

defined by major peaks, using continuous wavelet transform-
based pattern matching (Supplement 1). It applies linear shrinkage
within each sub-range; however, because each sub-range has its
own shrinkage factor, the shrinkage across the entire spectrum is
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nonlinear. This results in the overall nonlinear shrinkage effect, as the
shrinkage factors do not follow a linear correlation.

2.1.2. Mathematical formulation
The following formula is used to estimate the absorption

intensity (A0
kl ) for each data point within a sub-range:

A0
kl ¼ Pkl �

max
�
Ml
�!�

max
�
Pl
!� (3)

In this formula, Pkl represents the power intensity for the kth data point

within the lth sub-range of a spectrum, max
�
Ml
�!�

represents the

maximum magnitude intensity for the lth sub-range, and max
�
Pl
!�

represents the maximum power intensity for the lth sub-range. The
shrinkage process is applied separately to each sub-range, resulting
in a nonlinear shrinkage for the entire spectrum. Detailed implemen-
tation for the shrinkage method can be found in Supplement 1.

2.1.3. Mathematical formulation of nonlinear intensity
shrinkage

The mathematical basis for the nonlinear shrinkage method can
be illustrated using Figure 4A. The DISPA (dispersion vs.
absorption) circle for a single peak without any error is depicted,
with the center of the circle on the x-axis and its radius being
maxM / 2. The circle function is:

x �maxM=2ð Þ2 þ y2 ¼ maxM=2ð Þ2

This can be rearranged to:

! x2 þ maxM=2ð Þ2 � x �maxM þ y2 ¼ maxM=2ð Þ2

! x2 þ � x �maxM þ y2 ¼ 0

! y2 ¼ �x2 þ x �maxM

! y2 ¼ x maxM � xð Þ (4)

In the above, x represents absorption, y represents dispersion, and
maxM represents the peak height.

Furthermore, we always have the following based onEquation (2):

A2
k þ D2

k ¼ M2
k

Using annotation: Ak ! x, Dk ! y, Mk ! M, we have:

x2 þ y2 ¼ M2

! y2 ¼ M2 � x2 (5)

By combining Equations (4) and (5), we obtain:

x maxM � xð Þ ¼ M2 � x2

! x �maxM � x2 ¼ M2 � x2

! x �maxM ¼ M2

Figure 3
Comparison of different peak modes

A Absorption, magnitude, and power modes of a simulated ideal peak. B Full width at half maximum (FWHM) for ideal absorption,
magnitude, and power modes. The plot is re-generated based on the concept from previous research [67]. t represents the relaxation time.
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Thus:

! x ¼ M2=maxM (6)

Here, maxM is the maximum magnitude (i.e., the peak height for the
non-overlapping peak, which is a constant for a given peak range).
Both x andM are variables representing values in the absorption and
magnitude spectra, respectively.

For each point kl in the lth sub-range, if we replace x with A0
kl ,

write maxM more explicitly asmax Ml
�!� �

, and replace M2 with the

power value Pkl ; Equation (6) can be rewritten as follows:

A0
kl ¼ Pkl=max Ml

�!� �

¼ Pkl �
max Ml

�!� �
max Ml

�!� �� 1

max Ml
�!� �

¼ Pkl �
max Ml

�!� �
max Ml

�!� �� �
2

Since max Ml
�!� �� �

2
= max Pl

!� �
), we obtain:

A0
kl ¼ Pkl �

max Ml
�!� �

max Pl
!� �

This confirms our proof of formula (3).
The ratio on the right side of formula (3) represents a shrinkage

formula because for any number C, if C> 1, C/(C2)= 1/C< 1. The

shrinkage factor
max Ml

�!� �
max

�
Pl
!� acts as a constant coefficient applicable

for a given sub-range. The local maximum in a magnitude sub-range
is positive and almost always bigger than 1 (In theory, it could be
<=1, but we have not observed this situation in real NMR data).

Therefore, we consider
max Ml

�!� �
max Pl

!� � to represent linear shrinkage

transformation.
Our approach operates on multiple sub-ranges by applying

linear shrinkage within each sub-range; however, it represents
nonlinear shrinkage for the entire spectrum, as each sub-range has
its own shrinkage factor, which does not follow linear correlation.

When multiple peaks exist within a given range, the tallest peak
retains the same height between its absorption peak and its magnitude
peak. For nearby partially overlapping peaks, their absorption peaks
are typically slightly shorter than their corresponding magnitude
peaks, and the local maxima of these absorption peaks shift slightly
towards the largest maximum peak among the overlapping peaks.
This position change is minimal, typically just one index difference
for the right-side peak illustrated in Figure 4B. These are natural
characteristics of peak behavior.

The minor height discrepancy between magnitude and
absorption peaks for non-maximum peaks can be partially
addressed by separating the spectra into sub-ranges based on
major peaks. For example, the two peaks in Figure 4B are
combined into one sub-range. Consequently, each sub-range

undergoes shrinkage with the factor
max Ml

�!� �
max Pl

!� � applied within its

range. This guarantees that the shrinkage factors for non-maximum
peaks within the sub-range exceed those that would apply to each
peak individually, resulting in slightly shorter estimated absorption
peaks compared to their corresponding magnitude peaks. This aligns
with our objective. Regarding the slight maximum location shift
(e.g., one index difference for the small peak depicted in Figure 4B),
this represents a minor concern for high-resolution NMR data, where
two neighboring indices possess very similar ppm values.

Our proposed nonlinear intensity shrinkage method overcomes
the limitations of existing linear models by leveraging phase-free
magnitude and power spectra from the full NMR data, including
both absorption and dispersion data, the latter are typically
discarded in traditional approaches. This enables the derivation of

Figure 4
Relationships among simulated absorption, dispersion, and magnitude

ADISPA (dispersion vs absorption) circle: The x-axis shows absorption and the y-axis shows dispersion. The line from the black point to the
origin (0,0) indicates a 45-degree phase, with its length representing magnitude. B Two Overlapping Peaks: The left peak’s magnitude equals
its absorption height, while the right peak’s magnitude is slightly taller, with slightly different ppm locations.
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absorption spectra without the need for specific phase error
correction models or optimization function choices.

While theoretically phase-error-free, real-world spectra may
still contain other distortions, such as random errors, similar to
those affecting all other variables.

2.2. Multiple linear phase correction models (MPC)

In addition to the nonlinear intensity shrinkage method, we
propose multiple linear phase correction (MPC) models. While the
nonlinear intensity shrinkage method is a novel approach that
effectively addresses information loss and can handle nonlinear phase
errors, the multiple linear phase models extend the capabilities of
existing linearmodels specifically for addressing nonlinear phase errors.

Similar to the nonlinear intensity shrinkage method, this
approach operates on sub-ranges defined by major peak ranges.
However, rather than applying shrinkage, each sub-range is
corrected using a linear phase error model. For further details,
refer to Supplement 2.

2.3. Optimization function: delta absolute net
minimization (DANM)

Traditional modeling techniques are ineffective for correcting phase
errors because no single existing optimization function can adequately
optimize model parameters to correct all phase errors. Current functions
do not consider that an ideal signal peak should simultaneously have a
maximum positive area and a minimum negative area, leading to
suboptimal parameters and phased spectra. To improve performance,
we propose a novel optimization function that minimizes the difference
between the absolute and net areas under a curve:

ba;bb� �
¼ argmin

a;bð Þ

�X
N
k¼1

A
0
k

		 		�X
N
k¼1

A
0
k



(7)

Here, (ba, bb) represents the optimal pair for the linear model parameters
(a, b), while argmin

a;bð Þ
denotes the process of finding the pair (a, b) that

minimizes the function, yielding the optimal values for (a, b).A
0
k is the

observed absorption value at the k-th data point, and k ranges from 1 to
N, where N is the total length of the spectrum.

Our new optimization function improves phase error correction
by simultaneously minimizing the absolute area while maximizing
the net area. This dual-objective strategy effectively addresses the
limitations of existing functions, which struggle to balance
positive and negative areas, ultimately providing a more accurate
and reliable correction of phase errors.

Similar to other optimization functions, this one can be applied
either to the entire spectrum using a single linear phase error
correction model, or to each sub-range individually, where a
linear phase correction model is applied within each sub-range.

3. Materials and Methods

Seven phase error correction methods are compared using
simulated data sets, a case study, and metabolite spike-in experiments.

3.1. Phase error correction methods

As discussed earlier, many existing optimization functions have
limitations when applied to phase error correction. To address these
challenges, we focus on three primary functions used in traditional
single linear phase correction models: the integral of the

imaginary component, the integral of the absolute real part, and
entropy. These functions, along with the most commonly used
linear phase error correction model, serve as the foundation for
comparing the new methods we introduce.

We evaluated seven phase error correction methods, which
include three existing methods (SPC_AAM, SPC_EMP, and
SPC_DSM) and four new ones (SPC_DANM, MPC_DANM,
MPC_EMP, and NLS). Detailed descriptions of these methods,
including their optimization functions, formulas, and
implementation guidelines, are provided in Supplements 3 and 4.
The seven methods are as follows:

1) SPC_AAM: A single-phase correction model (SPC) with
absolute area minimization (AAM) [32, 33].

2) SPC_EMP: A SPC model with entropy minimization and a
negative peak penalty (EMP). Entropy is calculated as the
negative sum of absolute intensity multiplied by the logarithm of
absolute intensity. A SPC model [52], with the negative peak
penalty defined by the sum of squared negative values [32].

3) SPC_DSM: A SPC model with dispersion summation
minimization (DSM) [52].

4) SPC_DANM: A SPC model with delta absolute net area
minimization (DANM).

5) MPC_DANM: MPC models combined with delta absolute net
area minimization (DANM).

6) MPC_EMP: MPC models entropy minimization and a negative
peak penalty (EMP).

7) NLS: A nonlinear intensity shrinkage (NLS) method.

All methods, except NLS, rely on specific optimization functions
to determine the optimal parameters for phase error correction. Detailed
formulas for these optimization functions are provided in Supplement 3.
Despite differences in the optimization functions or the use of single
versus multiple models, the overall optimization process remains
consistent across all methods, as outlined in Supplement 4.

3.2. Simulations

3.2.1. Simulation methods
To generate simulated data for comparing phase error correction

methods, we began by creating an idealized spectrum of 76 peaks
based on online metabolite features. We then designed three sets
of simulated datasets based on this idealized spectrum:

1) Nset (noise set): 1,000 datasets with added noise.
2) NPset (noise and phase error set): 1,000 datasets with added noise

and phase errors.
3) NPBset (noise, phase error, and baseline bias set): 1,000 datasets

with added noise, phase errors, and baseline bias.

For a more detailed description of these simulations, please refer to
Supplement 5.

3.2.2. Method comparisons with simulated datasets
We compared seven different methods and the naïve method,

with no phase error correction (NPC). Graphical comparisons are
detailed in Supplement 6. Using the two most commonly employed
error metrics—L1 error (sum of absolute deviations) and L2 error
(sum of squared errors)—we assessed each method’s performance
against the true data. Furthermore, since all methods had the same
sample size, we used the ratio of their L2 errors directly for F-tests
to compare their variances, as detailed in Supplement 7.

We then used a mixed-effect model to account for internal
spatial correlations among peaks and peak ranges within a given
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spectrum, as well as correlations among spectra within a given
simulation dataset. The model was designed to compare methods
for phasing the spectra after adjusting for other variables as follows:

ΔY � X1 þ X3 þ ð1jX2=X4Þ þ E (8)

Here, ΔY = Y – YI represents the estimation error, where Y is the
estimated peak height or peak range area Y, and YI is the
corresponding value based on the idealized spectrum. X1 is a factor
representing a phase correction method, X2 denotes a type of
simulated dataset (Nset, NPset, or NPBset), X3 identifies the peak or
peak range location, and X4 identifies the simulated spectra. The
random effect structure (1|X2/X4) accounts for variability due to
different simulation datasets (X2) and nested effects of spectra (X4)
within each dataset (X2), while E captures random error in the
model. To implement this model in R (https://www.r-project.org/)
based on the lme4 package, the following code was used:

library(lme4)
model <- lmer(DeltaY ∼ X1 + X3

+ (1|X2/X4), data = dat)

To obtain 95% confidence intervals, we used the sim function in
the R package arm (https://cran.r-project.org/web/packages/arm/
index.html) to generate 10,000 simulations. Standard deviations
for these simulations were then calculated based on their coefficients.

3.3. A case study

This case study evaluatedmethods for correcting phase errors in
NMR spectra to detect glucose concentration differences. The data
consisted of in vitro NMR spectra derived from blood plasma
samples of 25 healthy individuals and 25 patients with early-stage
type 2 diabetes mellitus (T2DM). These spectra were originally
collected for a metabolic profiling study and are publicly available
in the MetaboLights database (https://www.ebi.ac.uk/metabolights/,
study MTBLS1). We accessed the dataset through the ASICSdata R
package [68], which was pre-processed using, ACD/1D NMR
Manager 8.0 [69]. By focusing on this dataset, we aimed to assess
how phase error correction techniques enhance the detection of
subtle metabolic differences in NMR analyses.

Our focuswas specifically on comparing glucose levels usingNMR
spectra, despite the availability of more direct measurement methods in
hospital laboratories or portable devices. This approach enabled us to
evaluate how effectively the phase error correction methods detect
subtle variations in glucose levels at early stages. We evaluated seven
phase error correction methods alongside the original ASICSdata
phased with ACD/1D NMR Manager 8.0, focusing on two glucose
multiplets defined by their ranges: 4.63–4.67 ppm and 5.22–5.26 ppm,
as identified in ASICSdata (Supplement 8). To improve area
estimation stability, we combined the areas of these multiplets.

Phase correction methods were grouped based on the Pearson
correlation coefficients of the glucose peak areas, and linear
regression models were used to detect differences in glucose area
between diabetics and non-diabetics.

3.4. Metabolite spike-in experiments

Simulation studies simplify phase error correction method
comparisons but may not accurately represent real NMR data.
Direct comparison of methods using real NMR data is challenging
due to the absence of a phase error-free spectrum. To address the
limitations of both simulation studies and real NMR case studies,
we performed spike-in experiments with eight metabolites in three
commercial urine samples. Single and Multiple spike-in

experiments evaluated phase error correction methods by
comparing concentration estimates with known values.

In the single spike-in experiment, creatinine was spiked in at 12
different concentration levels (0–15 mM) to obtain peak area-to-
concentration transformation coefficients. The other seven metabolites
were spiked in at six different concentration levels (0–3 mM), and a
non-spike-in spectrum was included as a reference (Supplement 9).

In the multiple spike-in experiment, we selected three non-zero
concentration levels, including low, medium, and high levels for
each metabolite. For creatinine, the actual concentrations for the
three levels were 0.5, 5, and 10 mM, while for the other seven
metabolites, the concentrations were 0.25, 1, and 3 mM. A
concentration level (low, medium, or high) was randomly selected
for each of the eight metabolites, resulting in six distinct
concentration combinations. The concentrations were manually
adjusted to ensure balance, leading to six final concentration
combinations for the eight metabolites (Supplement 9).

Details on sample preparation for 1H NMR analysis, spectroscopy
data acquisition, and pre-processing can be found in Supplement 9. One
of us (AG) defined the range for each metabolite, which could include a
single peak or a multiplet. The areas under the curves for these
metabolites were then calculated within these defined ranges. To
prevent negative concentration estimates, we computed the signal
areas for the metabolite spike-in experiments using absolute values.
This approach ensured that concentration values remained positive,
making the results more meaningful and interpretable.

We used both creatinine peak ranges in the single metabolite
spike-in experiment to estimate the area and calculate the
coefficient for determining concentration. For the multiple spike-
in experiment, we applied the same area-to-concentration
transformation coefficient obtained from the single metabolite
experiment with creatinine. To ensure consistency, we used only
one creatinine peak in the multiple spike-in experiment, similar to
other metabolites. Specifically, we selected the peak with three
protons at 3 ppm for estimating both the area and concentration.

We compared the seven phase error correction methods using
concentration estimation error distribution patterns, correlation
heatmaps, L1 and L2 errors, F-test statistics, fixed and mixed
models. In the single metabolite spike-in experiment, we ignored
spectrum information and used a fixed effect model because each
spectrum contained only one metabolite, leaving us no choice. In the
multiple metabolite spike-in experiment, we used a mixed-effect
model to address correlations among multiple metabolites within the
same spectrum, which is preferable to a fixed effect model that treats
each metabolite independently. When combining the results, we had
to use a fixed effect model due to the single metabolite experiment’s
design. Although this is not ideal for the multiple metabolite
experiment, it is still reasonable and allows for an integrated analysis
that adjusts for differences between the experiments. For additional
details on the experimental design and data analysis methods used in
the metabolite spike-in experiments, please refer to Supplement 9.

4. Results

4.1. Comparison of phase error correction
methods in simulations

We compared different phase error correction methods using
graphic comparisons on simulation data sets. We compared peak
height error (Supplement 10), peak range error (Supplement 11),
and point-to-point intensity error (Supplement 12), and all metrics
showed that the nonlinear intensity shrinkage (NLS) method
performed the best.
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We also conducted peak height error and peak range area error
comparison by L1 error and L2 error across three simulation datasets
and F-test on L2 error with NLS as the reference level. Comparisons
showed that the NLS method had the smallest errors for both L1 and
L2 errors, while the two multiple model methods were the second-
best. Furthermore, the NLS method was significantly better than
all other methods based on the F-test (Supplement 14).

We then fitted peak height error and peak range area error mixed
models to compare different phase error correction methods after

adjusting for peak or peak range effect, the random effect of the
simulation datasets, and the random effect of the spectra within
each simulation dataset. The full mixed model results are shown
in Supplement 15. The method comparison parts for peak height
error and peak range area error are presented in Figure 5C–D,
respectively. The results showed that all other methods were
significantly worse than NLS in the mixed model.

Overall, our results show that NLS outperformed all other
methods on the simulated datasets, with no clear runner-up.

Figure 5
Comparisons of phase error correction methods in simulation data sets

L1 errors and empirical density plots of peak height error A and peak range area error B, highlighting details around zero. Comparison of different
methods against NLSwithin a peak errormixedmodel C andwithin a peak range area errormixedmodelD.Abbreviations:MPC_DANM:multiple
models with delta absolute net minimization, MPC_EMP: multiple models minimizing entropy with negative peak penalty, NLS: nonlinear
shrinkage, NPC: no phase error correction, SPC_AAM: a single model minimizing the absolute area, SPC_DANM: a single model with delta
absolute net minimization, SPC_DSM: single model minimizing dispersion sum, and SPC_EMP: a single model minimizing entropy with
negative peak penaltyWe then aggregated and compared the peak height errors and the peak range area errors (Supplement 13, Figure 5A–B),
which showed that the NLS has the smallest L1 error and the highest error peak around 0, indicating the highest accuracy and precision.

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

09



4.2. Comparison of phase error correction
methods in a case study

To test phase correctionmethods on a published real-world dataset,
we employed a glucose detection case study. The glucose range
spectrum plots (Supplement 8) confirm that the original input spectra
from the R package ASICSdata are well-phased, with the exception
of a diabetes sample. In this sample, all intensity values in the 4.63
ppm to 4.67 ppm range are negative, indicating the presence of phase
errors across the entire range. The phase correction method nonlinear
shrinkage (NLS) performs even better than the original input spectra,
with no non-phased peaks detected within the two glucose ranges of
interest (4.63 ppm to 4.67 ppm and 5.22 ppm to 5.26 ppm).

The Pearson correlation coefficient heatmap in Figure 6A shows
that the eight phase error correction methods can be clustered into three
groups with a Pearson correlation coefficient cutoff of r≥ 0.80. The
largest cluster includes the original input and the nonlinear shrinkage
(NLS) method, as well as the two methods with multiple models
(MPC_DANM and MPC_EMP). Their estimations of glucose areas
are similar, indicating that they perform comparably well.

In addition, Figure 6B shows that only the NLS method
demonstrated a significant difference (p= 0.0476) in glucose peak
range areas between the diabetes and control groups. The original
input spectra from ASICSdata and the MPC_DANM method
produced marginally significant p-values, while the SPC_DSM
method had a p-value of 0.09, which was also marginally
significant but with an effect in the opposite direction. This
suggests that SPC_DSM was the least effective method in
detecting differences between the diabetes and control groups.

Based on our case study, we conclude that the nonlinear
shrinkage (NLS) method performed the best, followed by the
multiple model approach with our new minimization function -
delta absolute net minimization (MPC_DANM).

4.3. Comparison of phase error correction
methods in metabolite spike-in experiments

We assessed seven phase error correction methods by
examining the distribution of metabolite concentration errors
(see Supplement 16, Figure 7A–C).

In the single metabolite spike-in experiment, Figure 7A shows
that NLS and the two multiple model approaches, MPC_DANM and
MPC_EMP, have narrower L1 error ranges than the other methods,
while SPC_DSM is the worst. In the multiple metabolite spike-in
experiments, SPC_DANM, NLS, SPC_EMP, and SPC_AAM
have narrower error ranges than MPC_DANM and MPC_EMP,
while SPC_DSM remains the worst based on the L1 error
distribution (Figure 7B). The same trend was observed when both
single and multiple metabolites were combined (Figure 7C).

Next, we examine the correlation of the performance of these seven
methods. The correlation heatmap of the seven phase error correction
methods, based on metabolite concentration errors, revealed that
the four best-performing methods, MPC_EMP, MPC_DANM,
SPC_DANM, and NLS, were highly correlated with each other
compared to other single model-based methods (Supplement 17).

We then compared the L2 errors of the seven phase error
correction methods. In the single metabolite spike-in experiment,
the multiple model approach optimized with delta absolute net
minimization (MPC_DANM) had the smallest L2 errors (Table 1).
F-tests showed significant differences between MPC_DANM and
all other methods except for MPC_EMP, which is also based on
multiple models (Table 1).

In the multiple metabolite spike-in experiment, a single model
with delta absolute net minimization (SPC_DANM) had the smallest
L2 errors (Table 2). F-tests showed significant differences between
this method and all other methods except the nonlinear shrinkage
(NLS) (Table 2).

Figure 6
Comparisons of phase error correction methods in the case study based on two combined glucose peak range areas

A Pearson’s correlation coefficient heatmap among different methods. The corresponding correlation coefficients with p-values greater than
0.05 are crossed out. B Forest plots for linear regression models used to detect glucose area difference between T2DM and control groups.
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Figure 7
Distribution of errors for metabolite spike-in experiments

Violin plots with jittered data points of metabolite concentration estimation errors for the single spike-in experiment A, themultiple metabolite
spike-in experiment B, and the combination of both C To save space, extreme outliers from SPC_DSM have been omitted. Comparisons of
different methods against the method with the smallest L2 error for concentration estimation: D the single metabolite spike-in with a fixed
model, E themultiple metabolite spike-in with amixedmodel, and F the combination analysis of both the single andmultiple metabolite spike-
in with a fixed model.

Table 1
L1, L2, and F-test values for the single metabolite spike-in
experiment. MPC_DANM, the method with the smallest

L2 error, is used as the reference in the F-test
(Degrees of freedom= 170 for all methods)

Method L1 error L2 error F P value (one tail)

SPC_AAM 187.9 730.6 9.65 < 0.0001***
SPC_EMP 149.96 435.06 5.75 < 0.0001***
SPC_DSM 445.16 3700.99 48.91 < 0.0001***
SPC_DANM 107.47 308.52 4.08 < 0.0001***
MPC_DANM 75.45 75.68 1 0.5
MPC_EMP 78.37 83.38 1.1 0.2639
NLS 97.7 108.91 1.44 0.0091**

Table 2
L1, L2, and F-test values for the multiple metabolite spike-in
experiment. SPC_DANM, themethodwith the smallest L2 error,
is used as the reference in the F-test (Degrees of freedom= 197

for all methods)

Method L1 error L2 error F P value (one tail)

SPC_AAM 290.44 978.84 2.12 < 0.0001***
SPC_EMP 326.43 1274.57 2.76 < 0.0001***
SPC_DSM 1357.75 28002.27 60.55 < 0.0001***
SPC_DANM 165.16 462.49 1 0.5
MPC_DANM 210.95 769.38 1.66 0.0002***
MPC_EMP 217.15 879.89 1.9 < 0.0001***
NLS 185.24 563.83 1.22 0.0826
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When we combined the results of these two experiments,
Table 3 showed that NLS had the smallest L2 error. F-tests
showed that all other methods were significantly different from
NLS except SPC_DANM.

Multivariablemodel analyses were conducted not only on phase
correction methods but also on metabolites and urine samples, as
detailed in Supplement 18. This supplement includes all modeling
results for the single metabolite spike-in experiment, the multiple
metabolite spike-in experiment, and the combination of these two
experiments. Forest plots in Figure 7D-E display the comparison
of methods after adjusting for urine sample and metabolite effects
in the complete models. The method with the smallest L2 error

was used as the reference level for each model. In the single
metabolite experiment, none of the methods showed significant
differences from the multiple model approach with delta absolute
net minimization (MPC_DANM). In the multiple metabolite
experiment, only the single model optimized with dispersion
(SPC_DSM) showed a significant difference when compared to
the single model optimized with delta absolute net minimization
(SPC_DANM). When both experiments were combined, none of
the methods, except SPC_DSM, showed significant differences
from the nonlinear shrinkage (NLS) method.

Although Figure 7 shows the distribution of errors from the
experiments and provides a good visualization of errors, it treats
all error units equally. In contrast, squared errors can penalize
errors that are further from zero. This distinction is why the sum
of squared errors (L2 errors) is widely used in statistics and serves
as the basis for the main comparisons in Tables 1–3.

Figure 8 complements this analysis by illustrating the
distribution of individual squared errors from the metabolite
spike-in experiments. While the L2 error, as shown in Tables 1–3,
aggregates these squared errors into a single measure, Figure 8
focuses on the spread and variability of the errors. Across all
scenarios—the single spike-in experiment (Figure 8A), the
multiple spike-in experiment (Figure 8B), and the combined
experiments (Figure 8C)—NLS consistently exhibits the smallest
ranges of squared errors. This indicates that NLS produces more
consistent, smaller error values across experiments, even though
its L2 error is not always the smallest as shown in Tables 1–3.
The narrow range of squared errors shown in Figure 8 highlights

Table 3
L1, L2, and F-test values for the combination of both the single
and multiple spike-in experiments. NLS, the method with the
smallest L2 error, is used as the reference in the F-test (Degrees

of freedom= 368 for all methods)

Method L1 error L2 error F P value (one tail)

SPC_AAM 478.35 1709.44 2.54 < 0.0001***
SPC_EMP 476.38 1709.63 2.54 < 0.0001***
SPC_DSM 1802.91 31703.3 47.13 < 0.0001***
SPC_DANM 272.63 771.01 1.15 0.0957
MPC_DANM 286.4 845.06 1.26 0.0145*
MPC_EMP 295.51 963.28 1.43 0.0003**
NLS 282.94 672.74 1 0.5

Figure 8
Distribution of squared errors for metabolite spike-in experiments

Violin plots with jittered data points of squared errors in metabolite concentration estimation for the single spike-in experiment A, the multiple
metabolite spike-in experiment B, and the combination of both C. To save space, extreme outliers from SPC_DSM have been omitted.
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the stability of NLS in minimizing large deviations, which is an
important property when assessing method reliability.

Based on our statistical analysis of metabolite spike-in
experiments, we consistently observed that SPC_DSM performed
worse compared to the other methods across multiple scenarios.
This consistent underperformance supports our conclusion that
SPC_DSM is the least effective method among the seven we
tested. On the other hand, our new optimization function with a
single model (SPC_DANM) or multiple models (MPC_DANM),
as well as nonlinear shrinkage (NLS) are good performers.

5. Discussion

Phase error correction is a critical pre-processing step in NMR.
Existing methods typically use a single phase error correction model
for the entire spectrum and heavily depend on the optimization
function. In this paper, we introduced two new approaches,
nonlinear shrinkage (NLS) with full information and MPC
with multiple-phase error correction models, along with a new
optimization function called delta absolute net minimization
(DANM). NLS and DANM represent our key innovations, while
MPC modifies existing models by dividing the spectrum into peak
ranges and applying a phase correction model to each range.

Simulations and the case study demonstrated that NLS was the
top performer, significantly faster than other methods, as it does not
require any optimization process. In the metabolite spike-in
experiments, MPC_DANM and SPC_DANM were the top
performers based on L2 errors in the single spike-in and multiple
spike-in experiments, respectively. However, when the results of
both experiments were combined, NLS emerged as the best
method based on L2 errors. Furthermore, when examining the
distribution of squared errors, NLS consistently exhibited the
narrowest squared error ranges across the single spike-in, multiple
spike-in, and combined experiments.

Although the results from the metabolite experiments were
more complex compared to the simulations, we conclude that
NLS remains the most reliable method for phase error correction
and is also the fastest. Its advantage lies in avoiding the inherent
approximations of optimization, relying instead on the solid
theoretical support we demonstrated mathematically in Section 2.

Our new optimization function, DANM, also showed strong
results in enhancing phase error correction, whether applied to
single or multiple models. This highlights the versatility of
DANM, whose performance remained consistent regardless of the
number of models used. Both NLS and DANM offer promising
potential to be extended beyond the 1D data used here to 2D and
3D NMR applications.

In contrast, our modified MPC approach did not show the
significant performance gains we initially expected, and its
success is highly dependent on the optimization function used.
Therefore, we do not recommend MPC for general use.

SPC_DSM, on the other hand, performed the worst across all
simulations, the case study, and metabolite spike-in experiments.
As discussed in our phase error correction review [51],
minimizing the integral of the dispersion component can be
misleading. Ideally, when no phase error is present, the integral of
the dispersion component should be zero, but not necessarily
minimal. To address this, we suggested minimizing the absolute
integral instead [51]; however, this introduced a new problem—

non-differentiability at zero—resulting in poor convergence.
When we tested this revised version alongside the single-model
approach, SPC_DSM remained the worst performer (data not

shown). This shows the difficulty in effectively incorporating the
dispersion component into the optimization process.

The other two optimization functions, AAM and EMP,
performed better than DSM, though not as effectively as DANM,
with their performance being quite close.

While NLS does not rely on any optimization function, it also
does not consistently outperform other methods, as demonstrated in
our metabolite spike-in experiments. To further improve its
performance, we need to address potential issues related to sub-
range divisions. Although NLS should theoretically yield an ideal
real part, it depends on dividing the spectrum into peak ranges,
which can lead to non-smooth transitions between neighboring
ranges. Additionally, within the same peak range, smaller peaks
may shrink excessively. Overall, dividing a spectrum is
challenging due to noise, cutoffs, and overlapping signals.

All the methods discussed in this paper, including additional
options, are available in the R package NMRphasing, accessible via
GitHub (https://github.com/ajiangsfu/NMRphasing) and CRAN
(https://cran.r-project.org/web/packages/NMRphasing/index.html).

Looking forward, although we did not apply neural networks in
this research, our phase error correction review [51] highlights the
challenges of using neural networks, especially the reliance on
optimization functions based on squared or absolute errors, which
require ground truth that is not available in real-world MR data.
This limitation explains why phase errors can still persist even
after adjustments with neural networks.

Despite the limitations of each individual approach, combining
them could lead to significant improvements in phase error
correction. For instance, instead of using L1 or L2 errors for
neural network training, we could apply MR-specific optimization
functions like DANM, thereby eliminating the need for ground
truth. Alternatively, we could use NLS-phased MR data as
pseudo-ground truth. Although NLS is not perfect, it offers the
closest approximation for well-separated peaks in real-world MR
data. The future direction lies in integrating the strengths of
multiple approaches while mitigating their individual weaknesses.
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