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Abstract: Nuclear Magnetic Resonance (NMR) spectroscopy is a highly sensitive analytical technique essential for precise 
molecular identification and quantification. However, accurate results depend on effective pre-processing to correct for various 
types of errors. Phase error correction, in particular, is crucial for ensuring the reliability of NMR data. Current methods often rely 
on a single linear model, which may not adequately address all types of phase errors. As a result, this limitation frequently requires 
manual intervention, making the process both time-consuming and prone to errors. To address these limitations, we propose three 
modelling approaches for NMR phase error correction: nonlinear shrinkage, multiple models, and a new optimization function 
called delta absolute net minimization (DANM). Our comparison of seven methods revealed that nonlinear shrinkage outperformed 

others in both simulated spectra and a diabetes study, followed by multiple models with DANM. Additionally, our spike-in 
experiments demonstrated that DANM performed quite well in both single and multiple models. Our nonlinear shrinkage approach 
is a simple yet effective solution. We provide an open-source R package, NMRphasing, available on CRAN (https://cran.r-
project.org/web/packages/NMRphasing/) and on GitHub (https://github.com/ajiangsfu/NMRphasing). 
 
Keywords: NMR, phase error correction, nonlinear shrinkage, optimization, delta absolute net minimization (DANM) 

 

1. Introduction 
 

Nuclear magnetic resonance (NMR) applies the 
electromagnetic properties of atomic nuclei to diverse fields, 
including chemistry, physics, biology, material science, and 
engineering [1-22]. When samples are exposed to a strong 
magnetic field and a radio frequency pulse, certain atomic 
nuclei are temporarily excited to a higher energy state. As 
these nuclei relax back to their original, lower energy state, 
they emit radio frequency signals, which are detected and 

used to produce raw time-domain data [23]. These data are 
then Fourier transformed to produce frequency-domain 
spectral data, where the peaks are used to identify and 
quantify the molecules within the sample. However, if left 
uncorrected, the shapes and locations of the spectral peaks 
can be inaccurate due to unavoidable errors during signal 

acquisition.  
 
To address these challenges, this paper introduces NMR 
signals and phase error issues, reviews current correction 
methods, proposes new correction approaches, and evaluates 
the proposed correction approaches through simulations, a 
case study, and two spike-in experiments. 

 
 

1.1. NMR signals and phase error challenges 

 
NMR raw data are recorded with complex numbers to 
represent nuclei energy changes in two orthogonal 
directions, as shown in Figure 1A. Phase, which refers to the 
timing or position within a time-domain signal, is an 
important source of error in NMR. Phase is defined as the 
angle between a data point’s vector and the x-axis in the 
complex plot, as illustrated in blue in Figure 1A. 
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Mathematically, it is expressed as the inverse tangent of the 
ratio of the imaginary part to the real part: 

𝑃ℎ𝑎𝑠𝑒 =  tan−1 𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑅𝑒𝑎𝑙
. 

 

Figure 1 

Illustration of NMR data with a simulated signal 
 

 
(A) Time domain complex plot. X-axis: Real amplitude, Y-
axis: Imaginary amplitude. (B) Frequency domain complex 
plot. X-axis: Absorption - real intensity, Y-axis: Dispersion 

- imaginary intensity. In both (A) and (B), arrows show 
vectors of example data points, and the angles between the 
vectors and the X-axes are the corresponding phase values. 
(C) Time domain - Real part of the signal. (D) Time domain 
- Imaginary part of the signal. (E) Time domain - Phase. The 
X-axis in (C-E) is time in seconds. (F) Frequency domain - 
Absorption. (G) Frequency domain - Dispersion. (H) 
Frequency domain - Phase. The X-axis in (F-H) is frequency 

(Hz), where 1 Hz is cycles per second. Red dots in (A, C-E) 
indicate the first data point in the time domain, while orange 
dots in (B, F-H) show the peak maximum point. 
 
With a Fourier transform, the time-domain data in Figure 1A 
are converted into frequency-domain data (Figure 1B). 
Frequency-domain data are also represented by complex 
numbers, where the real part corresponds to absorption and 

the imaginary part corresponds to dispersion. The definition 
of phase remains the same in the frequency domain, still 
representing the angle between a data point's vector and the 
x-axis, as shown in purple in Figure 1B. 
 
Furthermore, each component of the time-domain data 
(Figure 1A) can be plotted separately, resulting in the real 
part, imaginary part, and phase plots shown in Figures 1C-

E. The red starting point in Figure 1A corresponds to the 
maximum amplitude in the real part (Figure 1C), with an 
imaginary amplitude of zero (Figure 1D) and a phase value 

of zero (Figure 1E), as: tan-1( 
0

max(amplitude)
) = tan-1(0) = 0.  

Similarly, for the frequency-domain data (Figure 1B), we 
can plot the absorption, dispersion, and phase separately, as 

shown in Figures 1F-H. The orange point with the maximum 
absorption value in Figure 1B corresponds to the maximum 
absorption shown in Figure 1F, with zero dispersion in 
Figure 1G and a phase value of zero in Figure 1H. 
 

Phase errors represent discrepancies between the measured 
and true phase values [24]. These errors primarily arise from 
factors such as field distortions and eddy currents [25], as 
well as baseline correction processes that may inadvertently 
alter phase values. Noise and distortions during signal 
acquisition further contribute to phase errors, impacting the 
accuracy of phase measurements [24]. 
 

Phase cycling has been proposed as an efficient method for 
addressing phase errors [25, 26]. However, repeating 
experiments with multiple phase pulses is often too costly, 
and such data are rarely available. 
 
There are three types of phase errors. Zero-order phase errors 
introduce a constant phase shift across the spectrum, while 
first-order phase errors cause a linear phase shift that varies 

with frequency. Nonlinear phase errors, on the other hand, 
produce phase shifts that vary in a more complex, nonlinear 
manner as the frequency changes [27].  
 
In ideal conditions, when there are no phase errors, NMR 
signal analysis can focus on the real part in the frequency 
domain because real part peaks are sharp, concentrated, and 
easier to quantify, as shown in Figure 1F. The position of the 

absorption peak is used for molecule identification, while the 
area under the peak's curve is used for quantification. Even 
when multiple signals are present, as shown in Figures 2A-
D, the absorption spectrum (Figure 2A) is still relied upon 
for identification and quantification. 
 

 

Figure 2 

Illustration of NMR phase errors in the frequency 

domain 
 

 
Panels A-D show simulated frequency domain absorption, 

dispersion, phase, and phase error plots without phase errors. 
Panels E-H show simulated frequency domain absorption, 
dispersion, phase, and phase error plots with phase errors.  
 
However, real-world NMR data often contain phase errors, 
which distort the real parts and lead to a nonlinear 
combination of pure absorption and pure dispersion. This 
results in distorted absorption peaks, as shown in Figure 2E. 

The observed dispersion is also affected, as seen in Figure 
2F. The phase pattern (Figure 2G) deviates significantly 
from the ideal phase pattern (Figure 2C). These phase errors 
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(Figure 2H) affect both the accuracy of peak location and the 
area under the curves (Figure 2E), making molecule 
identification and quantification unreliable. 
 
Correcting phase errors before analysis is essential to ensure 

accurate results [24, 28]. Although various correction 
approaches have been proposed, there is no consensus on a 
universal protocol, highlighting the challenges posed by 
phase errors [29]. The lack of standardized correction 
methods necessitates further research to develop effective, 
tailored strategies that can adapt to the specific 
characteristics of different datasets. In the following 
sections, we will review existing phase error correction 

methods and propose our own approaches. 

1.2. Current phase Error correction methods 
 

Most existing methods for NMR phase error correction rely 
on a linear model to address phase errors [26, 30-41]. These 
methods account for zero-order and first-order phase errors 
by assuming a linear relationship between phase error and 
frequency. In NMR, frequency represents both the number 
of cycles per second in the time domain and the position of 
a signal's peak in the frequency domain. 
 
For example, in Figure 1C, a signal with a frequency of 10 

cycles per second corresponds to a peak at 10 Hz (Hertz, 
indicating cycles per second) in Figure 1F. Frequency-
domain data are indexed by frequency, with a linear 
relationship between the data index (from 1 to N, where N is 
the total number of data points) and frequency. To simplify 
analysis, a scaled data index is often used to represent 
frequency in phase error correction models, expressed as 
[31]: 

 
Pc ~ b0 + b1 × f                                 (1) 

 
where f is the scaled data index related to frequency, and b0  

and b1 represent the intercept and slope, respectively.  
 
However, this linear assumption fails to address nonlinear 
phase errors, as illustrated in Figure 2H. While earlier 

computational limitations hindered the development of more 
complex models, recent efforts have proposed higher-order 
polynomial models to incorporate local phase variations [27, 
39, 42-47]. Unfortunately, these models often fall short in 
fully correcting phase errors, particularly in the presence of 
baseline bias and noise. Furthermore, the inclusion of 
higher-order terms in linear models tends to be unreliable 
[27]. 

 
Since the dependent variable, the phase correction value 
(Pc), is unobservable, regression techniques are not 
applicable, making optimization necessary. This 
optimization process can be slow. To accelerate it, a recent 
approach involves optimizing a linear phase correction 
model using only two peaks [36]. While this method 
increases speed, it is less efficient, leading us to advise 
against its use. 

Many algorithms employ various optimization functions to 
conduct the optimization process efficiently while 

maintaining good quality [23, 30-33, 35, 48-50]. However, 
no single optimization function can effectively optimize the 
parameters of linear models to correct all phase errors. 
 
Of the 20 optimization functions we reviewed [51], 15 

primarily work with a linear model, with a few incorporating 
higher-order terms. These functions can be grouped as 
follows: 

(1) Integral of the imaginary component [52] 
(2) Integral of the real or absolute real part 

[32, 43, 53, 54] 
(3) Entropy-based [31, 52] 
(4) Absolute errors or squared errors [30, 34, 35, 38, 

39, 54, 55] 
(5) Bayesian approach [49] 
(6) Pearson correlation between absorption and 

magnitude spectra [40] 
 
Approaches based on absolute or squared errors rely on 
ground truth, which is difficult to obtain for real-world data. 
Bayesian approaches require extensive model assumptions, 

and Pearson correlation is inadequate because the 
relationship between absorption and magnitude spectra is 
nonlinear. 
 
Given the limitations of these three groups of optimization 
functions, we have decided to focus our analysis on the 
remaining three groups—namely, the integral of the 
imaginary component, the integral of the real or absolute real 

part, and entropy-based methods—as a basis for comparing 
them with our new approaches. 
 
Studies suggest that entropy-based methods [31] often 
outperform other approaches [56, 57]. However, even these 
methods fail to comprehensively correct all phase errors. 
 
In summary, current phase error correction methods face 
three primary challenges: 

• They often rely on only one part of complex data, 
resulting in information loss. 

• A single linear model, even with higher-order 
terms, cannot fully correct all phase errors. 

• No individual optimization function can 
adequately optimize linear model parameters to 
correct all phase errors. 

 

As a result, manual adjustments are frequently necessary 
following automated phase correction or as a standalone 
process [50, 58-62]. However, manual phase error correction 
is time-consuming and relies on the personal experiences of 
experts, making it difficult to reproduce and potentially 
unreliable. 
 
Recently, neural networks have been applied to phase error 

correction [45, 47, 63-65]. While this approach shows 
promise in addressing nonlinear phase errors, phase errors 
can vary significantly based on NMR machines, sample 
types, and measurement conditions [27]. Without a diverse 
and extensive training dataset, neural networks struggle to 
generalize effectively. 
Furthermore, for neural networks to be effective, they 
require a well-defined loss function. Current loss functions 
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are typically based on absolute or squared errors, which rely 
on ground truth spectral data and their associated phases, 
often unavailable. Simulations or manually phased spectra 
are frequently used as substitutes for ground truth [45, 66], 
but they serve only as approximations. 

 
These issues can result in noticeable phase errors that may 
persist even after neural network-based phasing [63, 65]. 
 
In this study, we concentrate on developing phase correction 
models and a new optimization function. Both approaches 
can be employed for traditional statistics-based phase error 
correction and integrated with neural networks to further 

improve phase error correction. 

2. Approaches 
 

We propose two novel modeling approaches to overcome 
specific limitations in current phase error correction 
methods: (1) a nonlinear intensity shrinkage method that 
utilizes both absorption and dispersion spectra, and (2) 
multiple models to handle different signals separately. We 
also present a new optimization function that simultaneously 
considers both positive and negative values as well as peak 
shapes. 
 

 

2.1. Nonlinear intensity shrinkage 
 

While traditional methods struggle to correct phase errors 
through optimization, our shrinkage method leverages 
theoretically phase-error-free spectra to estimate the real part 
of signals without requiring a complex optimization process 
for phase error correction. 
 
Absorption (A) and dispersion (D) spectra represent the real 
and imaginary parts of NMR frequency domain data, 

respectively. Two important quantities in our model, the 
magnitude (M) and power (P) spectra, are derived from these 
components. The magnitude (M) is the absolute value of a 

complex number: √𝐴2 + 𝐷2 , and the power (P) is the 
squared value of M, reflecting the sum of the squares of the 
real (A) and imaginary (D) parts. Both M and P are 

theoretically free of phase errors and relate to A and D via 
the Pythagorean theorem 
(https://en.wikipedia.org/wiki/Pythagorean_theorem): 
 

P = M2 = A2 + D2                             (2) 
 

At any index k, and a phase value at k: 𝜃𝑘, we have: 

𝐴𝑘 = 𝑀𝑘 cos𝜃𝑘 

𝐷𝑘 =  𝑀𝑘 sin𝜃𝑘 
Using equation (2), we can express 𝑃𝑘 as: 

𝑃𝑘 = 𝐴𝑘
2 + 𝐷𝑘

2 

= (𝑀𝑘 cos𝜃𝑘)
2 + (𝑀𝑘 sin 𝜃𝑘)

2 

= 𝑀𝑘
2((cos𝜃𝑘)

2 + (sin𝜃𝑘)
2) 

= 𝑀𝑘
2 

 
This proves that P and M are independent of the phase θ, and 
thus, they are not affected by phase errors in theory. 

 
Figure 3A demonstrates the comparable shapes and widths 
of the power peak and its corresponding absorption peak, 
while the magnitude peak matches the height of its 
corresponding absorption peak. Additionally, as shown in 

Figure 3B, the calculation formula for the full width at half 
maximum (FWHM), which is used to measure two times the 
shape parameter (scale) for a Cauchy-Lorentzian function 
often employed to describe a phase error-free signal, is 
identical for both power and absorption peaks. 
 

Figure 3 

Comparison of different peak modes 

 

 
(A) Absorption, magnitude, and power modes of a simulated 
ideal peak. (B) Full width at half maximum (FWHM) for 

ideal absorption, magnitude, and power modes. The plot is 
re-generated based on the concept from previous research 
[67]. t represents the relaxation time. 
 
 
Based on these characteristics, our nonlinear intensity 
shrinkage method allows one to derive absorption spectra 
from phase-free magnitude and power spectra, enabling 

phase error correction without optimization. Our shrinkage 
method estimates absorption peaks within sub-ranges 
defined by major peaks, utilizing continuous wavelet 
transform-based pattern matching (Supplement 1). A 
shrinkage formula is employed to estimate absorption 

intensity to (𝐴′𝑘𝑙
) for each data point within a sub-range: 

 

𝐴′𝑘𝑙
= 𝑃𝑘𝑙

×
max (𝑀𝑙⃗⃗⃗⃗  ⃗)

max (𝑃𝑙⃗⃗⃗⃗ )
                           (3) 

 

In this formula, 𝑃𝑘𝑙
 represents the power intensity for the kth 

data point within the lth sub-range of a spectrum, 

max(𝑀𝑙
⃗⃗ ⃗⃗ ) represents the maximum magnitude intensity for 

the lth sub-range, and max (𝑃𝑙
⃗⃗  ⃗)  represents the maximum 

power intensity for the lth sub-range. The shrinkage process 
is applied separately to each sub-range, resulting in a 
nonlinear shrinkage for the entire spectrum. Detailed 
implementation for the shrinkage method can be found in 
Supplement 1. 

 

Figure 4 

Relationships among simulated absorption, dispersion, 

https://en.wikipedia.org/wiki/Pythagorean_theorem
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and magnitude 

 

 
 
(A) DISPA (dispersion vs absorption) circle: The x-axis 
shows absorption and the y-axis shows dispersion. The line 
from the black point to the origin (0,0) indicates a 45-degree 

phase, with its length representing magnitude.  
(B) Two Overlapping Peaks: The left peak's magnitude 
equals its absorption height, while the right peak's magnitude 
is slightly taller, with slightly different ppm locations. 
 
 
Mathematical proof 
 

The mathematical basis for the nonlinear shrinkage method 
can be illustrated using Figure 4A. The DISPA (dispersion 
vs. absorption) circle for a single peak without any error is 
depicted, with the center of the circle on the x-axis and its 
radius being maxM/2. The circle function is: 

(𝑥 − 𝑚𝑎𝑥𝑀/2)2 + 𝑦2 = (𝑚𝑎𝑥𝑀/2)2 
This can be rearranged to:  

→  𝑥2 + (𝑚𝑎𝑥𝑀/2)2 − 𝑥 ∙ 𝑚𝑎𝑥𝑀 + 𝑦2 =  (𝑚𝑎𝑥𝑀/2)2 

→  𝑥2 + −𝑥 ∙ 𝑚𝑎𝑥𝑀 + 𝑦2 =  0 

→ 𝑦2 = −𝑥2 +  𝑥 ∙ 𝑚𝑎𝑥𝑀 

→ 𝑦2 = 𝑥(𝑚𝑎𝑥𝑀 − 𝑥)  (4)                        
In the above, x represents absorption, y represents dispersion, 
and maxM represents the peak height. 
 
Furthermore, we always have the following based on 
equation (2): 

𝐴𝑘
2 + 𝐷𝑘

2 = 𝑀𝑘
2 

Using annotation: Ak → x, Dk → y, Mk → M, we have: 

𝑥2 + 𝑦2 = 𝑀2 

                                  → 𝑦2 = 𝑀2 − 𝑥2             (5) 
By combining equations (4) and (5), we obtain: 

𝑥(𝑚𝑎𝑥𝑀 − 𝑥) = 𝑀2 − 𝑥2 

→  𝑥 ∙ 𝑚𝑎𝑥𝑀 − 𝑥2 = 𝑀2 − 𝑥2 

→ 𝑥 ∙ 𝑚𝑎𝑥𝑀 = 𝑀2 
Thus: 

 → 𝑥 = 𝑀2/𝑚𝑎𝑥𝑀         (6) 
Here, maxM is the maximum magnitude (i.e., the peak height 
for the non-overlapping peak, which is a constant for a given 
peak range). Both x and M are variables representing values 
in the absorption and magnitude spectra, respectively. 
 

For each point kl in the lth sub-range, if we replace x with 

𝐴′𝑘𝑙
, write maxM more explicitly as max (𝑀𝑙

⃗⃗ ⃗⃗ ), and replace 

M2 with the power value 𝑃𝑘𝑙
; equation (6) can be rewritten 

as follows: 

𝐴′𝑘𝑙
= 𝑃𝑘𝑙

/max (𝑀𝑙
⃗⃗ ⃗⃗ ) 

= 𝑃𝑘𝑙
×

max (𝑀𝑙
⃗⃗ ⃗⃗ )

max (𝑀𝑙
⃗⃗ ⃗⃗ )

×
1

max (𝑀𝑙
⃗⃗ ⃗⃗ )

 

                       = 𝑃𝑘𝑙
×

max (𝑀𝑙⃗⃗⃗⃗  ⃗)

(max (𝑀𝑙⃗⃗⃗⃗  ⃗))2
 

Since  (max (𝑀𝑙
⃗⃗ ⃗⃗ ))2 = max (𝑃𝑙

⃗⃗  ⃗)), we obtain: 

                          𝐴′𝑘𝑙
= 𝑃𝑘𝑙

×
max (𝑀𝑙⃗⃗⃗⃗  ⃗)

max (𝑃𝑙⃗⃗⃗⃗ )
                                        

This confirms our proof of formula (3).  
 
The ratio on the right side of formula (3) represents a 
shrinkage formula because for any number C, if C > 1, C/(C2) 

= 1/C < 1. The shrinkage factor 
max (𝑀𝑙⃗⃗⃗⃗  ⃗)

max (𝑃𝑙⃗⃗⃗⃗ )
 acts as a constant 

coefficient applicable for a given sub-range. The local 
maximum in a magnitude sub-range is positive and almost 
always bigger than 1 (In theory, it could be <=1, but we have 

not observed this situation in real nuclear magnetic 

resonance (NMR) data). Therefore, we consider  
max (𝑀𝑙⃗⃗⃗⃗  ⃗)

max (𝑃𝑙⃗⃗⃗⃗ )
 to 

represent linear shrinkage transformation.  
 
Our approach operates on multiple sub-ranges by applying 
linear shrinkage within each sub-range; however, it 
represents nonlinear shrinkage for the entire spectrum, as 
each sub-range has its own shrinkage factor, which does not 
follow linear correlation. 
 

When multiple peaks exist within a given range, the tallest 
peak retains the same height between its absorption peak and 
its magnitude peak. For nearby partially overlapping peaks, 
their absorption peaks are typically slightly shorter than their 
corresponding magnitude peaks, and the local maxima of 
these absorption peaks shift slightly towards the largest 
maximum peak among the overlapping peaks. This position 
change is minimal, typically just one index difference for the 

right-side peak illustrated in Figure 4B. 
 
The minor height discrepancy between magnitude and 
absorption peaks for non-maximum peaks can be partially 
addressed by separating the spectra into sub-ranges based on 
major peaks. For example, the two peaks in Figure 4B are 
combined into one sub-range. Consequently, each sub-range 

undergoes shrinkage with the factor 
max (𝑀𝑙⃗⃗⃗⃗  ⃗)

max (𝑃𝑙⃗⃗⃗⃗ )
 applied within 

its range. This guarantees that the shrinkage factors for non-
maximum peaks within the sub-range exceed those that 
would apply to each peak individually, resulting in slightly 

shorter estimated absorption peaks compared to their 
corresponding magnitude peaks. This aligns with our 
objective. Regarding the slight maximum location shift (e.g., 
one index difference for the small peak depicted in Figure 
4B), this represents a minor concern for high-resolution 
NMR data, where two neighboring indices possess very 
similar ppm values. 
 

Our proposed nonlinear intensity shrinkage method 
overcomes the limitations of existing linear models by 
leveraging phase-free magnitude and power spectra from the 
full NMR data, including both absorption and dispersion 
data, the later are typically discarded in traditional 
approaches. This enables the derivation of absorption spectra 
without the need for specific phase error correction models 
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or optimization function choices, streamlining and 
enhancing accurate phase error correction in NMR 
spectroscopy. 
 
While theoretically phase-error-free, real-world spectra may 

still contain other distortions, such as random errors, similar 
to those affecting all other variables. 
 
 

2.2. Multiple linear phase models 
 
In addition to the nonlinear intensity shrinkage method, we 
propose multiple linear phase correction models. While the 
nonlinear intensity shrinkage method is a novel approach 
that effectively addresses information loss and can handle 
nonlinear phase errors, the multiple linear phase models 

extend the capabilities of existing linear models specifically 
for addressing nonlinear phase errors. 
 
Our solution involves multiple models for phase error 
correction. These models operate on sub-ranges defined by 
major peak ranges, addressing phase errors within each sub-
range to effectively mitigate errors across all signals. Refer 
to Supplement 2 for more details. 
 

 

2.3. Optimization function: delta absolute net 

minimization (DANM) 
 
Traditional modeling techniques are ineffective for 
correcting phase errors because no single existing 

optimization function can adequately optimize model 
parameters to correct all phase errors. Current functions do 
not consider that an ideal signal peak should simultaneously 
have a maximum positive area and a minimum negative 
area, leading to suboptimal parameters and phased spectra. 
To improve performance, we propose a novel optimization 
function that minimizes the difference between the absolute 
and net areas under a curve: 
 

(�̂�, �̂�) = argmin
(𝑎,𝑏)

(∑ |𝐴𝑘
′ |𝑁

𝑘=1 − ∑ 𝐴𝑘
′𝑁

𝑘=1 )            (7) 

 

Here, (�̂�, �̂�) represents the optimal pair for the linear model 

parameters (a, b), while argmin
(𝑎,𝑏)

 denotes the action of 

finding the pair (a, b) that minimizes the function, thereby 

obtaining the optimal values for (a, b). 𝐴𝑘
′  is the observed 

absorption value at the k-th data point, and k ranges from 1 

to 𝑁, where N is the total length of the spectrum. 
 

Our new optimization function improves phase error 
correction by simultaneously minimizing the absolute area 
while maximizing the net area. This dual-objective strategy 
effectively addresses the limitations of existing functions, 
which struggle to balance positive and negative areas, 
ultimately providing a more accurate and reliable correction 
of phase errors. 

3. Materials and Methods 
 
Seven phase error correction methods are compared using 
simulated data sets, a case study, and metabolite spike-in 
experiments. 
 
 

3.1. Phase error correction methods  
 
As discussed earlier, many existing optimization functions 
have limitations when applied to phase error correction. To 
address these challenges, we focus on three primary 

functions used in traditional single linear phase correction 
models: the integral of the imaginary component, the integral 
of the absolute real part, and entropy. These functions, along 
with the most commonly used linear phase error correction 
model, serve as the foundation for comparing the new 
methods we introduce. 
 
We evaluated seven phase error correction methods, which 

include three existing methods (SPC_AAM, SPC_EMP, and 
SPC_DSM) and four new ones (SPC_DANM, 
MPC_DANM, MPC_EMP, and NLS). The seven methods 
are as follows: 

 SPC_AAM: A single phase correction model 
(SPC) with absolute area minimization (AAM) [32, 
33].  

 SPC_EMP: A single phase correction model 
(SPC) with entropy minimization and a negative 
peak penalty (EMP). Entropy is calculated as the 
negative sum of absolute intensity multiplied by 
the logarithm of absolute intensity. A single phase 
correction model (SPC) [52], with the negative 

peak penalty defined by the sum of squared 
negative values [32]. 

 SPC_DSM: A single phase correction model 
(SPC) with dispersion summation minimization 
(DSM) [52]. 

 SPC_DANM: A single phase correction model 
(SPC) with delta absolute net area minimization 
(DANM).  

 MPC_DANM: Multiple linear phase correction 
models (MPC) combined with delta absolute net 
area minimization (DANM).  

 MPC_EMP: Multiple linear phase correction 
models (MPC) entropy minimization and a 
negative peak penalty (EMP).  

 NLS: A nonlinear intensity shrinkage method. 
 

All methods, except NLS, rely on specific optimization 
functions to determine the optimal parameters for phase 
error correction. Detailed descriptions of the optimization 
functions and formulas for each method are provided in 
Supplement 3. Despite differences in the optimization 

functions or the use of single versus multiple models, the 
overall optimization process remains consistent across all 
methods, as outlined in Supplement 4. 
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3.2. Simulations 
 

3.2.1. Simulation methods 
 
To generate simulated data for comparing phase error 
correction methods, we began by creating an idealized 
spectrum of 76 peaks based on online metabolite features. 
We then designed three sets of simulated datasets based on 
this idealized spectrum: 

 Nset (noise set): 1,000 datasets with added noise. 

 NPset (noise and phase error set): 1,000 datasets 
with added noise and phase errors. 

 NPBset (noise, phase error, and baseline bias set): 
1,000 datasets with added noise, phase errors, and 
baseline bias. 

 
For a more detailed description of these simulations, please 
refer to Supplement 5. 
 

3.2.2. Method comparisons with simulated 

datasets 

 
We compared seven different methods and the naïve method, 
with no phase error correction (NPC). Graphical 
comparisons are detailed in Supplement 6. Using the two 
most commonly employed error metrics—L1 error (sum of 

absolute deviations) and L2 error (sum of squared errors)—
we assessed each method's performance against the true data. 
Furthermore, since all methods had the same sample size, we 
used the ratio of their L2 errors directly for F-tests to 
compare their variances, as detailed in Supplement 7. 
 
We then used a mixed-effect model to account for internal 
spatial correlations among peaks and peak ranges within a 

given spectrum, as well as correlations among spectra within 
a given simulation dataset. The model was designed to 
compare methods for phasing the spectra after adjusting for 
other variables as follows: 
 

Δ𝑌 ~ 𝑋1 + 𝑋3 + (1|𝑋2/𝑋4) +  𝐸           (8) 
 
Here, ΔY = Y – YI  represents the estimation error, where Y is 
the estimated peak height or peak range area Y, and YI is the 
corresponding value based on the idealized spectrum. X1 is a 

factor representing a phase correction method, X2 denotes a 
type of simulated dataset (Nset, NPset, or NPBset), X3 
identifies the peak or peak range location, and X4 identifies 
the simulated spectra. The random effect structure (1|X2/X4) 
accounts for variability due to different simulation datasets 
(X2) and nested effects of spectra (X4) within each dataset 
(X2), while E captures random error in the model. To 
implement this model in R (https://www.r-project.org/) 

based on the lme4 package, use the following example code: 
 
library(lme4) 

model <- lmer(DeltaY ~ X1 + X3  

              + (1|X2/X4), data = dat) 

 
To obtain 95% confidence intervals, we used the sim  
function in the R package arm (https://cran.r-

project.org/web/packages/arm/index.html) to generate 

10,000 simulations. Standard deviations for these 
simulations were then calculated based on their coefficients. 
 

 

3.3. A case study 
 
The goal of this case study was to evaluate phase error 
correction methods for detecting glucose concentration 
differences between healthy individuals and those with 
early-stage type 2 diabetes mellitus (T2DM) using NMR 
data. NMR spectra from 25 healthy volunteers and 25 T2DM 
patients were obtained using the ASICSdata R package [68], 

sourced from the MetaboLights database 
(https://www.ebi.ac.uk/metabolights/, study MTBLS1), and 
pre-processed with ACD/1D NMR Manager 8.0 [69]. 
 
Our focus was specifically on comparing glucose levels 
using NMR spectra, despite the availability of more direct 
measurement methods in hospital laboratories or portable 
devices. This approach enabled us to evaluate how 

effectively the phase error correction methods detect subtle 
variations in glucose levels at early stages. We evaluated 
seven phase error correction methods alongside the original 
ASICSdata phased with ACD/1D NMR Manager 8.0, 
focusing on two glucose multiplets defined by their ranges: 
4.63-4.67 ppm and 5.22-5.26 ppm, as identified in 
ASICSdata (Supplement 8). To improve area estimation 
stability, we combined the areas of these multiplets. 

 
Methods were clustered based on glucose peak area 
correlation coefficients, and linear regression models were 
employed to detect differences in glucose area between 
diabetics and non-diabetics. 
 

 

3.4. Metabolite spike-in experiments 
 
Simulation studies simplify phase error correction method 
comparisons but may not accurately represent real NMR 
data. Direct comparison of methods using real NMR data is 
challenging due to the absence of a phase error-free 
spectrum. To address the limitations of both simulation 
studies and real NMR case studies, we performed spike-in 

experiments with eight metabolites in three commercial 
urine samples. Single and Multiple spike-in experiments 
evaluated phase error correction methods by comparing 
concentration estimates with known values. 
 
In the single spike-in experiment, creatinine was spiked in at 
12 different concentration levels (0-15 mM) to obtain peak 
area to concentration transformation coefficients. The other 

seven metabolites were spiked in at six different 
concentration levels (0-3 mM), and a non-spike-in spectrum 
was included as a reference (Supplement 9). 
 
In the multiple spike-in experiment, we selected three non-
zero concentration levels, including low, medium, and high 
levels for each metabolite. For creatinine, the actual 
concentrations for the three levels were 0.5, 5, and 10 mM, 
while for the other seven metabolites, the concentrations 

were 0.25, 1, and 3 mM. A concentration level (low, 

https://cran.r-project.org/web/packages/arm/index.html
https://cran.r-project.org/web/packages/arm/index.html
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medium, or high) was randomly selected for each of the eight 
metabolites, resulting in six distinct concentration 
combinations. The concentrations were manually adjusted to 
ensure balance, leading to six final concentration 
combinations for the eight metabolites (Supplement 9).  

 
Details on sample preparation for 1H NMR analysis, 
spectroscopy data acquisition, and preprocessing can be 
found in Supplement 9. One of us (AG) defined the range for 
each metabolite, which could include a single peak or a 
multiplet. The areas under the curves for these metabolites 
were then calculated within these defined ranges. To prevent 
negative concentration estimates, we computed the signal 

areas for the metabolite spike-in experiments using absolute 
values. This approach ensured that concentration values 
remained positive, making the results more meaningful and 
interpretable. 
 
We used both creatinine peak ranges in the single metabolite 
spike-in experiment to estimate the area and calculate the 
coefficient for determining concentration. For the multiple 

spike-in experiment, we applied the same area-to-
concentration transformation coefficient obtained from the 
single metabolite experiment with creatinine. To ensure 
consistency, we used only one creatinine peak in the multiple 
spike-in experiment, similar to other metabolites. 
Specifically, we selected the peak with three protons at 3 
ppm for estimating both the area and concentration. 
 

We compared the seven phase error correction methods 
using concentration estimation error distribution patterns, 
correlation heatmaps, L1 and L2 errors, F-test statistics, 
fixed and mixed models. In the single metabolite spike-in 
experiment, we ignored spectrum information and used a 
fixed effect model because each spectrum contained only 
one metabolite, leaving us no choice. In the multiple 
metabolite spike-in experiment, we used a mixed effect 
model to address correlations among multiple metabolites 

within the same spectrum, which is preferable to a fixed 
effect model that treats each metabolite independently. 
When combining the results, we had to use a fixed effect 
model due to the single metabolite experiment's design. 
Although this is not ideal for the multiple metabolite 
experiment, it is still reasonable and allows for an integrated 
analysis that adjusts for differences between the 
experiments. For additional details on the experimental 

design and data analysis methods used in the metabolite 
spike-in experiments, please refer to Supplement 9. 

4. Results  
 

4.1. Comparison of phase error correction 

methods in simulations 
 
We compared different phase error correction methods using 
graphic comparisons on simulation data sets. We compared 
peak height error (Supplement 10), peak range error 

(Supplement 11), and point-to-point intensity error 
(Supplement 12), and all metrics showed that the nonlinear 
intensity shrinkage (NLS) method performed the best. 

Figure 5 

Comparisons of phase error correction methods in 

simulation data sets 

 

 
L1 errors and empirical density plots of peak height error (A) 
and peak range area error (B), highlighting details around 
zero. Comparison of different methods against NLS within a 
peak error mixed model (C) and within a peak range area 
error mixed model (D). Abbreviations: MPC_DANM: 
multiple models with delta absolute net minimization, 
MPC_EMP: multiple models minimizing entropy with 

negative peak penalty, NLS: nonlinear shrinkage, NPC: no 
phase error correction, SPC_AAM: a single model 
minimizing the absolute area, SPC_DANM: a single model 
with delta absolute net minimization, SPC_DSM: single 
model minimizing dispersion sum, and SPC_EMP: a single 
model minimizing entropy with negative peak penalty. 
We then aggregated and compared the peak height errors and 
the peak range area errors (Supplement 13, Figures 5A-B), 
which showed that the NLS has the smallest L1 error and the 

highest error peak around 0, indicating the highest accuracy 
and precision. 
 
We also conducted peak height error and peak range area 
error comparison by L1 error and L2 error across three 
simulation datasets, and F test on L2 error with NLS as the 
reference level. Comparisons showed that the NLS method 
had the smallest errors for both L1 and L2 errors, while the 

two multiple model methods were the second-best. 
Furthermore, the NLS method was significantly better than 
all other methods based on the F test (Supplement 14). 
 
We then fitted peak height error and peak range area error 
mixed models to compare different phase error correction 
methods after adjusting for peak or peak range effect, the 
random effect of the simulation datasets, and the random 

effect of the spectra within each simulation dataset. The full 
mixed model results are shown in Supplement 15. The 
method comparison parts for peak height error and peak 
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range area error are presented in Figures 5C-D, respectively. 
The results showed that all other methods were significantly 
worse than NLS in the mixed model. 
 
Overall, our results show that NLS outperformed all other 

methods on the simulated datasets, with no clear runner-up. 
 
 

4.2. Comparison of phase error correction 

methods in a case study 
 
To test phase correction methods on a published real-world 

dataset, we employed a glucose detection case study. The 
glucose range spectrum plots (Supplement 8) confirm that 
the original input spectra from the R package ASICSdata are 
well-phased, except for a non-phased negative diabetes 
sample in the range of 4.63 ppm to 4.67 ppm. The phase 
correction method nonlinear shrinkage (NLS) performs even 
better than the original input spectra, with no non-phased 
peaks detected within the two glucose ranges of interest 

(4.63 ppm to 4.67 ppm and 5.22 ppm to 5.26 ppm). 

 

Figure 6  

Comparisons of phase error correction methods in the 

case study based on two combined glucose peak range 

areas 

 

 
(A) Pearson correlation coefficient heatmap among different 
methods. (B) Forest plots for linear regression models used 
to detect glucose area difference between T2DM and control 
groups.  
 
 
The Pearson correlation coefficient heatmap in Figure 6A 
shows that the eight phase error correction methods can be 

clustered into three groups with a Pearson correlation 
coefficient cutoff of r ≥ 0.80. The largest cluster includes the 
original input and the nonlinear shrinkage (NLS) method, as 
well as the two methods with multiple models 
(MPC_DANM and MPC_EMP). Their estimations of 
glucose areas are similar, indicating that they perform 
comparably well. 
 

In addition, Figure 6B shows that only the NLS method 
demonstrated a significant difference (p = 0.0476) in glucose 
peak range areas between the diabetes and control groups. 
The original input spectra from ASICSdata and the 
MPC_DANM method produced marginally significant p-
values, while the SPC_DSM method had a p-value of 0.09, 
which was also marginally significant but with an effect in 

the opposite direction. This suggests that SPC_DSM was the 
least effective method in detecting differences between the 
diabetes and control groups 
 
Based on our case study, we conclude that the nonlinear 

shrinkage (NLS) method performed the best, followed by the 
multiple model approach with our new minimization 
function ˗ delta absolute net minimization (MPC_DANM). 
 

 

4.3. Comparison of phase error correction 

methods in metabolite spike-in experiments 
 
We assessed seven phase error correction methods by 
examining the distribution of metabolite concentration errors 

(see Supplement 16, Figures 7A-C).  
 

Figure 7 

Distribution of errors for metabolite spike-in 

experiments 

 

 
Violin plots with jittered data points of metabolite 
concentration estimation errors for the single spike-in 
experiment (A), the multiple metabolite spike-in experiment 
(B), and the combination of both (C) To save space, extreme 
outliers from SPC_DSM have been omitted. Comparisons of 
different methods against the method with the smallest L2 
error for concentration estimation: (D) the single metabolite 
spike-in with a fixed model, (E) the multiple metabolite 

spike-in with a mixed model, and (F) the combination 
analysis of both the single and multiple metabolite spike-in 
with a fixed model. 
 
In the single metabolite spike-in experiment, Figure 7A 
shows that NLS and the two multiple-model approaches, 
MPC_DANM and MPC_EMP, have narrower L1 error 
ranges than the other methods, while SPC_DSM is the worst. 

In the multiple metabolite spike-in experiments, 
SPC_DANM, NLS, SPC_EMP, and SPC_AAM have 
narrower error ranges than MPC_DANM and MPC_EMP, 
while SPC_DSM remains the worst based on the L1 error 
distribution (Figure 7B). The same trend was observed when 
both single and multiple metabolites were combined (Figure 
7C).  
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Next, we examine the correlation of the performance of these 
seven methods. The correlation heatmap of the seven phase 
error correction methods, based on metabolite concentration 
errors, revealed that the four best-performing methods, 
MPC_EMP, MPC_DANM, SPC_DANM, and NLS, were 

highly correlated with each other compared to other single 
model-based methods (Supplement 17). 
 
We then compared the L2 errors of the seven phase error 
correction methods. In the single metabolite spike-in 
experiment, the multiple model approach optimized with 
delta absolute net minimization (MPC_DANM) had the 
smallest L2 errors (Table 1). F-tests showed significant 

differences between MPC_DANM and all other methods 
except for MPC_EMP, which is also based on multiple 
models (Table 1). 
 
 

Table 1 

L1, L2, and F-test values for the single metabolite spike-

in experiment. MPC_DANM, the method with the 

smallest L2 error, is used as the reference in the F-test 

(degrees of freedom = 170) 
 

Method 
L1 
error 

L2 error F  
P value 
 (one tail) 

SPC_AAM 187.9 730.6 9.65 < 0.0001*** 

SPC_EMP 149.96 435.06 5.75 < 0.0001*** 

SPC_DSM 445.16 3700.99 48.91 < 0.0001*** 

SPC_DANM 107.47 308.52 4.08 < 0.0001*** 

MPC_DANM 
75.45 75.68 1 0.5 

MPC_EMP 78.37 83.38 1.1 0.2639 

NLS 97.7 108.91 1.44 0.0091** 

 

Table 2 

L1, L2, and F-test values for the multiple metabolite 

spike-in experiment. SPC_DANM, the method with the 

smallest L2 error, is used as the reference in the F-test 

(degrees of freedom = 197) 
 

Method L1 error L2 error F  
P value  
(one tail) 

SPC_AAM 290.44 978.84 2.12 < 0.0001*** 

SPC_EMP 326.43 1274.57 2.76 < 0.0001*** 

SPC_DSM 1357.75 28002.27 60.55 < 0.0001*** 

SPC_DANM 165.16 462.49 1 0.5 

MPC_DANM 210.95 769.38 1.66 0.0002*** 

MPC_EMP 217.15 879.89 1.9 < 0.0001*** 

NLS 185.24 563.83 1.22 0.0826 

Table 3 

L1, L2, and F-test values for combination of both the 

single and multiple spike-in experiments. NLS, the 

method with the smallest L2 error, is used as the 

reference in the F-test (degrees of freedom = 368) 

 

Method L1 error L2 error F  P value  
(one tail) 

SPC_AAM 478.35 1709.44 2.54 < 0.0001*** 

SPC_EMP 476.38 1709.63 2.54 < 0.0001*** 

SPC_DSM 1802.91 31703.3 47.13 < 0.0001*** 

SPC_DANM 272.63 771.01 1.15 0.0957 

MPC_DANM 286.4 845.06 1.26 0.0145* 

MPC_EMP 295.51 963.28 1.43 0.0003** 

NLS 282.94 672.74 1 0.5 

 
In the multiple metabolite spike-in experiment, a single 
model with delta absolute net minimization (SPC_DANM) 
had the smallest L2 errors (Table 2). F-tests showed 
significant differences between this method and all other 
methods except the nonlinear shrinkage (NLS) (Table 2). 
 

When we combined the results of these two experiments, 
Table 3 showed that NLS had the smallest L2 error. F-tests 
showed that all other methods were significantly different 
from NLS except SPC_DANM. 
 
Full model analyses were conducted not only on phase 
correction methods but also on metabolites and urine 
samples, as detailed in Supplement 18. This supplement 

includes all modeling results for the single metabolite spike-
in experiment, the multiple metabolite spike-in experiment, 
and the combination of these two experiments. Forest plots 
in Figures 7D-E display the comparison of methods after 
adjusting for urine sample and metabolite effects in the 
complete models. The method with the smallest L2 error was 
used as the reference level for each model. In the single 
metabolite experiment, none of the methods showed 

significant differences from the multiple model approach 
with delta absolute net minimization (MPC_DANM). In the 
multiple metabolite experiment, only the single model 
optimized with dispersion (SPC_DSM) showed a significant 
difference when compared to the single model optimized 
with delta absolute net minimization (SPC_DANM). When 
both experiments were combined, all methods did not have 
significant differences from the nonlinear shrinkage (NLS) 
method, except for SPC_DSM.  

 
Although Figure 7 shows the distribution of errors from the 
experiments and provides a good visualization of errors, it 
treats all error units equally. In contrast, squared errors can 
penalize errors that are further from zero. This distinction is 
why the sum of squared errors (L2 errors) is widely used in 
statistics and serves as the basis for the main comparisons in 
Tables 1-3.  

 
To help visualize the squared errors, Figure 8 presents their 
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distribution for the metabolite spike-in experiments. It is 
clear that NLS consistently has the smallest ranges of 
squared errors, whether in the single spike-in experiment 
(Figure 8A), the multiple spike-in experiment (Figure 8B), 
or a combination of both experiments (Figure 8C). Even the 

L2 error of NLS is not always the smallest, as shown in 
Tables 1-3. 

 

Figure 8 

Distribution of squared errors for metabolite spike-in 

experiments 
 

 
 

Violin plots with jittered data points of squared errors in 
metabolite concentration estimation for the single spike-in 
experiment (A), the multiple metabolite spike-in experiment 
(B), and the combination of both (C). To save space, extreme 
outliers from SPC_DSM have been omitted.  
 
Based on our statistical analysis of metabolite spike-in 
experiments, we consistently observed that SPC_DSM 

performed worse compared to the other methods across 
multiple scenarios. This consistent underperformance 
supports our conclusion that SPC_DSM is the least effective 
method among the seven we tested. On the other hand, our 
new optimization function with a single model 
(SPC_DANM) or multiple models (MPC_DANM), as well 
as nonlinear shrinkage (NLS) are good performers. 

5. Discussion  
 
Phase error correction is a critical pre-processing step in 
NMR. Existing methods typically use a single-phase error 

correction model for the entire spectrum and heavily depend 
on the optimization function. In this paper, we introduced 
two new approaches, nonlinear shrinkage (NLS) with full 
information and MPC with multiple phase error correction 
models, along with a new optimization function called delta 
absolute net minimization (DANM). NLS and DANM 
represent our key innovations, while MPC modifies existing 
models by dividing the spectrum into peak ranges and 
applies a phase correction model to each range. 

 
Simulations and the case study demonstrated that NLS was 
the top performer, significantly faster than other methods, as 

it does not require any optimization process. In the 
metabolite spike-in experiments, MPC_DANM and 
SPC_DANM were the top performers based on L2 errors in 
the single spike-in and multiple spike-in experiments, 
respectively. However, when the results of both experiments 

were combined, NLS emerged as the best method based on 
L2 errors. Furthermore, when examining the distribution of 
squared errors, NLS consistently exhibited the narrowest 
error ranges across the single spike-in, multiple spike-in, and 
combined experiments. 
 
Although the results from the metabolite experiments were 
more complex compared to the simulations, we conclude 

that NLS remains the most reliable method for phase error 
correction and is also the fastest. Its advantage lies in 
avoiding the inherent approximations of optimization, 
relying instead on the solid theoretical support we 
demonstrated mathematically in Section 2. 
 
Our new optimization function, DANM, also showed strong 
results in enhancing phase error correction, whether applied 

to single or multiple models. This highlights the versatility 
of DANM, whose performance remained consistent 
regardless of the number of models used. Both NLS and 
DANM offer promising potential to be extended beyond the 
1D data used here to 2D and 3D NMR applications. 
 
In contrast, our modified MPC approach did not show the 
significant performance gains we initially expected, and its 

success is highly dependent on the optimization function 
used. Therefore, we do not recommend MPC for general use.  
 
SPC_DSM, on the other hand, performed the worst across 
all simulations, the case study, and metabolite spike-in 
experiments. As discussed in our phase error correction 
review [51], minimizing the integral of the dispersion 
component can be misleading. Ideally, when no phase error 
is present, the integral of the dispersion component should 

be zero, but not necessarily minimal. To address this, we 
suggested minimizing the absolute integral instead [51]; 
however, this introduced a new problem—non-
differentiability at zero—resulting in poor convergence. 
When we tested this revised version alongside the single-
model approach, SPC_DSM remained the worst performer 
(data not shown). This shows the difficulty in effectively 
incorporating the dispersion component into the 

optimization process. 
 
The other two optimization functions, AAM and EMP, 
performed better than DSM, though not as effectively as 
DANM, with their performance being quite close. Thus, 
relying on DANM alone cannot significantly improve phase 
error correction performance. Looking at the broader picture, 
we have tested many different optimization functions, yet 

none have completely resolved the phase error problem. 
 
While NLS does not rely on any optimization function, it 
also does not consistently outperform other methods, as 
demonstrated in our metabolite spike-in experiments. To 
further improve its performance, we need to address 
potential issues related to sub-range divisions. Although 
NLS should theoretically yield an ideal real part, it depends 
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on dividing the spectrum into peak ranges, which can lead to 
non-smooth transitions between neighboring ranges. 
Additionally, within the same peak range, smaller peaks may 
shrink excessively. Overall, dividing a spectrum is 
challenging due to noise, cutoffs, and overlapping signals. 

 
All the methods discussed in this paper, including additional 
options, are available in the R package NMRphasing, 
accessible via GitHub 
(https://github.com/ajiangsfu/NMRphasing) and CRAN 
(https://cran.r-
project.org/web/packages/NMRphasing/index.html). 
 

Looking forward, although we did not apply neural networks 
in this research, our phase error correction review [51] 
highlights the challenges of using neural networks, 
especially the reliance on optimization functions based on 
squared or absolute errors, which require ground truth that is 
not available in real-world MR data. This limitation explains 
why phase errors can still persist even after adjustments with 
neural networks. 

 
Despite the limitations of each individual approach, 
combining them could lead to significant improvements in 
phase error correction. For instance, instead of using L1 or 
L2 errors for neural network training, we could apply MR-
specific optimization functions like DANM, thereby 
eliminating the need for ground truth. Alternatively, we 
could use NLS-phased MR data as pseudo ground truth. 

Although NLS is not perfect, it offers the closest 
approximation for well-separated peaks in real-world MR 
data. The future direction lies in integrating the strengths of 
multiple approaches while mitigating their individual 
weaknesses. 
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