
Received: 2 August 2024 | Revised: 9 October 2024 | Accepted: 11 November 2024 | Published online: 18 November 2024

RESEARCH ARTICLE

Random Numbers for Machine Learning:
A Comparative Study of Reproducibility
and Energy Consumption

Benjamin Antunes1,* and David R. C. Hill1

1Clermont Auvergne University (UCA), The National Centre for Scientific Research (CNRS), France

Abstract: Pseudorandom number generators (PRNGs) have become ubiquitous in machine learning (ML) technologies because they are
interesting for numerous methods. In the context of ML, multiple stochastic streams, produced in black boxes for methods such as
stochastic gradient descent or dropout, can produce a lack of repeatability, impacting the ability to debug and explain results. The field
of ML holds the potential for substantial advancements across various domains. However, despite the growing interest, persistent
concerns include issues related to reproducibility and energy consumption. Reproducibility is crucial for robust scientific inquiry and
explainability, while energy efficiency underscores the imperative to conserve finite global resources. This study delves into the
investigation of whether the leading PRNGs employed in ML languages, libraries, and frameworks uphold statistical quality and
numerical reproducibility when compared to the original C implementation of the respective PRNG algorithms. Additionally, we aim to
evaluate the time efficiency and energy consumption of various implementations. Our experiments encompass Python, NumPy,
TensorFlow, and PyTorch, utilizing the Mersenne Twister, Permuted Congruential Generator, and Philox algorithms. Remarkably, we
verified that the temporal performance of ML technologies closely aligns with that of C-based implementations, with instances of
achieving even superior performances. On the other hand, it is noteworthy that ML technologies consumed only 10% more energy than
their C implementation counterparts. However, while statistical quality was found to be comparable, achieving numerical reproducibility
across different platforms for identical seeds and algorithms was not achieved.

Keywords: reproducible research, machine learning, pseudorandom numbers, energy consumption

1. Introduction

Contemporary machine learning (ML) researchers
predominantly use high-level programming languages and
frameworks to conduct their studies. Python is the principal
programming language in ML, leading to the widespread adoption
of frameworks such as PyTorch and TensorFlow, often coupled
with NumPy. In this paper, we want to study the statistical
quality, reproducibility, energy, and time consumption of the
pseudorandom number generation in these technologies. The
literature on the quality of Pseudorandom number generators
(PRNGs) within ML technologies remains sparse; our
investigation addresses this gap.

In Python, the default PRNG algorithm used is Mersenne
Twister (MT) [1]. In TensorFlow, the default PRNG algorithm is
Philox (Threefry from the same family of crypto-secure generator
is also available) [2], similar to PyTorch. NumPy offers a variety
of PRNGs and thus more flexibility. The default PRNG algorithm
proposed by NumPy is PCG [3]. For our study, we check and
compare reproducibility, performance, statistical quality, and
energy consumption, for the following PRNGs: MT, Philox, PCG,

and Mrg32k3a [4] as a reference. We use the original C
implementations provided by the PRNGs authors.

As described in Antunes [5], Salmon et al. introduced the
Philox, Threefry, and ARS algorithms at the 2011 Super-
computing Conference; they incorporate cryptographic techniques
akin to AES (Advanced Encryption Standard). Although their
cryptographic nature makes them relatively slow, their statistical
properties are commendable, albeit with some repeatability issues
in the first versions. MRG32k3a, devised by L’Ecuyer in 1999, is
a combined recursive PRNG chosen specifically since it was built
to obtain the best statistical results when faced with TestU01, the
most complete statistical test battery developed to assess PRNGs
[6]. This software proposes more than 100 tests at the “big Crush”
level, it will be discussed below. MRG32k3a can be significantly
slower than the famous MT, 15 to 20 times slower when
comparing optimized C implementations. PCG, developed in 2014
by O’Neill, is touted for its superior statistical attributes compared
to other generators, but this could not be confirmed with a
thorough TestU01 campaign. The initial MT generator was
introduced in 1998 by Matsumoto and Nishimura, and it has
known limits but is renowned for its long period. Its 2002 version
improved its initialization. SFMT version, designed by Saito &
Matsumoto in 2006 [7], capitalizes on modern processor
capabilities and offers twice as more speed and even superior
statistical qualities. A GP-GPU version was proposed and is

*Corresponding author: Benjamin Antunes, Polytechnic Institute of Clermont-
Auvergne, Clermont Auvergne University, France. Email: Benjamin.antunes@
uca.fr

Journal of Data Science and Intelligent Systems
2024, Vol. 00(00) 1–13

DOI: 10.47852/bonviewJDSIS42024012

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

mailto:Benjamin.antunes@uca.fr
mailto:Benjamin.antunes@uca.fr
https://doi.org/10.47852/bonviewJDSIS42024012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

known asMTGP. However, it is important to note that theMT family
is not apt for cryptographic applications. Though it presents some
minor statistical flaws, we are not aware of applications that have
been impacted and it is particularly well spread in many scientific
libraries.

To assess the quality of a PRNG, statistical evaluations are
employed to distinguish between superior and inferior PRNGs.
Historically, Donald Knuth introduced an initial array of statistical
evaluations for PRNGs in the second volume of “The Art of
Computer Programming”. Despite their age, these tests remain
relevant. In 1996, Marsaglia introduced a concise suite comprising
15 tests known as Die Hard. The original source code for Die
Hard is no longer available but the historical code can be found
via a “wayback machine”. Brown, along with his Australian
associates, extended Marsaglia’s work and introduced an updated
set of tests, released as open-source software. This suite was aptly
named Die Harder. The National Institute of Standards and
Technology’s (NIST) Statistical Test Suite (STS) is regarded as
the benchmark for assessing random and PRNGs, especially in
cryptographic contexts [8]. L’Ecuyer and Simard unveiled an
open-source library dedicated to the empirical evaluation of
random number generators. Known as TestU01 as previously
cited, this suite offers a comprehensive array of tests, categorized
into various levels of scrutiny such as Small Crush, Crush, and
Big Crush, among others. To measure the quality of
pseudorandom numbers generated in ML technologies, we used
the Big Crush test battery from TestU01, consisting of 106
statistical tests. Random sampling is particularly interesting in
training artificial intelligence models. In the category of “General
Game Playing”, where machines must play a new game starting
with its basic rules, an annual competition is organized by
Stanford. In this field, the evolution of machine capabilities has
allowed the stochastic approach of Monte Carlo Tree Search
(MCTS) to become more and more efficient. In particular, as of
2007, these methods have proven to be very successful in the
game of Go, and it is interesting to note that all world champion
programs in two-player GGP now use MCTS, and this method is
now also used in bioinformatics [9].

The rise of deep learning and complex models in ML
necessitates efficient computational resources to process vast
amounts of data. Hardware accelerator manufacturers are racing to
propose better performances at an impressive pace. Performance,
often quantified by the time taken to compute or the speed of
operations, directly impacts the feasibility of training larger
models and iterating over them during the research phase. While
an optimized algorithm or efficient hardware can improve time
efficiency, the energy consumed during computations also
becomes a significant concern, especially with the current
emphasis on environmental sustainability [10]. High energy
consumption not only leads to higher operational costs but also
contributes to increased carbon footprints in data centers.
Therefore, understanding and optimizing the performance and
energy efficiency of computations, including those of PRNGs, are
imperative. Efficient PRNGs can lead to faster initializations,
shuffling, and other stochastic operations in ML workflows,
further reducing both time and energy consumption.

Another aspect of science advancement has to be tackled:
reproducibility as a cornerstone of scientific integrity [11]. It
enables researchers to validate, build upon, or challenge prior
findings. In the realm of ML, reproducibility ensures that results
obtained in one run can be consistently achieved in subsequent
runs, given the same configurations. This consistent outcome is

crucial for debugging, model comparison, validation, and ensuring
the reliability of the technology in real-world applications. PRNGs
play a pivotal role in this context. Since many ML processes, from
data splitting to weight initialization, rely on pseudorandom
sequences, the reproducibility of PRNG outputs is vital. Without
repeatable and consistent PRNG outputs, subtle differences can
amplify through the training process, leading to markedly different
outcomes. Beyond individual experiments, reproducibility is also
vital for the broader scientific community [12]. When results can be
reliably reproduced, it fortifies the foundation upon which future
research is built, ensuring a progressive and trustworthy scientific
trajectory. A full survey dealing with all aspects of reproducibility
is now available in Computer Science Review [13]. In this paper,
we aim to answer the following questions:

• Are PRNGs implemented in ML frameworks giving the same
results as their initial C codes proposed by the original PRNGs
implementations when identically initialized?

• Does pseudorandom numbers generated with ML main language,
libraries, and frameworks have the same statistical quality as those
produced by the original code given by the PRNG authors?

• Is the process of generating random numbers in ML frameworks
more time-consuming when compared to the original C codes?

• Does random number generation within ML frameworks require
more energy than its C code counterparts?

• Taking into account the previous points, is there a consistency
between the performance of 32-bit integer and 64-bit double
precision of the generated numbers?

Our discussion will begin with an overview of prior research on
the application of stochastic processes in ML. Subsequently, we
will present the method employed in our experiments. Following
this, we will present the findings about time performance, energy
consumption by minutes, overall energy consumption, and
numerical reproducibility. Finally, we talk about the implications
and future directions of our results.

2. The Importance of PRNGs in Machine Learning

To underline the importance of the PRNG statistical quality on
the neural network training, a recent work from Huk [14] attempted
to quantify the potential differences in classification performance
of CNNs and MLPs when varying the PRNG. They draw the
95% confidence interval for each quality measurement, for different
PRNGs. The results indicated minor variations in quality associated
with different PRNGs, as evidenced by non-overlapping confidence
intervals. This study shows that the PRNG algorithm used might
have an incidence (needing to double the confidence intervals of
evaluation metrics) over the quality of the neural network training.
Koivu et al. [15] also show a correlation between the statistical
quality of a PRNG and the resulting quality of the dropout method
applied to the neural network. Additional research is necessary to
explore various neural network architectures, assess the impact of
PRNG quality on neural network performance, and replicate these
results, given the scarcity of literature on this topic. The quality of
the PRNGs used in ML is not well studied, and it would be
interesting to investigate. Indeed, stochastic processes have become
increasingly important in ML over the years due to its efficiency in
some cases. As a result, PRNGs have become indispensable in ML
technologies.

To illustrate the importance of PRNGs in ML, we consider
multiple stochastic methods such as the stochastic gradient

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

02

descent (SGD). It is a cornerstone optimization algorithm for training
models in ML and deep learning. It operates by using a single or a
small batch of training samples to calculate the gradient and update
parameters, rather than using the entire training dataset. Lu et al. [16]
used a quasi-Monte Carlo method to obtain unprecedented
accelerated convergence rates for learning with data augmentation
(they also used smart fixed scan order).

Beyond the commonly employed SGD algorithm, known for its
efficiency, it is worth noting the significant role of regularization
techniques that have demonstrated considerable utility and
similarly require elements of randomness. Dropout is one such
regularization strategy tailored for neural networks to mitigate
overfitting. Overfitting transpires when a model excessively
conforms to training data, compromising its ability to generalize,
which results in subpar performance on novel data. Dropout
addresses this by randomly omitting a selection of neurons and
their connections throughout the training process.

Additionally, the concept of stochastic depth, another
regularization technique reliant on randomness, was designed to
overcome obstacles inherent in training deep convolutional
networks, such as vanishing gradients and protracted training
durations. It streamlines the training process by randomly omitting
a set of layers in each training batch and seamlessly connecting
the remaining ones using the identity function, thus reducing
training time and potentially increasing test accuracy [17].

Randomness is also instrumental in data augmentation, a
method aimed at expanding the dataset by incorporating
modified replicas of existing data or generating new synthetic
data. This approach is particularly beneficial in ML, enhancing
model performance through a more robust dataset. For image-
related tasks, data augmentation can involve alterations like
rotation, cropping, or flipping. Notable algorithms that employ
data augmentation include the Expectation-Maximization
algorithm, the algorithm for posterior sampling, and Markov
chain Monte Carlo methods for posterior sampling [18]. In deep
learning for images, augmentation techniques that incorporate
randomness span a wide spectrum, from geometric adjustments
and color space alterations to kernel filters, image mixing,
random erasing, and even neural style transfer. Moreover, test-
time augmentation introduces variability during model
evaluation, which is critical for enriching datasets and fortifying
model resilience [19].

Additionally, the concept of bootstrapping complements these
techniques by providing another layer of randomness and robustness.
Bootstrapping, involving the creation of multiple subsets of the
dataset through sampling with replacement, allows for the
generation of diverse training conditions. This technique is
instrumental in enhancing model accuracy and stability,
particularly in ensemble learning methods where it contributes to
a more comprehensive exploration of the data space and better
generalization of the model [20].

A recent survey highlights the pervasive application of
randomness in ML as a trade-off for hardware efficiency and
computational performance [21]. The usage of PRNGs in ML is
wildly spread. Examples include Bayesian neural networks [22],
Variational autoencoders presented in Wei and Mahmood [23],
and Reinforcement Learning [24]. Additionally, some methods
propose the injection of gradient noise as a strategy to enhance
deep neural network training [25].

Some recent works are more focused on the use of
pseudorandom generation and the power consumption of neural

networks. Kim et al. [26] used stochastic computing (SC) on deep
neural networks and obtained better results for latency and power
consumption. In this case, the old SC approach, originally
introduced by John Von Neumann at the beginning of the sixties,
where information is represented and processed using random bit
streams, serves for complex computations operated with bitwise
operations. In Liu et al. [27], authors point out that SC can be
costly in terms of energy efficiency when used in deep neural
networks.

Furthermore, the evolving landscape of ML has seen the rise of
Transformer architectures used in many domains. For instance,
generative adversarial networks are interestingly successful for
synthesizing the images [28], but the most famous usage is for
large language models (LLMs). These architectures, exemplified
by models like GPT (Generative Pre-trained Transformer), still
rely on randomness in their training phase. This randomness
manifests in the form of SGD and dropout techniques, essential
for preventing overfitting and promoting model generalization.
The strength of the generator used is also important for any ML
system, in Pranav et al. [29]. Pranav et al consider how attackers
can compromise a ML system using only the randomness on
which they commonly rely. A last reference in computational
learning theory also used pseudorandom generators as a criterion
for Probably Approximately Correct learning [30].

We can cite some usage of ML in real-life applications, such as
analyzing drop coalescence in microfluidic devices [31, 32], where
they are using random forest, a widely usedMLmethod. As the name
suggests, this algorithm relies on randomness introduced by PRNGs.
While these complexities may be abstracted away by high-level
frameworks, they play a crucial role in the behavior and outcome
of the algorithm. Gundersen et al. [33] list the sources of
irreproducibility in ML including the lack of mastery of PRNGs.

With this short literature review, we can confirm that
randomness, along with PRNGs, is prominent artificial
intelligence technologies that will become ubiquitous in our lives.
Since the quality of pseudorandom numbers in ML frameworks
remains under-explored, as our literature search yielded no
relevant studies, we want to bridge this knowledge gap.

3. Materials and Methods

To address the questions raised in introduction, we selected
prominent ML frameworks, specifically PyTorch and TensorFlow,
along with the Python and the NumPy library due to their
widespread use in the ML field. For benchmark purposes, we have
retained the original C code implementations of MT, PCG, Philox,
and Mrg32k3a as a standard of comparison (all codes are proposed
on the authors’ web pages). The last version of Xoshiro by
Blackman and Vigna, based on a “XOR, shift, rotate” principle,
could be interesting but we did not find its usage in ML [34].

The MT supports native generation of both 32-bit integers and
64-bit doubles. On the other hand, Mrg32k3a is limited to generating
only 64-bit doubles. In order to maintain fidelity to the original
implementations, we restricted our use of Mrg32k3a to
experiments involving 64-bit doubles. Conversely, the Philox
algorithm was only available for generating 32-bit integers from
its authors. PCG offers the possibility for both, but the author
prefers to stick with integer “Like the Unix rand and random
facilities, this library does not provide a direct facility to generate
floating point random numbers. It turns out that generating
random floating point values is surprisingly challenging”. [35].

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

03

However, as the author provides a solution to generate double,we
used PCG inboth cases, likeMT.MLframeworks,with their advanced
APIs, allow for the straightforward generation of either 32-bit integers
or 64-bit doubles. The most recent version of TensorFlow suggests
using a Generator object, which we explicitly applied to the Philox
algorithm. For PyTorch, while the underlying algorithm is believed
to be Philox based on documentation, the user cannot specify his
generator choice. NumPy stands out as perhaps the most versatile
library for handling various PRNGs, offering clear documentation
and a range of available algorithms. With NumPy, we used the
Generator object, setting it to explicitly use MT, Philox, and PCG.

These technologies differ from traditional scientific computing
practices in C, C++, or Fortran, where random numbers are typically
generated individually as needed. In contrast, ML frameworks are
optimized to generate random numbers in bulk as part of tensor
objects (akin to matrices). Therefore, we conducted experiments
both ways: generating numbers one by one and in bulk. For
Python, the most efficient approach was to generate numbers
individually.

As PCG propose different versions, for 64 bits we choose the
exact same version as NumPy (PCG 128/64 XSL-RR) and for 32
bits we used PCG 64/32 XSH-RR.

We initialized all PRNGswith the same seed value. To neutralize
language-specific data type disparities, we used the seed value ‘0’,
ensuring a zero-filled seed memory pointer across different data
types. Although initializing with zero can be problematic for some
PRNGs [7], this was intentionally done to observe the resultant
behavior. It is imperative for researchers in the scientific community
to recognize that a seed and the complete state of a PRNG are
distinct entities. The state of the PRNG is determining the output
value it generates. In contrast, utilizing a seed involves the
application of a specific function to convert the seed into the full
state of the PRNG. It is noteworthy that this transformation process
may vary across different technological platforms. Given that the
entire ML framework is fundamentally dependent on the seeding
function, our study is primarily focused on studying this aspect.

Our evaluation utilized various Bash scripts: one to run time and
energy consumption assessments—generating 230 numbers one by
one or at once and timing the process with the Unix “time”
command. Energy consumption was monitored over a set period
(e.g., 30 s), with results extrapolated over the entire duration. We
replicated these measurements 30 times to strengthen the
statistical validity of our measures; this leads to the study of
samples of a bit less than 235 numbers. The reason why we
generate 230 numbers one by one or at once is because in ML
frameworks, random numbers generation is optimized to generate
numbers by batch, and generating numbers one by one would be
much slower. To have a fair comparison between C and Python
implementations, we used one by one and at once (batch)
methods. Here is how the study was conducted. We have C codes
and Python codes for each random number generation with each
technology, considering one by one or at once generation, with 32
or 64 bits numbers, and also considering O2 and O3 compilation
optimization for C codes. We generate 230 numbers, measuring
the execution time with the Unix “time” command, which returns
real, user, and system time. We run each experiment 30 times; all
the results are stored in files. We use Python code in a Jupyter
notebook to compute the mean and the 95% confidence interval
for each experiment. These results are shown in the tables in the
next section. The same procedure applies to energy consumption.

Energy measurements were obtained using PowerJoular [36].
This tool offers the possibility to measure the energy consumption
of a given Process ID, using RAPL Intel feature [37], also

available on recent AMD chips. We compiled all C codes with
different optimization levels (none, –O2, and –O3) to discern the
impact of compiler optimizations on time and energy efficiency.

For quality evaluation, we ran another set of Bash scripts. We
use the TestU01 BigCrush test battery, which typically requires a bit
more than 238 numbers based on TestU01 documentation, prompting
us to generate 239 numbers (one order of magnitude over). Given that
BigCrush is not designed to read numbers from a file in its original
form, we made a C code interface. We stored the ML-generated
numbers in a binary file, and subsequently, the C program reads
the numbers sequentially from this file to provide the inputs
required by BigCrush. This method was also applied to the
PRNGs coded in C for a fair comparison. Preliminary tests
showed no significant difference between the modified approach
and the original one, confirming the validity of our method.
However, it is important to note that storing 239 doubles takes
4.4TB of storage and 2.2TB for 32 bits integers. In this context,
we saved one 239 random numbers stream for each technology
(i.e., Tensorflow, Pytorch, Numpy-MT, Numpy-PCG, Numpy-
Philox, original MT, original PCG, original Philox), and then we
applied the BigCrush test battery on each random number stream,
to check statistical quality. Further studies dealing with statistical
quality could go deeper on each PRNG, studying multiple huge
streams.

Finally, for numerical reproducibility, we generated 100
pseudorandom numbers in a readable file and computed “diff”
command over files, the algorithm being the same, seeded
identically, we expect bitwise identical results (if the seeding
method to generate the full state of the generator is the same
between the different technologies).

All data were saved in text files and then collected using Jupyter
Notebook to analyze all the results and run all bash scripts to easily
reproduce the experiments. Experiments were performed on a
machine with two AMD 7763 64-core processors, leading to 128
physical cores and 256 logical cores. The machine has 512GB of
RAM and 7.7TB of NVMe storage. We had root access, so we
were able to perform energy consumption measurements (RAPL
needs root access to be used). The Python version used is 3.11.5.
The GCC version used is 13.2.0. The operating system is Linux,
Debian 6.4.13-1.

4. Results

4.1. Time performance

Tables 1 and 2 illustrate the time required to generate 230

numbers in each experiment. First, distinct performance
discrepancies between 32-bit integers and 64-bit doubles are
observed. Notably, the PCG algorithm demonstrates superior
speed for 32-bit integers but requires quadrupling its generation
time for 64-bit doubles. The MT code, in its original
implementation, takes the same time for both. When implemented
using NumPy, the MT algorithm demonstrates a pronounced
divergence in generation time, taking approximately 4.5 s for
32-bit integers versus 13 s for 64-bit doubles (for 1 billon drawings),
whereas the original version maintains a consistent 4-s duration for
each. However, we can see that PRNG implementations via ML
Python frameworks have a good computational efficiency, as
Python and C code execution times are mixing in the performance
rankings. However, the MT algorithm is significantly slower in
pure Python. For the PCG and Philox algorithms, implementations
utilizing ML technologies appear to outperform the original
versions (in C code), despite the use of –O2 or –O3 compilation

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

04

Table 1
Real time and user time taken for each experiment, for 230 32 bits integer random number generation

Generator Real time (s) Real time 95% CI User time (s) User time 95% CI

pcg32Integer 2,45 [2,27; 2,64] 2,45 [2,27; 2,63]
numpyIntegerTasksetAtOnce 2,60 [2,59; 2,60] 2,20 [2,19; 2,22]
tensorflowIntegerAtOnce 3,22 [3,19; 3,25] 17,89 [17,70; 18,08]
numpyIntegerAtOnce 3,42 [3,23; 3,61] 3,98 [3,80; 4,15]
mt19937arIntegerO3 4,29 [4,17; 4,42] 4,29 [4,17; 4,41]
numpyIntegerMtAtOnce 4,55 [4,42; 4,68] 5,15 [5,02; 5,27]
mt19937arIntegerO2 4,74 [4,68; 4,81] 4,74 [4,67; 4,81]
numpyIntegerPhiloxAtOnce 6,77 [6,63; 6,92] 7,37 [7,23; 7,51]
tensorflowIntegerTasksetAtOnce 7,08 [7,04; 7,13] 6,23 [6,20; 6,27]
mt19937arInteger 7,10 [6,96; 7,24] 7,10 [6,95; 7,24]
pytorchIntegerTasksetAtOnce 8,06 [8,00; 8,13] 7,12 [7,06; 7,18]
pytorchIntegerAtOnce 9,09 [8,99; 9,19] 8,93 [8,85; 9,01]
philoxInteger 90,06 [89,74; 90,39] 90,06 [89,73; 90,38]
pythonIntegerOneByOne 425,92 [424,24; 427,60] 425,91 [424,23; 427,58]
pythonIntegerTasksetAtOnce 486,11 [484,14; 488,09] 452,94 [451,32; 454,55]
pythonIntegerAtOnce 489,02 [487,30; 490,75] 453,29 [451,88; 454,70]
pytorchIntegerOneByOne 2281,79 [2248,98; 2314,61] 2282,33 [2249,51; 2315,16]
numpyIntegerMtOneByOne 6327,76 [6228,26; 6427,27] 6328,50 [6228,97; 6428,02]
numpyIntegerOneByOne 6458,61 [6396,91; 6520,31] 6459,50 [6397,77; 6521,23]
numpyIntegerPhiloxOneByOne 6552,21 [6472,50; 6631,91] 6553,13 [6473,41; 6632,85]

Table 2
Real time and user time taken for each experiment, for 230 64 bits double random number generation

Generator Real time (s) Real time 95% CI User time (s) User time 95% CI

tensorflowAtOnce 3,38 [3,28; 3,47] 32,33 [31,90; 32,76]
mt19937arO3 4,20 [4,06; 4,34] 4,20 [4,06; 4,34]
numpyTasksetAtOnce 4,35 [4,32; 4,39] 3,56 [3,52; 3,61]
mt19937arO2 4,50 [4,34; 4,67] 4,50 [4,34; 4,67]
well19937O3 4,96 [4,85; 5,08] 4,96 [4,85; 5,07]
well19937O2 4,97 [4,83; 5,12] 4,97 [4,83; 5,12]
numpyAtOnce 5,77 [4,73; 6,82] 5,75 [4,71; 6,79]
pytorchTasksetAtOnce 6,02 [5,94; 6,11] 5,31 [5,25; 5,36]
pytorchAtOnce 6,90 [6,76; 7,05] 7,01 [6,90; 7,12]
mt19937ar 7,48 [7,31; 7,66] 7,48 [7,31; 7,66]
tensorflowAtOnce 8,18 [8,12; 8,24] 6,67 [6,63; 6,72]
pcg64O3 11,00 [10,83; 11,17] 11,00 [10,83; 11,16]
pcg64O2 11,07 [10,92; 11,23] 11,07 [10,91; 11,23]
numpyMtAtOnce 13,08 [11,56; 14,60] 7,27 [7,16; 7,38]
well19937a 13,08 [13,08; 13,09] 13,08 [13,07; 13,09]
pcg64 13,18 [13,05; 13,31] 13,18 [13,05; 13,31]
numpyPhiloxAtOnce 13,26 [12,59; 13,92] 12,00 [11,89; 12,11]
mrg32k3aO3 19,97 [19,80; 20,14] 19,96 [19,79; 20,13]
mrg32k3aO2 31,47 [31,21; 31,72] 31,46 [31,21; 31,71]
pythonOneByOne 36,87 [36,23; 37,51] 36,86 [36,22; 37,50]
mrg32k3a 43,13 [42,96; 43,29] 43,12 [42,96; 43,29]
pythonTasksetAtOnce 69,52 [69,02; 70,03] 43,89 [43,66; 44,12]
pythonAtOnce 75,46 [72,06; 78,86] 48,48 [47,23; 49,73]
numpyMtOneByOne 319,89 [318,05; 321,74] 320,83 [318,99; 322,67]
numpyPhiloxOneByOne 323,06 [321,28; 324,85] 323,98 [322,20; 325,76]
numpyOneByOne 330,98 [326,41; 335,54] 331,88 [327,31; 336,44]
pytorchOneByOne 2388,41 [2381,38; 2395,44] 2388,85 [2381,80; 2395,90]

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

05

optimizations (when we were able to use them, because sometimes,
the usage of compilation optimization leads to the malfunction of
the code).

The primary distinction between the original C code and
ML-based code lies in the unsuitability of the latter for generating
numbers sequentially, resulting in significantly poor performance
when trying to generate the random numbers sequentially and, in
the case of TensorFlow, an infeasibility due to RAM overload,
despite the availability of more than 500GB of RAM in our test.
Finally, when comparing user time and real time, we can see that
TensorFlow is the only technology that is using implicit
parallelization. We can then suppose that if less cores were
available in the machine, or if the machine was overloaded due to
some other running processes, the TensorFlow generation would
have taken more time than NumPy and similar to PyTorch, due to
the fact that doing parallelization on an already overloaded
machine will not improve performance and can even worsen
them. Using taskset to set affinity of a single process to only one
core shows a slight improvement for ML frameworks, except for
TensorFlow, due to its native implicit parallelization.

In Tables 3 and 4, our observations also extended to the time
required to generate and store 239 pseudorandom numbers (in
minutes). As anticipated, the duration for generating and storing
these numbers is approximately half as long for 32-bit values
compared to 64-bit values. Notably, the Mrg32k3a generator
exhibits the slowest performance over C-coded generators,
although it successfully passes all statistical benchmarks. We can
notice that the PCG generator is faster than Mrg32k3a and

sometimes “Crush resistant”. It is unexpectedly clear that
generating integers with Python is considerably more time-
consuming; in both 32-bit and 64-bit instances, it is the least
efficient technology (using MT algorithm). For the creation of 239

numbers, we employed a strategy that favors ML frameworks
inclined towards blocking: generating segments of 220 numbers
sequentially until the full 239 was reached. Among these
frameworks, TensorFlow demands the most system and user time,
a likely consequence of its underlying parallelization which could
be problematic on limited computational resources. Interestingly,
ML frameworks demonstrate competitive performance relative to
C implementations. This outcome was unforeseen and
underscored the high degree of optimization present in these
advanced-level frameworks.

4.2. Energy consumption by minutes

In Tables 5 and 6, the energy consumption is presented in terms
of Joule by minutes for each experiment, corresponding to 32-bit
integers and 64-bit doubles, respectively. From these findings, it is
obvious that ML technologies consume around 10% more energy
than traditional C code implementations. We notice that the
PRNG Philox is identified as a particularly high-energy-
consuming algorithm relative to its counterparts. It is supposed to
be crypto-secure, a characteristic typically associated with an
increased computing time because of additional complexity.
However, crypto-secure PRNGs, even though found traditionally
slower, have a high rate of success in passing statistical tests.
According to the paper by M. O’Neill on PCG, the variants
employed in this study (PCG 128/64 XSL-RR and PCG 64/32
XSH-RR) are also claimed to be crypto-secure. They are supposed
to be successful in passing the big crush TestU01 battery, but we
encountered problems. Further investigation would be needed to
ensure the claim the PCG is crypto-secure, for instance with the
NIST STS but this is out of the scope of our paper. We can also
see that, for all ML frameworks, the block generation “at once”
uses less energy than generating “one by one”, especially in the
case of 32 bits integers. In the next section, we will talk about
energy consumption, but based on the real time taken to compute,
not by minutes.

Figure 1 outlines the differences between the energy
consumption by minutes between the different versions (C code
and ML library or framework) of an implemented PRNG
algorithm. Overall, we compare the energy consumption of all C
implementations and all Python implementations, resulting in
around 20% more energy consumed by minutes by Python

Table 3
Time taken to save 239 32 bits integer numbers for each framework

File Real time User time Sys time

timeIntegerNumpySaving.txt 91,2 27,6 63,4
timeIntegerNumpyMtSaving.txt 97,6 36,4 61,1
timeIntegerPytorchSaving.txt 121,0 41,6 79,4
timeIntegerNumpyPhiloxSaving.txt 125,6 57,6 67,8
timeIntegerTensorflowSaving.txt 131,4 826,9 149,6
timeIntegerPcgSaving.txt 164,4 98,1 66,0
timeIntegerMtSaving.txt 180,9 107,2 73,4
timeIntegerPhiloxSaving.txt 229,8 150,8 78,8
timeIntegerPythonSaving.txt 4957,1 4890,9 65,5

Table 4
Time taken to save 239 64 bits double numbers for each

framework

File Real time User time Sys time

timeNumpySaving.txt 170,6 33,1 137,3
timePytorchSaving.txt 176,2 43,2 132,5
timeNumpyMtSaving.txt 177,5 48,4 128,6
timeNumpyPhiloxSaving.txt 231,9 96,7 135,0
timeMtSaving.txt 281,8 126,0 154,4
timeWellSaving.txt 283,0 127,4 155,2
timeTensorflowSaving.txt 288,8 1893,2 393,4
timePcgSaving.txt 346,8 185,8 160,6
timeMrgSaving.txt 449,9 307,2 142,2
timePythonSaving.txt 1355,8 1218,5 136,7

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

06

Table 5
Energy consumption in Joule by minutes for each experiment, on 32 bits integer

Generator Energy consumption (J/min) Energy consumption 95% CI

pcg32Integer 3209,70 [3185.35; 3234.05]
mt19937arIntegerO2 3323,89 [3226.38; 3421.40]
mt19937arInteger 3419,13 [3285.98; 3552.27]
mt19937arIntegerO3 3607,74 [3476.79; 3738.68]
pythonIntegerTasksetAtOnce 4298,72 [4260.00; 4337.43]
pythonIntegerAtOnce 4375,21 [4110.53; 4639.88]
numpyIntegerAtOnce 4688,14 [4669.67; 4706.61]
numpyIntegerTasksetAtOnce 4766,35 [4747.59; 4785.10]
pytorchIntegerTasksetAtOnce 4766,96 [4748.06; 4785.86]
tensorflowIntegerTasksetAtOnce 4800,25 [4784.14; 4816.36]
pytorchIntegerAtOnce 4812,53 [4775.33; 4849.73]
philoxInteger 4845,48 [4824.15; 4866.81]
numpyIntegerMtAtOnce 4847,67 [4828.75; 4866.58]
numpyIntegerPhiloxAtOnce 4849,22 [4829.80; 4868.63]
tensorflowIntegerAtOnce 4893,72 [4862.41; 4925.04]
pythonIntegerOneByOne 5410,52 [5185.95; 5635.09]
numpyIntegerOneByOne 5925,94 [5579.41; 6272.47]
pytorchIntegerOneByOne 8846,44 [8492.64; 9200.24]
numpyIntegerMtOneByOne 45223,56 [42623.11; 47824.02]
numpyIntegerPhiloxOneByOne 64212,81 [61111.12; 67314.50]

Table 6
Energy consumption in Joule by minutes for each experiment, on 64 bits double

Generator Energy consumption (J/min) Energy consumption 95% CI

mrg32k3aO2 2750,80 [2744,56; 2757,03]
mrg32k3a 2783,59 [2744,86; 2822,31]
well19937O2 2979,42 [2970,81; 2988,02]
well19937O3 2991,04 [2981,97; 3000,10]
mrg32k3aO3 3000,87 [2941,58; 3060,15]
well19937a 3040,66 [3008,42; 3072,90]
mt19937arO2 3179,17 [3168,29; 3190,04]
mt19937ar 3186,49 [3172,36; 3200,62]
mt19937arO3 3226,83 [3159,98; 3293,67]
pythonOneByOne 3865,71 [3806,83; 3924,59]
pcg64O3 3882,55 [3812,37; 3952,73]
pcg64O2 3925,18 [3872,56; 3977,79]
pythonTasksetAtOnce 3994,90 [3871,83; 4117,96]
pytorchTasksetAtOnce 4348,02 [4306,74; 4389,30]
numpyMtAtOnce 4358,07 [4168,48; 4547,65]
pcg64 4473,07 [4459,61; 4486,52]
numpyTasksetAtOnce 4550,28 [4530,53; 4570,03]
tensorflowTasksetAtOnce 4762,63 [4750,04; 4775,22]
numpyPhiloxAtOnce 5033,01 [4875,79; 5190,22]
tensorflowAtOnce 5131,12 [5100,87; 5161,37]
pytorchOneByOne 5630,90 [5233,18; 6028,62]
numpyAtOnce 5906,65 [5670,16; 6143,13]
numpyOneByOne 5935,29 [5772,42; 6098,16]
pythonAtOnce 6521,71 [6078,98; 6964,44]
pytorchAtOnce 7141,50 [6891,12; 7391,88]
numpyMtOneByOne 37375,55 [36671,35; 38079,75]
numpyPhiloxOneByOne 37590,44 [36613,97; 38566,92]

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

07

implementations. In this figure, we did not take into account one by
one numbers generation from NumPy because they consume much
more energy per minute (see Tables 5 and 6). This difference is
probably due to the low efficiency of NumPy to generate one by
one pseudorandom numbers, the blocks approach being much
more efficient.

In Table 5 (32 bits integer), data clearly illustrate that C
implementations consume significantly less energy compared to
Python-based implementations across different random number
generators of the same generation. For example, the PCG
generator implemented in C consumes 3209.70 J/min, which is
markedly lower than the energy consumption of the Numpy
counterpart, when comparing the PCG in C to the
NumpyOneByOne (5925.94 J/min) and NumpyAtOnce (4688.14
J/min). Similarly, the MT generator in C (mt19937arIntegerO2 at
3323.89 J/min and mt19937arIntegerO3 at 3607.74 J/min)
demonstrates significantly lower energy consumption compared to
NumpyMTatOnce (4847.67 J/min). Lastly, the Philox generator in
C (4845.48 J/min) has similar performances with its counterparts
in Python-based frameworks like TensorFlow (4893.72 J/min) and
PyTorch (4812.53 J/min), as well as Numpy-Philox (4849.22 J/
min). These comparisons highlight the energy efficiency of C
implementations across the board, especially when compared to
their Python-based alternatives. These differences are statistically
significant as the gaps outrange largely the 95% confidence
intervals, it is not useful to apply Levene and Student‘s t tests in
this case to verify the relevance on variance and mean using p-value.

In Table 6 and Figure 1 (64 bits double), the comparison
between the energy consumption of C implementations and Python-
based implementations clearly shows that C implementations
are also significantly more energy-efficient. For instance, the
mt19937arO2 in C consumes 3179.17 J/min, mt19937ar in C at
3186.49 J/min, and mt19937arO3 at 3226.83 J/min, and it out-
performs pythonTasksetAtOnce, which consumes 3994.90 J/min
and is also notably lower than the Python pythonOneByOne at
3865.71 J/min

When comparing theC version of PCGpcg64O3 at 3882.55 J/min
to Numpy (numpyOneByOne and numpyAtOnce), which consume
5935.29 J/min and 5906.65 J/min respectively, the efficiency of C
is evident.

Further comparisons reveal that mt19937ar implementations
consume significantly less energy compared to numpyMtAtOnce,
which uses 4358.07 J/min. All values given here are means that
are based on 30 replications, and we can ensure significance
based on the 95% confidence intervals.

4.3. Overall energy consumption

Tables 7 and 8 illustrate the energy consumption in Joule during
the real time taken by each experiment (e.g., 230 random number
generation, depending on the algorithm and the technology). Last
tables were about the energy consumption in Joule by minutes,
but we are looking here at the energy consumption during the
time taken for each experiment. While C implementations are
more energy-efficient per minute, the competitive overall
execution time of Python enables it to rival C implementations.
Underlying implementations of ML technologies in Python are
often using C, C++, or CUDA. For 32-bit integers, the PCG
algorithm demonstrates notable efficiency, outpacing other C
implementations and followed closely by NumPy, while also
maintaining reasonable energy consumption given its execution
time. The MT algorithm in C exhibits the highest consistency,
yielding similar results in both integer and double generation.
Regrettably, aside from MT and PCG, other C-based PRNGs are
dedicated to a specific output type. For instance, Mrg32k3a and
Well [38] are dedicated to generating double values and Philox is
generating integers. Unlike MT, PCG displays a significant
discrepancy between its integer and double generation
performance. Although O2 or O3 optimization does not affect per-
minute energy consumption, its reduction of total computation
time contributes to lower the overall energy needed. It is
noteworthy that for PCG and Philox (in 32-bits generation), O2
and O3 optimizations were not applied since the use of these
optimizations causes code malfunctions, resulting in immediate
termination without executing the intended operations. The O3
optimization level is known as aggressive and may often produce
non-reproducible results or strange behavior and this is
documented. However, it is the first time in more than 30 years of
computer experiments that we observed the O2 level producing
unusable and thus non-reproducible results.

Figure 1
Consumption by minute in Joule: Differences between C and Python code implementations, for each PRNG

Philox 32 bits - C code

Philox 32 bits - Numpy

PCG 64 bits -
Numpy 3882 J/min

to
4550 J/min
+ 6,68%

3179 J/min to
3865 J/min
+ 6,86%

3865 J/min to
4358 J/min
+ 4,93%

4845 J/min
to
4800 J/min
- 0,45%

4800 J/min to
4849 J/min
+ 0,49%

Mean all PRNGs 64 bits – Python code
(except two last, too big)

3285 J/min to 5167 J/min + 18,82%

MT 64 bits - C code

MT 64 bits - Numpy

PCG 64 bits - C code

Mean all PRNGs 64 bits - C code

MT 64 bits - Python Philox 32 bits - TF

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

08

Table 7
Energy consumption in Joule during real computation time, for 32 bits integers

Generator Energy consumption during real time (J) Energy consumption during real time 95% CI

pcg32Integer 131,17 [130.18; 132.17]
numpyIntegerTaskseAtOnce 206,41 [205.60; 207.22]
mt19937arIntegerO3 258,09 [248.73; 267.46]
tensorflowIntegerAtOnce 262,52 [260.84; 264.20]
mt19937arIntegerO2 262,77 [255.07; 270.48]
numpyIntegerAtOnce 267,33 [266.28; 268.38]
numpyIntegerMtAtOnce 367,77 [366.33; 369.20]
mt19937arInteger 404,65 [388.90; 420.41]
numpyIntegerPhiloxAtOnce 547,38 [545.19; 549.58]
tensorflowIntegerTasksetAtOnce 566,63 [564.73; 568.53]
pytorchIntegerTasksetAtOnce 640,54 [638.00; 643.08]
pytorchIntegerAtOnce 728,84 [723.20; 734.47]
philoxInteger 7273,10 [7241.08; 7305.12]
pythonIntegerTasksetAtOnce 34827,75 [34514.05; 35141.44]
pythonIntegerAtOnce 35659,70 [33502.49; 37816.92]
pythonIntegerOneByOne 38407,42 [36813.25; 40001.59]
pytorchIntegerOneByOne 336428,77 [322973.74; 349883.80]
numpyIntegerOneByOne 637889,20 [600587.67; 675190.72]
numpyIntegerMtOneByOne 4769399,46 [4495148.41; 5043650.52]
numpyIntegerPhiloxOneByOne 7012261,80 [6673546.74; 7350976.87]

Table 8
Energy consumption in Joule during real computation time, for 64 bits double

Generator Energy consumption during real time (J) Energy consumption during real time 95% CI

mt19937arO3 225,74 [221,06; 230,42]
mt19937arO2 238,60 [237,79; 239,42]
well19937O2 247,04 [246,33; 247,75]
well19937O3 247,41 [246,66; 248,16]
tensorflowAtOnce 288,69 [286,99; 290,40]
numpyTasksetAtOnce 330,27 [328,83; 331,70]
mt19937ar 397,49 [395,73; 399,26]
pytorchTasksetAtOnce 436,27 [432,13; 440,41]
numpyAtOnce 568,32 [545,56; 591,07]
tensorflowAtOnce 649,36 [647,65; 651,08]
well19937a 663,01 [655,98; 670,04]
pcg64O3 711,70 [698,83; 724,56]
pcg64O2 724,40 [714,69; 734,11]
pytorchAtOnce 821,43 [792,63; 850,23]
numpyMtAtOnce 950,24 [908,91; 991,58]
pcg64 982,61 [979,65; 985,56]
mrg32k3aO3 998,58 [978,85; 1018,31]
numpyPhiloxAtOnce 1111,94 [1077,21; 1146,68]
mrg32k3aO2 1442,61 [1439,33; 1445,88]
mrg32k3a 2000,77 [1972,93; 2028,61]
pythonOneByOne 2375,43 [2339,25; 2411,61]
pythonTasksetAtOnce 4629,02 [4486,43; 4771,62]
pythonAtOnce 8202,27 [7645,45; 8759,08]
numpyOneByOne 32740,55 [31842,13; 33638,98]
numpyMtOneByOne 199270,14 [195515,66; 203024,62]
numpyPhiloxOneByOne 202400,80 [197143,08; 207658,52]
pytorchOneByOne 224148,23 [208316,06; 239980,39]

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

09

4.4. Statistical quality

Now, we examine the quality of the pseudorandom numbers
generated by each technology. Integer results are presented in
Table 9, and double results are presented in Table 10. First, we
notice that the quality of the double generation behaves more as
expected than integers. Indeed, each PRNG algorithm is known to
fail specific Big Crush tests, so we can use the tests as markers to
recognize one PRNG or another. In the double generation, all
implementations of the MT algorithm—including MT in C,
Python, and NumPy—failed the LinearComp tests 80 and 81,
aligning with expectations since those tests are linked to crypto-
security. The Well algorithm also demonstrated similar failures;
its internal structure is similar to MT with huge feedback shift
registers. Conversely, PCG and its NumPy variant employing the
PCG 128/64 XSL-RR algorithm passed all tests, corrobor-
ating the assertions of the author of PCG. However, some flaws
were observed by conducting extensive tests with the TestU01
statistical testing library (discussed later). Additionally, the Numpy
documentation notes that statistical weaknesses have been identified
in the PCG64 algorithm when used in massively parallel contexts.
Consequently, a new version called PCG64DXSM has been intro-
duced. Despite this, even this new version, and all previous versions
of PCG from the original author have recently been reported to have
statistical flaws according to Vigna (Vigna’s homepage: https://pcg.
di.unimi.it/pcg.php). The Philox algorithm from NumPy failed the
BirthdaySpacings test, in contrast to its TensorFlow counterpart,
which passed all assessments.

From our experience, we acknowledge that PRNGs may
occasionally fail tests they are not expected to [5]. Further
scrutiny into each behavior of PRNG would necessitate multiple
replications with varying initial statuses to verify consistency
across the entire period. Regrettably, we had to exclude PyTorch
data from Table 10 due to its failure in 62 statistical tests (among
106 tests). This result requires additional investigation, this high
failure rate suggests inferior statistical quality (58% of the big
crush battery failed). Interestingly, the pseudorandom number
generation of PyTorch on 32-bit integers was way better, failing
only 3 tests.

Concerning the 32 bits integers, results were a bit more
surprising. First, we can notice that, while the original C code MT
fails the two tests 80 and 81, the NumPy MT implementation only
failed one test. Surprisingly, the Python version passed all tests;
more investigations with different initial statuses could be
interesting. PCG and Philox, in their different implementations,
did fail some tests, but still remains good quality generators. It is
interesting to note that they do indeed fail some tests, while
authors assume that they do not fail any. In addition, they did not
fail the same tests. For example, NumPy version of Philox failed
the test 49 MaxOft, while the TensorFlow version of Philox failed
the test 9 CollisionOver. This makes us think that these PRNGs
might be failing different statistical tests if we would try to do
replications over the PRNGs periods, using different state of the
PRNG. An unexpected observation was the failure of PyTorch at
three specific tests, notably the RandomWalk and two
LinearComp tests. Although the documentation of PyTorch

Table 9
Failed BigCrush tests for each experiment, based on 32 bits integer

Generator Number of failed tests Failed tests

philoxInt32 6 34 Gap, 35 Gap, 36 Gap, 37 Gap, 65 SumCollector, 68 MatrixRank
pytorchInt32 3 77 RandomWalk1, 80 LinearComp, 81 LinearComp
pcgInt32 1 5 CollisionOver
mtInt32 2 80 LinearComp, 81 LinearComp
numpyMtInt32 1 80 LinearComp
numpyPhiloxInt32 1 49 MaxOft
numpyInt32 0
tensorflowInt32 1 9 CollisionOver
pythonInt32 0

Table 10
Failed BigCrush tests for each experiment, based on 64 bits double. PyTorch excluded for readability,

failing 62 tests

Generator Number of failed tests Failed tests

pcgReal 0
tensorflowReal 0
MRG32k3aReal 0
wellReal 2 80 LinearComp, 81 LinearComp
numpyReal 0
mtReal 2 80 LinearComp, 81 LinearComp
numpyPhiloxReal 1 21 BirthdaySpacings
pythonReal 2 80 LinearComp, 81 LinearComp
numpyMtReal 2 80 LinearComp, 81 LinearComp

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

10

https://pcg.di.unimi.it/pcg.php
https://pcg.di.unimi.it/pcg.php

suggests Philox as its underlying PRNG, the observed failures look
like the “signature” of a MT, raising questions about its
implementation.

4.5. Numerical reproducibility

An important finding of this study is the absence of
reproducibility in the numbers generated across various platforms.
Though initially designed to be portable, the MT algorithm,
initialized with the same seed, will give different numbers with
the different C, Python, and NumPy implementations. The same
applies for PCG with NumPy and C code and also for Philox with
NumPy and TensorFlow frameworks. In addition to portability
issues, the reason might be because people are using simple seeds
to initialize our PRNG, instead of using the full state for a proper
initialization of modern generator. Many scientists are confused
by the “seeding” terminology, and they can think that seeds
correspond to states. If this was often the case at the end of the
previous century, modern and high-quality generators now have
large internal states. Seeds are just indexes transformed into
PRNG states. The function transforming a seed into a full state
might differ between the technologies or frameworks, and this can
lead to a loss of numerical reproducibility between the technologies.

5. Discussions

From what has been discovered comes more questions: if the
loss of reproducibility does not come from the seeding functions,
this leads us to a critical inquiry: how can we ascertain that the
algorithm in use is a correct implementation of the generator? For
us, this is an open question. The ideal solution would be for
original authors to supply a sample of generated pseudorandom
numbers, which we should be able to compare with the numbers
we are generating, to ensure perfect reproducibility. To our
knowledge, MT is the only PRNG that offers this feature with the
expected output. Numerical reproducibility is not only important
for the advancement of Science but also for debugging [11]. Does
the change of hardware or software stack affect the reproducibility
of a PRNG? What we observe is that the portability of PRNGs
should not be considered as granted. Here, we are using different
technologies with the same environment, and we obtained
different results and different statistical quality. Another way to
identify the PRNG not based on the numerical result would be to
perform statistical tests to try to identify the underlying algorithm,
as some failed statistical tests can serve as markers for some
PRNGs, at least to identify PRNGs from the same family.
However, as we found in a deep study [5], the same PRNG
algorithm might fail several different statistical tests. For example,
over 4096 replications, it appears that the MT algorithm fails all
106 BigCrush tests at least once. We could expect a similar
behavior from other PRNGs. This would also need further
investigations. Ensuring the use of a specific algorithm, in the
absence of perfect numerical reproducibility, is far from trivial.

In the discussions surrounding high-performance computing, it
is undeniable that it is a high-consuming endeavor in terms of time,
financial investment, and energy.With the inexorable march towards
greater computational power and despite technological innovation,
these costs have only intensified due to inflation in hardware,
energy prices, and also the Jevons paradox. Meanwhile, ML has
emerged as an indispensable tool in a plethora of fields such as
the now famous LLMs, but also in more common domains like
autonomous vehicles, healthcare, and so on. The sophistication of
ML models comes with its own demands on computational and

energy resources. When considering the generation of
pseudorandom numbers—an essential component for stochastic
processes, simulations, and even for the operation of ML
algorithms themselves—the comparison between traditional C-
coded generators such as Philox, MT, and PCG, and those
implemented within ML frameworks (using PyTorch,
TensorFlow, Python, and NumPy), presents a complex picture.
Energy consumption is a critical factor; while there are no actual
data on the exact energy costs of random number generation
within neural network training, it is reasonable to assume that the
proportion is non-negligible. Profiling such applications to
evaluate the exact proportion of time used in the generation of
pseudorandom numbers, depending on the size of the neural
network, would be valuable. With a neural network like GPT-4
LLM provided by OpenAI, we have around 175 billion
parameters (edges of the graph); we can easily imagine that a very
large number of pseudorandom numbers have been used.
Generating pseudorandom numbers is an integral part of the
training phase of neural networks, especially in processes such as
weight initialization, shuffling, and during SGD where
randomness is used to ensure convergence. The results of our
investigation suggest that ML implementations can match the
statistical quality and speed of their C code counterparts.
However, the ease and speed of generating pseudorandom
numbers using ML frameworks leads to a little increase of the
energy consumption cost dedicated to this task (around 10%).

In future works, we want to ascertain that Powerjoular, utilizing
RAPL, provides reliable measurements of energy consumption. In
Khan et al. [39], they tested the reliability of RAPL, on a Finnish
supercomputing cluster, and on Amazon EC2, leading to the
conclusion that RAPL is accurate and has negligible performance
overhead. Powerjoular adds a layer on top of this. This layer was
also very useful to track power leakage [40]. We reasonably think
that our results are reliable and can be corroborated by others. In
future work, we will try to measure the impact of the PRNG
quality and the parallelization technique [41] on ML applications.

6. Conclusion

ML frameworks rely on PRNGs for neural network training.
The inclusion of stochastic sources has proven beneficial to the
ML field. However, research into the quality of generated
pseudorandom numbers, as well as the generation time and power
requirements, remains incomplete. This study evaluates the
efficiency of pseudorandom number generation in ML
frameworks compared to traditional implementations in C.
Specifically, we examined Python, PyTorch, TensorFlow, and
NumPy. Our findings indicate that various Python-based libraries
and frameworks are well-optimized. Specifically, we examined
Python, PyTorch, TensorFlow, and NumPy with the mindset on
reproducibility and energy consumption.

The NumPy library excels in terms of time efficiency and
quality, closely aligning with C-implemented PRNGs. Never-
theless, two drawbacks were identified: first, ML frameworks
consume approximately 10% more energy; second, there is
inconsistent numerical repeatability when using identical seeds
across different PRNG implementations, which poses a portability
issue. This raises questions about fidelity to the original PRNG
specifications or the possibility of differences in transformation
functions from the seed to the full PRNG state. The imple-
mentation of PRNGs in ML tools should produce identical results
when initialized similarly to their C counterparts. Despite claims
on the official PCG website describing it as “very fast” compared

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

11

to the “acceptable” speed of the MT, our analysis suggests that these
claims may be overstated. In fact, the generation of double values,
which is essential for many simulations, is 2.5 times faster than the
original MT. We observed performance differences between the
generation of 32-bit integers and 64-bit double pseudorandom
values. The C implementation of PCG performs similarly to the
NumPy implementation. Furthermore, PCG exhibited failures in
certain BigCrush tests, despite being described as crush-resistant.
PCG should be avoided for massively parallel computing, as noted
in the NumPy documentation, which recommends using
PCG64DXSM. However, Vigna on his home page also, shows the
statistical failure of the latter (https://pcg.di.unimi.it/pcg.php).
Further research is needed to explore each PRNG in greater depth.
ML frameworks and other applications needing fast pseudorandom
number generation could consider testing xoroshiro128++ [34], a
very fast generator that can also have seeding issues. Although the
impact of PRNG quality on neural network training outcomes has
not been extensively studied, insights from recent studies, discussed
in Section 2, suggest that PRNG quality could indeed influence the
performance of trained neural networks, based on quality metrics
[14, 15].

Funding Support

Mr. Antunes’ thesis is financed by the French Ministry of
Education and Research.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

The data that support the findings of this study are openly
available in GitLab at: https://gitlab.isima.fr/beantunes/random-nu
mbers-in-machine-learning/.

Author Contribution Statement

Benjamin Antunes: Conceptualization, Software,
Investigation, Writing – original draft, Writing – review &
editing. David R. C. Hill: Validation, Writing – review & editing,
Visualization, Supervision, Project administration, Funding
acquisition.

References

[1] Matsumoto, M., & Nishimura, T. (1998). Mersenne Twister: A
623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Transactions on Modeling and
Computer Simulation, 8(1), 3–30.

[2] Salmon, J. K., Moraes, M. A., Dror, R. O., & Shaw, D. E.
(2011). Parallel random numbers: As easy as 1, 2, 3. In
International Conference for High Performance Computing,
Networking, Storage and Analysis, 1–12.

[3] O’neill, M. E. (2014). PCG: A family of simple fast space-
efficient statistically good algorithms for random number
generation. ACM Transactions on Mathematical Software.

Claremont, CA: Harvey Mudd College. https://www.cs.
hmc.edu/tr/hmc-cs-2014-0905.pdf

[4] L’Ecuyer, P. (1999). Good parameters and implementations for
combined multiple recursive random number generators.
Operations Research, 47(1), 159–164.

[5] Antunes, B., & Hill, D. R. C. (2023). Identifying quality
Mersenne Twister streams for parallel stochastic simulations.
In Winter Simulation Conference, 2801–2812.

[6] L’Ecuyer, P., & Simard, R. (2007). TestU01: AC library for
empirical testing of random number generators. ACM
Transactions on Mathematical Software, 33(4), 1–40.

[7] Saito, M., &Matsumoto, M. (2006). SIMD-oriented fast Mersenne
Twister: A 128-bit pseudorandom number generator. In Monte
Carlo and Quasi-Monte Carlo Methods, 607–622.

[8] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.,
Leigh, S., : : : , & Heckert, A. (2001). A statistical test suite
for random and pseudorandom number generators for
cryptographic applications. USA: National Institute of
Standards and Technology.

[9] Roucairol, M., & Cazenave, T. (2024). Comparing search
algorithms on the retrosynthesis problem. Molecular Informatics,
43, e202300259. https://doi.org/10.1002/minf.202300259

[10] Goralski, M. A., & Tan, T. K. (2020). Artificial intelligence and
sustainable development. The International Journal of
Management Education, 18(1), 100330.

[11] Drummond, C. (2009). Replicability is not reproducibility: Nor
is it good science. InProceedings of the EvaluationMethods for
Machine Learning Workshop at the 26th ICML. 4 p.

[12] Hart, M., Idanwekhai, K., Alves, V. M., Miller, A. J.,
Dempsey, J. L., Cahoon, J. F., : : : , & Tropsha, A. (2024).
Trust not verify? The critical need for data curation standards
in materials informatics. Chemistry of Materials, 36,
9046–9055. https://doi.org/10.1038/s41563-023-01790-z

[13] Antunes, B., & Hill, D. R. C. (2024). Reproducibility,
replicability and repeatability: A survey of reproducible
research with a focus on high performance computing.
Computer Science Review, 53, 100655.

[14] Huk, M., Shin, K., Kuboyama, T., & Hashimoto, T. (2021).
Random number generators in training of contextual neural
networks. In Asian Conference on Intelligent Information
and Database Systems, 717–730.

[15] Koivu, A., Kakko, J. P., Mäntyniemi, S., & Sairanen, M.
(2022). Quality of randomness and node dropout
regularization for fitting neural networks. Expert Systems
with Applications, 207, 117938.

[16] Lu, Y., Meng, S. Y., & De Sa, C. (2022). A general analysis of
example-selection for stochastic gradient descent. In
International Conference on Learning Representations, 44.

[17] Antorán, J., Allingham, J., & Hernández-Lobato, J. M. (2020).
Depth uncertainty in neural networks. Advances in Neural
Information Processing Systems, 33, 10620–10634.

[18] Mumuni, A., & Mumuni, F. (2022). Data augmentation:
A comprehensive surveyofmodern approaches.Array,16, 100258.

[19] Maleki, F., Ovens, K., Gupta, R., Reinhold, C., Spatz, A., &
Forghani, R. (2022). Generalizability of machine learning
models: Quantitative evaluation of three methodological
pitfalls. Radiology: Artificial Intelligence, 5(1), e220028.

[20] Tsamardinos, I., Greasidou, E., & Borboudakis, G. (2018).
Bootstrapping the out-of-sample predictions for efficient
and accurate cross-validation. Machine Learning, 107,
1895–1922.

[21] Liu, Y., Liu, S., Wang, Y., Lombardi, F., & Han, J. (2020). A
survey of stochastic computing neural networks for machine

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

12

https://pcg.di.unimi.it/pcg.php
https://gitlab.isima.fr/beantunes/random-numbers-in-machine-learning/
https://gitlab.isima.fr/beantunes/random-numbers-in-machine-learning/
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://doi.org/10.1002/minf.202300259
https://doi.org/10.1038/s41563-023-01790-z

learning applications. IEEE Transactions on Neural Networks
and Learning Systems, 32(7), 2809–2824.

[22] Magris, M., & Iosifidis, A. (2023). Bayesian learning for neural
networks: An algorithmic survey. Artificial Intelligence
Review, 56(10), 11773–11823.

[23] Wei, R., & Mahmood, A. (2020). Recent advances in
variational autoencoders with representation learning for bio-
medical informatics: A survey. IEEE Access, 9, 4939–4956.

[24] Ladosz, P., Weng, L., Kim, M., & Oh, H. (2022). Exploration
in deep reinforcement learning: A survey. Information Fusion,
85, 1–22.

[25] Xioa, L., Zhang, Z., Huang, K., & Peng, Y. (2022). Noise
optimization in artificial neural networks. In IEEE International
Conference on Automation Science and Engineering, 1595–1600.

[26] Kim, K., Kim, J., Yu, J., Seo, J., Lee, J., & Choi, K. (2016).
Dynamic energy-accuracy trade-off using stochastic
computing in deep neural networks. In Annual Design
Automation Conference, 1–6.

[27] Liu, Y., Wang, Y., Lombardi, F., & Han, J. (2018). An energy
efficient online learning stochastic computational deep belief
network. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 8(3), 454–465.

[28] Dubey, S. R., & Singh, S. K. (2024). Transformer-based
generative adversarial networks in computer vision:
A comprehensive survey. In IEEE Transactions on
Artificial Intelligence, 5(10), 4851–4867. https://doi.org/10.
1109/TAI.2024.3404910

[29] Pranav, D., Shumailov, I., & Anderson, R. (2023). Machine
learning needs better randomness standards: Randomised
smoothing and PRNG-based attacks. arXiv Preprint:
2306.14043.

[30] Daniely, A., & Vardi, G. (2021). From local pseudorandom
generators to hardness of learning. In Conference on
Learning Theory, 1358–1394.

[31] Hu, J., Zhu, K., Cheng, S., Kovalchuk, N. M., Soulsby, A.,
Simmons, M. J. H., : : : , & Arcucci, R. (2024). Explainable
AI models for predicting drop coalescence in microfluidics
device. Chemical Engineering Journal, 481, 148465.

[32] Zhu, K., Cheng, S., Kovalchuk, N., Simmons, M., Guo, Y. K.,
Matar, O. K., & Arcucci, R. (2023). Analyzing drop

coalescence in microfluidic devices with a deep learning
generative model. Physical Chemistry Chemical Physics,
25(23), 15744–15755.

[33] Gundersen, O. E., Coakley, K., Kirkpatrick, C., & Gil, Y.
(2022). Sources of irreproducibility in machine learning:
A review. arXiv Preprint: 2204.07610.

[34] Blackman, D., & Vigna, S. (2021). Scrambled linear
pseudorandom number generators. ACM Transactions on
Mathematical Software, 47(4), 1–32.

[35] PCG, A Family of Better Random Number Generators. (2018).
Using the minimal C implementation. Retrieved from: https://
www.pcg-random.org/using-pcg-c-basic.html

[36] Noureddine, A. (2022). PowerJoular and JoularJX: Multi-
platform software power monitoring tools. In 2022 18th
International Conference on Intelligent Environments, 1–4.

[37] David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R., & Le,
C. (2010). RAPL: Memory power estimation and capping.
In ACM/IEEE International Symposium on Low Power
Electronics and Design, 189–194.

[38] Panneton, F., L’ecuyer, P., &Matsumoto,M. (2006). Improved
long-period generators based on linear recurrences modulo 2.
ACM Transactions on Mathematical Software, 32(1), 1–16.

[39] Khan, K. N., Hirki, M., Niemi, T., Nurminen, J. K., &
Ou, Z. (2018). RAPL in action: Experiences in using RAPL
for power measurements. ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, 3(2),
1–26.

[40] Zhang, Z., Liang, S., Yao, F., & Gao, X. (2021). Red alert for
power leakage: Exploiting intel RAPL-induced side channels.
In ACM Asia Conference on Computer and Communications
Security, 162–175.

[41] Hill, D. R. C., Passerat-Palmbach, J., Mazel, C., & Traore, M.
K. (2013). Distribution of random streams for simulation
practitioners. Concurrency and Computation: Practice and
Experience, 25(10), 1427–1442.

How to Cite: Antunes, B., & Hill, D. R. C. (2024). Random Numbers for Machine
Learning: A Comparative Study of Reproducibility and Energy Consumption.
Journal of Data Science and Intelligent Systems. https://doi.org/10.47852/
bonviewJDSIS42024012

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

13

https://doi.org/10.1109/TAI.2024.3404910
https://doi.org/10.1109/TAI.2024.3404910
https://www.pcg-random.org/using-pcg-c-basic.html
https://www.pcg-random.org/using-pcg-c-basic.html
https://doi.org/10.47852/bonviewJDSIS42024012
https://doi.org/10.47852/bonviewJDSIS42024012

	Random Numbers for Machine Learning: A Comparative Study of Reproducibility and Energy Consumption
	1. Introduction
	2. The Importance of PRNGs in Machine Learning
	3. Materials and Methods
	4. Results
	4.1. Time performance
	4.2. Energy consumption by minutes
	4.3. Overall energy consumption
	4.4. Statistical quality
	4.5. Numerical reproducibility

	5. Discussions
	6. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

