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Abstract: Pseudo-Random Number Generators (PRNGs) have become ubiquitous in machine learning (ML) technologies because 
they are interesting for numerous methods. In the context of ML, multiple stochastic streams, produced in black boxes for methods 
such as stochastic gradient descent or dropout, can produce a lack of repeatability, impacting the ability to debug and explain 
results. The field of machine learning holds the potential for substantial advancements across various domains. However, despite 

the growing interest, persistent concerns include issues related to reproducibility and energy consumption. Reproducibility is crucial 
for robust scientific inquiry and explainability, while energy efficiency underscores the imperative to conserve finite global 
resources. This study delves into the investigation of whether the leading Pseudo-Random Number Generators (PRNGs) employed 
in machine learning languages, libraries, and frameworks uphold statistical quality and numerical reproducibility when compared 
to the original C implementation of the respective PRNG algorithms. Additionally, we aim to evaluate the time efficiency and 
energy consumption of various implementations. Our experiments encompass Python, NumPy, TensorFlow, and PyTorch, utilizing 
the Mersenne Twister, Permuted Congruential Generator (PCG), and Philox algorithms. Remarkably, we verified that the temporal 
performance of machine learning technologies closely aligns with that of C-based implementations, with instances of achieving 

even superior performances. On the other hand, it is noteworthy that ML technologies consumed only 10% more energy than their 
C-implementation counterparts. However, while statistical quality was found to be comparable, achieving numerical reproducibility 
across different platforms for identical seeds and algorithms was not achieved. 
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1. Introduction 

 
Contemporary machine learning (ML) researchers 

predominantly use high-level programming languages and 
frameworks to conduct their studies. Python is the principal 
programming language in ML, leading to the widespread 
adoption of frameworks such as PyTorch and TensorFlow, 
often coupled with NumPy.  In this paper, we want to study 
the statistical quality, reproducibility, energy and time 
consumption of the pseudo random number generation in 
these technologies. The literature on the quality of Pseudo-

random number generators (PRNGs) within ML 
technologies remains sparse; our investigation addresses this 
gap. 

In Python, the default PRNG algorithm used is 
Mersenne Twister (MT) [1]. In TensorFlow, the default 
PRNG algorithm is Philox (Threefry from the same family 
of crypto secure generator is also available) [2], similarly to 
PyTorch. NumPy offers a variety of PRNGs, and thus more 

flexibility. The default PRNG algorithm proposed by 
NumPy is PCG [3]. For our study, we check and compare 

reproducibility, performance, statistical quality and energy 
consumption, for the following PRNGs: MT, Philox, PCG 
and Mrg32k3a [4] as a reference. We use the original C 
implementations provided by the PRNGs authors. 

As described in Antunes [5], Salmon et al. introduced 
the Philox, Threefry and ARS algorithms at the 2011 
Supercomputing Conference; they incorporate 

cryptographic techniques akin to AES (Adanced Encryption 
Standard). Although their cryptographic nature makes them 
relatively slow, their statistical properties are commendable, 
albeit with some repeatability issues in the first versions. 
MRG32k3a, devised by L’Ecuyer in 1999, is a combined 
recursive pseudo-random number generator chosen 
specifically since it was built to obtain the best statistical 
results when faced to TestU01, the most complete statistical 
test battery developed to assess PRNGs [6]. This software 

proposes more than 100 tests at the “big Crush” level, it will 
be discussed below. MRG32k3a can be significantly slower 
than the famous Mersenne Twister, 15 to 20 times slower 
when comparing optimized C implementations. PCG, 
developed in 2014 by O’Neill, is touted for its superior 
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statistical attributes compared to other generators, but this 
could not be confirmed with a thorough TestU01 campaign. 
The initial Mersenne Twister generator was introduced in 
1998 by Matsumoto and Nishimura, it has known limits but 

is renowned for its long period. Its 2002 version improved 
its initialization. SFMT version, designed by Saito & 
Matsumoto in 2006 [7], capitalizes on modern processor 
capabilities and offers twice as more speed and even superior 
statistical qualities. A GP-GPU version was proposed and is 
known as MTGP. However, it is important to note that the 
Mersenne Twister family is not apt for cryptographic 
applications. Though it presents some minor statistical flaws, 

we are not aware of applications that have been impacted and 
it is particularly well spread in many scientific libraries.   

To assess the quality of a Pseudorandom Number 
Generator (PRNG), statistical evaluations are employed to 
distinguish between superior and inferior PRNGs. 
Historically, Donald Knuth introduced an initial array of 
statistical evaluations for PRNGs in the second volume of 
"The Art of Computer Programming". Despite their age, 
these tests remain relevant. In 1996, Marsaglia introduced a 

concise suite comprising 15 tests known as Die Hard. The 
original source code for Die Hard is no longer available but 
the historical code can be found via a "wayback machine". 
Brown, along with his Australian associates, extended 
Marsaglia's work and introduced an updated set of tests, 
released as open source software. This suite was aptly named 
Die Harder. The National Institute of Standards and 
Technology's (NIST) Statistical Test Suite is regarded as the 

benchmark for assessing random and pseudorandom number 
generators, especially in cryptographic contexts [8]. 
L’Ecuyer and Simard unveiled an open source library 
dedicated to the empirical evaluation of random number 
generators. Known as TestU01 as previously cited, this suite 
offers a comprehensive array of tests, categorized into 
various levels of scrutiny such as Small Crush, Crush, and 
Big Crush, among others. To measure the quality of pseudo 

random numbers generated in ML technologies, we used the 
Big Crush test battery from TestU01, consisting in 106 
statistical tests. Random sampling is particularly interesting 
in training artificial intelligence models. In the category of 
"General Game Playing", where machines must play a new 
game starting with its basic rules, an annual competition is 
organized by Stanford. In this field, the evolution of machine 
capabilities has allowed the stochastic approach of Monte 

Carlo Tree Search (MCTS) to become more and more 
efficient. In particular, as of 2007, these methods have 
proven to be very successful in the game of Go, and it is 
interesting to note that all world champion programs in two-
player GGP now use MCTS and this method is now also 
used in bioinformatics [9]. 

The rise of deep learning and complex models in ML 
necessitates efficient computational resources to process 
vast amounts of data. Hardware accelerator manufacturers 

are racing to propose better performances at an impressive 
pace. Performance, often quantified by the time taken to 
compute or the speed of operations, directly impacts the 
feasibility of training larger models and iterating over them 
during the research phase. While an optimized algorithm or 
efficient hardware can improve time efficiency, the energy 
consumed during computations also becomes a significant 

concern, especially with the current emphasis on 
environmental sustainability [10]. High energy consumption 
not only leads to higher operational costs but also contributes 
to increased carbon footprints in data centers. Therefore, 

understanding and optimizing the performance and energy 
efficiency of computations, including those of PRNGs, are 
imperative. Efficient PRNGs can lead to faster 
initializations, shuffling, and other stochastic operations in 
ML workflows, further reducing both time and energy 
consumption. 

Another aspect of science advancement has to be 
tackled: reproducibility as a cornerstone of scientific 

integrity [11]. It enables researchers to validate, build upon, 
or challenge prior findings. In the realm of ML, 
reproducibility ensures that results obtained in one run can 
be consistently achieved in subsequent runs, given the same 
configurations. This consistent outcome is crucial for 
debugging, model comparison, validation, and ensuring the 
reliability of the technology in real world applications. 
PRNGs play a pivotal role in this context. Since many ML 
processes, from data splitting to weight initialization, rely on 

pseudorandom sequences, the reproducibility of PRNG 
outputs is vital. Without repeatable and consistent PRNG 
outputs, subtle differences can amplify through the training 
process, leading to markedly different outcomes. Beyond 
individual experiments, reproducibility is also vital for the 
broader scientific community [12]. When results can be 
reliably reproduced, it fortifies the foundation upon which 
future research is built, ensuring a progressive and 

trustworthy scientific trajectory. A full survey dealing with 
all aspects of reproducibility is now available in Computer 
Science Review [13]. In this paper, we aim to answer to the 
following questions: 
- Are PRNGs implemented in ML frameworks giving the 

same results as their initial C codes proposed by the 
original PRNGs implementations when identically 
initialized? 

- Does pseudo-random numbers generated with ML main 
language, libraries and frameworks have the same 
statistical quality than those produced by the original code 
given by the PRNG authors? 

- Is the process of generating random numbers in ML 
frameworks more time-consuming when compared to the 
original C codes? 

- Does random number generation within ML frameworks 

require more energy than its C code counterparts? 
- Taking into account the previous points, is there a 

consistency between the performance of 32-bit integer and 
64-bit double precision of the generated numbers? 

 
Our discussion will begin with an overview of prior 

research on the application of stochastic processes in 
machine learning. Subsequently, we will present the method 
employed in our experiments. Following this, we will 

present the findings about time performance, energy 
consumption by minutes, overall energy consumption and 
numerical reproducibility. Finally, we talk about the 
implications and future directions of our results. 
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2. The Importance of PRNGs in Machine 

Learning 
 

To underline the importance of the PRNG statistical 
quality on the neural network training, a recent work from 
Huk [14] attempted to quantify the potential differences in 
classification performance of CNNs and MLPs when 
varying the PRNG. They draw the 95% confidence interval 
for each quality measurement, for different PRNGs. The 
results indicated minor variations in quality associated with 
different PRNGs, as evidenced by non-overlapping 

confidence intervals. This study shows that the PRNG 
algorithm used might have an incidence (needing to double 
the confidence intervals of evaluation metrics) over the 
quality of the neural network training. Koivu et al. [15] also 
shows a correlation between the statistical quality of a PRNG 
and the resulting quality of the dropout method applied to the 
neural network. Additional research is necessary to explore 
various neural network architectures, and assess the impact 

of PRNG quality on neural network performance, and 
replicate these results, given the scarcity of literature on this 
topic. The quality of the PRNGs used in ML is not well 
studied, and it would be interesting to investigate. Indeed, 
stochastic processes have become increasingly important in 
ML over the years due to its efficiency in some cases. As a 
result, PRNGs have become indispensable in ML 
technologies.  

To illustrate the importance of PRNGs in machine 
learning, we consider multiple stochastic methods such as 
the Stochastic Gradient Descent (SGD). It is a cornerstone 
optimization algorithm for training models in machine 
learning and deep learning. It operates by using a single or a 
small batch of training samples to calculate the gradient and 
update parameters, rather than using the entire training 
dataset. Knowing that the SGD training example order is 
impacting the convergence rate, accelerated rates were 

recently obtained by using randomness: permutation of the 
sample orders with approaches like shuffling once, random 
reshuffling with or without data echoing… Markov Chain 
Gradient Descent has also been tested. Lu et al. [16] used a 
quasi-Monte-Carlo method to obtain unprecedented 
accelerated convergence rates for learning with data 
augmentation (they also used smart fixed scan-order). 

Beyond the commonly employed SGD algorithm, 

known for its efficiency, it is worth noting the significant 
role of regularization techniques that have demonstrated 
considerable utility and similarly require elements of 
randomness. Dropout is one such regularization strategy 
tailored for neural networks to mitigate overfitting. 
Overfitting transpires when a model excessively conforms to 
training data, compromising its ability to generalize, which 
results in subpar performance on novel data. Dropout 

addresses this by randomly omitting a selection of neurons 
and their connections throughout the training process.  

Additionally, the concept of stochastic depth, another 
regularization technique reliant on randomness, was 
designed to overcome obstacles inherent in training deep 
convolutional networks, such as vanishing gradients and 
protracted training durations. It streamlines the training 
process by randomly omitting a set of layers in each training 

batch and seamlessly connecting the remaining ones using 
the identity function, thus reducing training time and 
potentially increasing test accuracy [17]. 

Randomness is also instrumental in data augmentation, 

a method aimed at expanding the data set by incorporating 
modified replicas of existing data or generating new 
synthetic data. This approach is particularly beneficial in 
machine learning, enhancing model performance through a 
more robust dataset. For image-related tasks, data 
augmentation can involve alterations like rotation, cropping, 
or flipping. Notable algorithms that employ data 
augmentation include the Expectation-Maximization 

algorithm, the algorithm for posterior sampling, and Markov 
chain Monte Carlo methods for posterior sampling [18]. In 
deep learning for images, augmentation techniques that 
incorporate randomness span a wide spectrum, from 
geometric adjustments and color space alterations to kernel 
filters, image mixing, random erasing, and even neural style 
transfer. Moreover, test-time augmentation introduces 
variability during model evaluation, which is critical for 
enriching datasets and fortifying model resilience [19]. 

Additionally, the concept of bootstrapping 
complements these techniques by providing another layer of 
randomness and robustness. Bootstrapping, involving the 
creation of multiple subsets of the dataset through sampling 
with replacement, allows for the generation of diverse 
training conditions. This technique is instrumental in 
enhancing model accuracy and stability, particularly in 
ensemble learning methods where it contributes to a more 

comprehensive exploration of the data space and better 
generalization of the model [20]. 

A recent survey highlights the pervasive application of 
randomness in machine learning as a trade-off for hardware 
efficiency and computational performance [21]. The usage 
of PRNGs in machine learning is wildly spread. Examples 
include Bayesian neural networks [22], Variational 
autoencoders presented in Wei and Mahmood[23] and 

Reinforcement Learning [24]. Additionally, some methods 
propose the injection of gradient noise as a strategy to 
enhance deep neural network training [25]. 

Some recent works are more focused on the use of 
pseudo random generation and the power consumption of 
neural networks. In Kim et al. [26], they used stochastic 
computing on deep neural networks and obtained better 
results for latency and power consumption. In this case, the 

old stochastic computing (SC) approach, originally 
introduced by John Von Neumann in the beginning of the 
sixties, where information is represented and processed 
using random bit streams, serve for complex computations 
operated with bit-wise operations. In Liu et al. [27], authors 
point out that SC can be costly in term of energy efficiency 
when used in deep neural networks. 

Furthermore, the evolving landscape of machine 
learning has seen the rise of Transformer architectures used 

in many domains. For instance, Generative Adversarial 
Networks (GANs), are interestingly successful for 
synthesizing the images [28], but the most famous usage is 
for large language models. These architectures, exemplified 
by models like GPT (Generative Pre-trained Transformer), 
still rely on randomness in their training phase. This 
randomness manifests in the form of stochastic gradient 
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descent and dropout techniques, essential for preventing 
overfitting and promoting model generalization. The 
strength of the generator used is also important for any 
Machine Learning system, in Pranav et al. [29], Pranav et al 

consider how attackers can compromise a machine learning 
system using only the randomness on which they commonly 
rely. A last reference in computational learning theory also 
used pseudorandom generators as a criterion for PAC 
(Probably Approximately Correct) learning [30]. 

We can cite some usage of machine learning in real life 
applications, such as analyzing drop coalescence in 
microfluidic devices [31, 32], where they are using random 

forest, a widely used machine learning method. As the name 
suggests, this algorithm relies on randomness introduced by 
pseudo-random number generators. While these 
complexities may be abstracted away by high-level 
frameworks, they play a crucial role in the behavior and 
outcome of the algorithm. In Gundersen et al. [33] list the 
sources of , irreproducibility in machine learning including 
the lack of mastery of pseudo-random number generators. 

With this short literature review, we can confirm that 

randomness, along with PRNGs, are prominent artificial 
intelligence technologies that will become ubiquitous in our 
lives. Since the quality of pseudo-random numbers in 
machine learning frameworks remains under-explored, as 
our literature search yielded no relevant studies, we want to 
bridge this knowledge gap. 

 

3. Materials and Methods 
 
To address the questions raised in introduction, we 

selected prominent ML frameworks, specifically PyTorch 

and TensorFlow, along with the Python and the NumPy 
library due to their widespread use in the ML field. For 
benchmark purposes, we have retained the original C code 
implementations of Mersenne Twister, PCG, Philox, and 
Mrg32k3a as a standard of comparison (all codes are 
proposed on the authors’ web pages). The last version of 
Xoshiro by Blackman and Vigna, based on a ‘‘XOR, shift, 
rotate’’ principle, could be interesting but we did not found 

its usage in Machine Learning [34]. 
The Mersenne Twister supports native generation of 

both 32-bit integers and 64-bit doubles. On the other hand, 
Mrg32k3a is limited to generating only 64-bit doubles. In 
order to maintain fidelity to the original implementations, we 
restricted our use of Mrg32k3a to experiments involving 64-
bit doubles. Conversely, the Philox algorithm was only 
available for generating 32-bit integers from its authors. 
PCG offers the possibility for both, but the author prefers to 

stick with integer “Like the Unix rand and random facilites, 
this library does not provide a direct facility to generate 
floating point random numbers. It turns out that generating 
random floating point values is surprisingly challenging.” 
[35]. 

However, as the author provides a solution to generate 
double, we used PCG in both cases, like MT.  ML 
frameworks, with their advanced APIs, allow for the 

straightforward generation of either 32-bit integers or 64-bit 
doubles. The most recent version of TensorFlow suggests 
using a Generator object, which we explicitly applied to the 
Philox algorithm. For PyTorch, while the underlying 

algorithm is believed to be Philox based on documentation, 
the user cannot specify his generator choice. NumPy stands 
out as perhaps the most versatile library for handling various 
PRNGs, offering clear documentation and a range of 

available algorithms. With NumPy we used the Generator 
object, setting it to explicitly use Mersenne Twister, Philox, 
and PCG.  

These technologies differ from traditional scientific 
computing practices in C, C++, or Fortran, where random 
numbers are typically generated individually as needed. In 
contrast, ML frameworks are optimized to generate random 
numbers in bulk as part of tensor objects (akin to matrices). 

Therefore, we conducted experiments both ways: generating 
numbers one by one and in bulk. For Python, the most 
efficient approach was to generate numbers individually.  

As PCG propose different versions, for 64 bits we 
choose the exact same version as NumPy (PCG 128/64 XSL-
RR) and for 32 bits we used PCG 64/32 XSH-RR.  

We initialized all PRNGs with the same seed value. To 
neutralize language-specific data type disparities, we used 
the seed value '0', ensuring a zero-filled seed memory pointer 

across different data types. Although initializing with zero 
can be problematic for some PRNGs [7], this was 
intentionally done to observe the resultant behavior. It is 
imperative for researchers in the scientific community to 
recognize that a seed and the complete state of a PRNG are 
distinct entities. The state of the PRNG is determining the 
output value it generates. In contrast, utilizing a seed 
involves the application of a specific function to convert the 

seed into the full state of the PRNG. It is noteworthy that this 
transformation process may vary across different 
technological platforms. Given that the entire machine 
learning framework is fundamentally dependent on the 
seeding function, our study is primarily focused on studying 
this aspect. 

Our evaluation utilized various Bash scripts: one to run 
time and energy consumption assessments—generating 230 

numbers one by one or at once and timing the process with 
the Unix “time” command. Energy consumption was 
monitored over a set period (e.g., 30 seconds), with results 
extrapolated over the entire duration. We replicated these 
measurements 30 times to strengthen the statistical validity 
of our measures, this leads to the study of samples of a bit 
less than 235 numbers. The reason why we generate 230 
numbers one by one or at once is because in machine 

learning frameworks, random numbers generation is 
optimized to generate numbers by batch, and generating 
numbers one by one would be much slower. To have a faire 
comparison between C and Python implementations, we 
used one by one and at once (batch) methods. Here is how 
the study was conducted. We have C codes and Python codes 
for each random number generation with each technology, 
considering one by one or at once generation, with 32 or 64 
bits numbers, and also considering O2 and O3 compilation 

optimization for C codes. We generate 230 numbers, 
measuring the execution time with the Unix “time” 
command, which returns real, user and system time. We run 
each experiment 30 times; all the results are stored in files. 
We use Python code in a Jupyter notebook to compute the 
mean and the 95% confidence interval for each experiment. 
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These results are shown in the tables in the next section. The 
same procedure applies for energy consumption. 

Energy measurements were obtained using 
PowerJoular [36]. This tool offers the possibility to measure 

the energy consumption of a given Process ID, using RAPL 
Intel feature [37], also available on recent AMD chips. We 
compiled all C codes with different optimization levels 
(none, -O2, and -O3) to discern the impact of compiler 
optimizations on time and energy efficiency.  

For quality evaluation, we ran another set of Bash 
scripts. The TestU01 BigCrush test battery, which typically 
requires a bit more than 238 numbers based on TestU01 

documentation, prompting us to generate 239 numbers (one 
order of magnitude over). Given that BigCrush is not 
designed to read numbers from a file in its original form, we 
made a C-code interface. We stored the ML-generated 
numbers in a binary file and subsequently, the C program 
reads the numbers sequentially from this file to provide the 
inputs required by BigCrush. This method was also applied 
to the PRNGs coded in C for a fair comparison. Preliminary 
tests showed no significant difference between the modified 

approach and the original one, confirming the validity of our 
method. However, it is important to note that storing 239 
doubles takes 4.4TB of storage and 2.2TB for 32 bits 
integers. In this context, we saved one 239 random numbers 
stream for each technology (i.e. Tensorflow, Pytorch, 
Numpy-MT, Numpy-PCG, Numpy-Philox, original MT, 
original PCG, original Philox), and then we apply the 
BigCrush test battery on each random number stream, to 

check statistical quality. Further studies dealing with 
statistical quality, could go deeper on each PRNG, studying 
multiple huge streams. 

Finally, for numerical reproducibility, we generated 
100 pseudo random numbers in a readable file, and 
computed “diff” command over files, the algorithm being the 
same, seeded identically, we expect bitwise identical results 
(if the seeding method to generate the full state of the 

generator is the same between the different technologies).  
All data were saved in text files, and then collected 

using Jupyter Notebook to analyze all the results and run all 

bash scripts to easily reproduce the experiments. 
Experiments were performed on a machine with two AMD 
7763 64-cores processors, leading to 128 physical cores and 
256 logical cores. The machine has 512GB of RAM, and 

7.7TB of NVMe storage. We had root access, so we were 
able to perform energy consumption measurements (RAPL 
needs root access to be used). The Python version used is 
3.11.5. The GCC version used is 13.2.0. The operating 
system is Linux, Debian 6.4.13-1.  

 
4. Results 

 

4.1. Time performance 
 
Tables 1 and 2 illustrate the time required to generate 

230 numbers in each experiment. First, distinct performance 
discrepancies between 32-bit integers and 64-bit doubles are 
observed. Notably, the PCG algorithm demonstrates 
superior speed for 32-bit integers but requires quadrupling 
its generation time for 64-bit doubles. The Mersenne Twister 

code, in its original implementation, takes the same time for 
both. When implemented using NumPy, the MT algorithm 
demonstrates a pronounced divergence in generation time, 
taking approximately 4.5 seconds for 32-bit integers versus 
13 seconds for 64-bit doubles (for 1 billon drawings), 
whereas the original version maintains a consistent 4-second 
duration for each. However, we can see that PRNG 
implementations via ML Python frameworks have a good 

computational efficiency, as Python and C code execution 
times are mixing in the performance rankings. However, the 
MT algorithm is significantly slower in pure Python. For the 
PCG and Philox algorithms, implementations utilizing ML 
technologies appear to outperform the original versions (in 
C code), despite the use of –O2 or –O3 compilation 
optimizations (when we were able to use them, because 
sometimes, the usage of compilation optimization leads to 

the malfunction of the code). 

 

Table 1 

Real time and user time taken for each experiment, for 230 32 bits integer random number generation 
 

Generator Real time (s) Real time 95% CI User time (s) User time 95% CI 

pcg32Integer 2,45 [2,27; 2,64] 2,45 [2,27; 2,63] 

numpyIntegerTasksetAtOnce 2,60 [2,59; 2,60] 2,20 [2,19; 2,22] 

tensorflowIntegerAtOnce 3,22 [3,19; 3,25] 17,89 [17,70; 18,08] 

numpyIntegerAtOnce 3,42 [3,23; 3,61] 3,98 [3,80; 4,15] 

mt19937arIntegerO3 4,29 [4,17; 4,42] 4,29 [4,17; 4,41] 

numpyIntegerMtAtOnce 4,55 [4,42; 4,68] 5,15 [5,02; 5,27] 

mt19937arIntegerO2 4,74 [4,68; 4,81] 4,74 [4,67; 4,81] 

numpyIntegerPhiloxAtOnce 6,77 [6,63; 6,92] 7,37 [7,23; 7,51] 

tensorflowIntegerTasksetAtOnce 7,08 [7,04; 7,13] 6,23 [6,20; 6,27] 

mt19937arInteger 7,10 [6,96; 7,24] 7,10 [6,95; 7,24] 
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pytorchIntegerTasksetAtOnce 8,06 [8,00; 8,13] 7,12 [7,06; 7,18] 

pytorchIntegerAtOnce 9,09 [8,99; 9,19] 8,93 [8,85; 9,01] 

philoxInteger 90,06 [89,74; 90,39] 90,06 [89,73; 90,38] 

pythonIntegerOneByOne 425,92 [424,24; 427,60] 425,91 [424,23; 427,58] 

pythonIntegerTasksetAtOnce 486,11 [484,14; 488,09] 452,94 [451,32; 454,55] 

pythonIntegerAtOnce 489,02 [487,30; 490,75] 453,29 [451,88; 454,70] 

pytorchIntegerOneByOne 2281,79 [2248,98; 2314,61] 2282,33 [2249,51; 2315,16] 

numpyIntegerMtOneByOne 6327,76 [6228,26; 6427,27] 6328,50 [6228,97; 6428,02] 

numpyIntegerOneByOne 6458,61 [6396,91; 6520,31] 6459,50 [6397,77; 6521,23] 

numpyIntegerPhiloxOneByOne 6552,21 [6472,50; 6631,91] 6553,13 [6473,41; 6632,85] 

The primary distinction between the original C code 
and ML-based code lies in the unsuitability of the latter for 
generating numbers sequentially, resulting in significantly 
poor performance when trying to generate the random 

numbers sequentially and, in the case of TensorFlow, an 
infeasibility due to RAM overload, despite the availability of 
more than 500GB of RAM in our test. Finally, when 
comparing User time and Real time, we can see that 
TensorFlow is the only technology that is using implicit 
parallelization. We can then suppose that if less cores were 

available in the machine, or if the machine was overloaded 
due to some other running processes, the TensorFlow 
generation would have taken more time than NumPy and 
similar to PyTorch, due to the fact that doing parallelization 

on an already overloaded machine will not improve 
performance and can even worsen them. Using taskset to set 
affinity of a single process to only one core shows a slight 
improvement for ML frameworks, except for TensorFlow, 
due to its native implicit parallelization. 

 

Table 2 

Real time and user time taken for each experiment, for 230 64 bits double random number generation 

 

Generator Real time (s) Real time 95% CI User time (s) User time 95% CI 

tensorflowAtOnce 3,38 [3,28; 3,47] 32,33 [31,90; 32,76] 

mt19937arO3 4,20 [4,06; 4,34] 4,20 [4,06; 4,34] 

numpyTasksetAtOnce 4,35 [4,32; 4,39] 3,56 [3,52; 3,61] 

mt19937arO2 4,50 [4,34; 4,67] 4,50 [4,34; 4,67] 

well19937O3 4,96 [4,85; 5,08] 4,96 [4,85; 5,07] 

well19937O2 4,97 [4,83; 5,12] 4,97 [4,83; 5,12] 

numpyAtOnce 5,77 [4,73; 6,82] 5,75 [4,71; 6,79] 

pytorchTasksetAtOnce 6,02 [5,94; 6,11] 5,31 [5,25; 5,36] 

pytorchAtOnce 6,90 [6,76; 7,05] 7,01 [6,90; 7,12] 

mt19937ar 7,48 [7,31; 7,66] 7,48 [7,31; 7,66] 

tensorflowAtOnce 8,18 [8,12; 8,24] 6,67 [6,63; 6,72] 

pcg64O3 11,00 [10,83; 11,17] 11,00 [10,83; 11,16] 

pcg64O2 11,07 [10,92; 11,23] 11,07 [10,91; 11,23] 

numpyMtAtOnce 13,08 [11,56; 14,60] 7,27 [7,16; 7,38] 

well19937a 13,08 [13,08; 13,09] 13,08 [13,07; 13,09] 

pcg64 13,18 [13,05; 13,31] 13,18 [13,05; 13,31] 

numpyPhiloxAtOnce 13,26 [12,59; 13,92] 12,00 [11,89; 12,11] 

mrg32k3aO3 19,97 [19,80; 20,14] 19,96 [19,79; 20,13] 

mrg32k3aO2 31,47 [31,21; 31,72] 31,46 [31,21; 31,71] 
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pythonOneByOne 36,87 [36,23; 37,51] 36,86 [36,22; 37,50] 

mrg32k3a 43,13 [42,96; 43,29] 43,12 [42,96; 43,29] 

pythonTasksetAtOnce 69,52 [69,02; 70,03] 43,89 [43,66; 44,12] 

pythonAtOnce 75,46 [72,06; 78,86] 48,48 [47,23; 49,73] 

numpyMtOneByOne 319,89 [318,05; 321,74] 320,83 [318,99; 322,67] 

numpyPhiloxOneByOne 323,06 [321,28; 324,85] 323,98 [322,20; 325,76] 

numpyOneByOne 330,98 [326,41; 335,54] 331,88 [327,31; 336,44] 

pytorchOneByOne 2388,41 [2381,38; 2395,44] 2388,85 [2381,80; 2395,90] 

 
 

In Tables 3 and 4, our observations also extended to the 
time required to generate and store 239 pseudorandom 
numbers (in minutes). As anticipated, the duration for 
generating and storing these numbers is approximately half 

as long for 32-bit values compared to 64-bit values. Notably, 
the Mrg32k3a generator exhibits the slowest performance 
over C-coded generators, although it successfully passes all 
statistical benchmarks. We can notice that the PCG generator 
is faster than Mrg32k3a, and sometimes “Crush resistant”. It 
is unexpectedly clear that generating integers with Python is 
considerably more time-consuming; in both 32-bit and 64-
bit instances, it is the least efficient technology (using MT 

algorithm). For the creation of 239 numbers, we employed a 
strategy that favors ML frameworks inclined towards 
blocking: generating segments of 220 numbers sequentially 
until the full 239 was reached. Among these frameworks, 

TensorFlow demands the most system and user time, a likely 
consequence of its underlying parallelization which could be 
problematic on limited computational resources. 
Interestingly, ML frameworks demonstrate competitive 
performance relative to C implementations. This outcome 
was unforeseen and underscores the high degree of 
optimization present in these advanced-level frameworks. 

 

 

Table 3 

Time taken to save 239 32 bits integer numbers for each framework 

File 
Real 

Time 

User 

Time 

Sys 

Time 

timeIntegerNumpySaving.txt 91,2 27,6 63,4 

timeIntegerNumpyMtSaving.txt 97,6 36,4 61,1 

timeIntegerPytorchSaving.txt 121,0 41,6 79,4 

timeIntegerNumpyPhiloxSaving.txt 125,6 57,6 67,8 

timeIntegerTensorflowSaving.txt 131,4 826,9 149,6 

timeIntegerPcgSaving.txt 164,4 98,1 66,0 

timeIntegerMtSaving.txt 180,9 107,2 73,4 

timeIntegerPhiloxSaving.txt 229,8 150,8 78,8 

timeIntegerPythonSaving.txt 4957,1 4890,9 65,5 

 

Table 4 

Time taken to save 239 64 bits double numbers for each framework 

File 
Real 

Time 

User 

Time 

Sys 

Time 

timeNumpySaving.txt 170,6 33,1 137,3 

timePytorchSaving.txt 176,2 43,2 132,5 

timeNumpyMtSaving.txt 177,5 48,4 128,6 

timeNumpyPhiloxSaving.txt 231,9 96,7 135,0 

timeMtSaving.txt 281,8 126,0 154,4 

timeWellSaving.txt 283,0 127,4 155,2 

timeTensorflowSaving.txt 288,8 1893,2 393,4 
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timePcgSaving.txt 346,8 185,8 160,6 

timeMrgSaving.txt 449,9 307,2 142,2 

timePythonSaving.txt 1355,8 1218,5 136,7 

4.2. Energy consumption by minutes 
 
In Tables 5 and 6, the energy consumption is presented 

in terms of Joule by minutes for each experiment, 
corresponding to 32-bit integers and 64-bit doubles, 

respectively. From these findings, it is obvious that ML 
technologies consume around 10% more energy than 
traditional C code implementations. We notice that the 
PRNG Philox is identified as a particularly high-energy-
consuming algorithm relative to its counterparts. It is 
supposed to be crypto-secure, a characteristic typically 
associated with an increased computing time because of 
additional complexity. However crypto-secure pseudo-

random number generators (CS-PRNGs), even though found 
traditionally slower, have a high rate of success in passing 
statistical tests. According to the paper by M. O’Neill on 
PCG, the variants employed in this study (PCG 128/64 XSL-
RR and PCG 64/32 XSH-RR) are also claimed to be crypto-
secure. They are supposed to be successful in passing the big 
crush TestU01 battery, but we encountered problems. 
Further investigation would be needed to ensure the claim 

the PCG is crypto-secure, for instance with the NIST 
Statistical Test Suite (STS) but this is out of the scope of our 
paper. We can also see that, for all ML frameworks, the 
block generation “at once” uses less energy than generating 
“one by one”, especially in the case of 32 bits integers. In the 
next section, we will talk about energy consumption, but 
based on the real time taken to compute, not by minutes.  

Figure 1 outlines the differences between the energy 
consumption by minutes between the different versions (C 

code and ML library or framework) of an implemented 
PRNG algorithm. Overall, we compare the energy 
consumption of all C implementations and all Python 
implementations, resulting in around 20% more energy 
consumed by minutes by Python implementations. In this 
figure, we did not take into account one by one numbers 
generation from NumPy because of they consume much 
more energy per minute (see tables 5 and 6). This difference 

is probably due to the low efficiency of NumPy to generate 
one by one pseudo random numbers, the blocks approach 
being much more efficient. 

In table 5 (32 bits integer), data clearly illustrates that C 
implementations consume significantly less energy 
compared to Python-based implementations across different 

random number generators of the same generation. For 

example, the PCG generator implemented in C consumes 
3209.70 J/min, which is markedly lower than the energy 
consumption of the Numpy counterpart, when comparing the 
PCG in C to the NumpyOneByOne (5925.94 J/min) and 
NumpyAtOnce (4688.14 J/min). Similarly, the MT 
generator in C (mt19937arIntegerO2 at 3323.89 J/min and 
mt19937arIntegerO3 at 3607.74 J/min) demonstrates 
significantly lower energy consumption compared to 
NumpyMTatOnce (4847.67 J/min). Lastly, the Philox 

generator in C (4845.48 J/min) has similar performances 
with its counterparts in Python-based frameworks like 
TensorFlow (4893.72 J/min) and PyTorch (4812.53 J/min), 
as well as Numpy-Philox (4849.22 J/min). These 
comparisons highlight the energy efficiency of C 
implementations across the board, especially when 
compared to their Python-based alternatives. These 
differences are statistically significant as the gaps outrange 

largely the 95% confidence intervals, it is not useful to apply 
Levene and Student-T tests in this case to verify the 
relevance on variance and mean using p-value.    

  In table 6 and figure 1 (64 bits double), the comparison 
between the energy consumption of C implementations and 
Python-based implementations clearly shows that C 
implementations are also significantly more energy-
efficient. For instance, the mt19937arO2 in C consumes 

3179.17 J/min, mt19937ar in C at 3186.49 J/min and 
mt19937arO3 at 3226.83 J/min, it outperforms 
pythonTasksetAtOnce, which consumes 3994.90 J/min and 
is also notably lower than the Python pythonOneByOne at 
3865.71 J/min 

When comparing the C version of PCG pcg64O3 at 
3882.55 J/min to Numpy (numpyOneByOne and 
numpyAtOnce), which consume 5935.29 J/min and 5906.65 

J/min respectively, the efficiency of C is evident. 
Further comparisons reveal that mt19937ar 

implementations consume significantly less energy 
compared to numpyMtAtOnce, which uses 4358.07 J/min. 
All values given here are means that are based on 30 
replications, and we can ensure significance based on the 
95% confidence intervals. 
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Table 5 

Energy consumption in Joule by minutes for each experiment, on 32 bits integer 

 

Generator Energy consumption (J/min) Energy consumption 95% CI 

pcg32Integer 3209,70 [3185.35; 3234.05] 

mt19937arIntegerO2 3323,89 [3226.38; 3421.40] 

mt19937arInteger 3419,13 [3285.98; 3552.27] 

mt19937arIntegerO3 3607,74 [3476.79; 3738.68] 

pythonIntegerTasksetAtOnce 4298,72 [4260.00; 4337.43] 

pythonIntegerAtOnce 4375,21 [4110.53; 4639.88] 

numpyIntegerAtOnce 4688,14 [4669.67; 4706.61] 

numpyIntegerTasksetAtOnce 4766,35 [4747.59; 4785.10] 

pytorchIntegerTasksetAtOnce 4766,96 [4748.06; 4785.86] 

tensorflowIntegerTasksetAtOnce 4800,25 [4784.14; 4816.36] 

pytorchIntegerAtOnce 4812,53 [4775.33; 4849.73] 

philoxInteger 4845,48 [4824.15; 4866.81] 

numpyIntegerMtAtOnce 4847,67 [4828.75; 4866.58] 

numpyIntegerPhiloxAtOnce 4849,22 [4829.80; 4868.63] 

tensorflowIntegerAtOnce 4893,72 [4862.41; 4925.04] 

pythonIntegerOneByOne 5410,52 [5185.95; 5635.09] 

numpyIntegerOneByOne 5925,94 [5579.41; 6272.47] 

pytorchIntegerOneByOne 8846,44 [8492.64; 9200.24] 

numpyIntegerMtOneByOne 45223,56 [42623.11; 47824.02] 

numpyIntegerPhiloxOneByOne 64212,81 [61111.12; 67314.50] 

 

 

 

 

Figure 1 

Consumption by minute in Joule - Differences between C and Python code implementations, for each PRNG 
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Table 6 

Energy consumption in Joule by minutes for each experiment, on 64 bits double 
 

Generator 
Energy 

consumption (J/min) 
Energy consumption 95% CI 

mrg32k3aO2 2750,80 [2744,56; 2757,03] 

mrg32k3a 2783,59 [2744,86; 2822,31] 

well19937O2 2979,42 [2970,81; 2988,02] 

well19937O3 2991,04 [2981,97; 3000,10] 

mrg32k3aO3 3000,87 [2941,58; 3060,15] 

well19937a 3040,66 [3008,42; 3072,90] 

mt19937arO2 3179,17 [3168,29; 3190,04] 

mt19937ar 3186,49 [3172,36; 3200,62] 

mt19937arO3 3226,83 [3159,98; 3293,67] 

pythonOneByOne 3865,71 [3806,83; 3924,59] 

pcg64O3 3882,55 [3812,37; 3952,73] 

pcg64O2 3925,18 [3872,56; 3977,79] 

pythonTasksetAtOnce 3994,90 [3871,83; 4117,96] 

pytorchTasksetAtOnce 4348,02 [4306,74; 4389,30] 

numpyMtAtOnce 4358,07 [4168,48; 4547,65] 

pcg64 4473,07 [4459,61; 4486,52] 

numpyTasksetAtOnce 4550,28 [4530,53; 4570,03] 

tensorflowTasksetAtOnce 4762,63 [4750,04; 4775,22] 

numpyPhiloxAtOnce 5033,01 [4875,79; 5190,22] 

tensorflowAtOnce 5131,12 [5100,87; 5161,37] 

pytorchOneByOne 5630,90 [5233,18; 6028,62] 

numpyAtOnce 5906,65 [5670,16; 6143,13] 

numpyOneByOne 5935,29 [5772,42; 6098,16] 

pythonAtOnce 6521,71 [6078,98; 6964,44] 

pytorchAtOnce 7141,50 [6891,12; 7391,88] 

numpyMtOneByOne 37375,55 [36671,35; 38079,75] 

numpyPhiloxOneByOne 37590,44 [36613,97; 38566,92] 

 

4.3. Overall energy consumption 
 

Table 7 and Table 8 illustrate the energy consumption in 
Joule during the real time taken by each experiment (e.g. 230 
random number generation, depending on the algorithm and 
the technology). Last tables were about the energy 
consumption in Joule by minutes, but we are looking here at 

the energy consumption during the time taken for each 
experiment. While C implementations are more energy-

efficient per minute, the competitive overall execution time 
of Python enables it to rival C implementations. Underlying 
implementations of machine learning technologies in Python 

are often using C, C++ or CUDA. For 32-bit integers, the 
PCG algorithm demonstrates notable efficiency, outpacing 
other C implementations and followed closely by NumPy, 
while also maintaining reasonable energy consumption 
given its execution time. The Mersenne Twister algorithm in 
C exhibits the highest consistency, yielding similar results in 
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both integer and double generation. Regrettably, aside from 
MT and PCG, other C-based PRNGs are dedicated to a 
specific output type. For instance, Mrg32k3a and Well [38] 
are dedicated to generating double values and Philox is 

generating integers. Unlike Mersenne Twister, PCG displays 
a significant discrepancy between its integer and double 
generation performance. Although O2 or O3 optimization 
does not affect per-minute energy consumption, its reduction 
of total computation time contributes to lower the overall 
energy needed. It is noteworthy that for PCG and Philox (in 

32-bits generation), O2 and O3 optimizations were not 
applied since the use of these optimizations causes code 
malfunctions, resulting in immediate termination without 
executing the intended operations. The O3 optimization 

level is known as aggressive and may often produce non 
reproducible results or strange behavior and this is 
documented. However, it is the first time in more than 30 
years of computer experiments that we observed the O2 level 
producing unusable and thus non reproducible results. 

 

Table 7 

Energy consumption in Joule during real computation time, for 32 bits integers 
 

Generator 
Energy consumption 

during real time (J) 

Energy consumption during 

real time 95% CI 

pcg32Integer 131,17 [130.18; 132.17] 

numpyIntegerTaskseAtOnce 206,41 [205.60; 207.22] 

mt19937arIntegerO3 258,09 [248.73; 267.46] 

tensorflowIntegerAtOnce 262,52 [260.84; 264.20] 

mt19937arIntegerO2 262,77 [255.07; 270.48] 

numpyIntegerAtOnce 267,33 [266.28; 268.38] 

numpyIntegerMtAtOnce 367,77 [366.33; 369.20] 

mt19937arInteger 404,65 [388.90; 420.41] 

numpyIntegerPhiloxAtOnce 547,38 [545.19; 549.58] 

tensorflowIntegerTasksetAtOnce 566,63 [564.73; 568.53] 

pytorchIntegerTasksetAtOnce 640,54 [638.00; 643.08] 

pytorchIntegerAtOnce 728,84 [723.20; 734.47] 

philoxInteger 7273,10 [7241.08; 7305.12] 

pythonIntegerTasksetAtOnce 34827,75 [34514.05; 35141.44] 

pythonIntegerAtOnce 35659,70 [33502.49; 37816.92] 

pythonIntegerOneByOne 38407,42 [36813.25; 40001.59] 

pytorchIntegerOneByOne 336428,77 [322973.74; 349883.80] 

numpyIntegerOneByOne 637889,20 [600587.67; 675190.72] 

numpyIntegerMtOneByOne 4769399,46 [4495148.41; 5043650.52] 

numpyIntegerPhiloxOneByOne 7012261,80 [6673546.74; 7350976.87] 

 

Table 8 

Energy consumption in Joule during real computation time, for 64 bits double 

Generator 
Energy consumption 

during real time (J) 

Energy consumption during 

real time 95% CI 

mt19937arO3 225,74 [221,06; 230,42] 

mt19937arO2 238,60 [237,79; 239,42] 

well19937O2 247,04 [246,33; 247,75] 

well19937O3 247,41 [246,66; 248,16] 



Journal of Data Science and Intelligent Systems  Vol.   Iss.  2024 

______________________________________________________________________________ 

 12 

tensorflowAtOnce 288,69 [286,99; 290,40] 

numpyTasksetAtOnce 330,27 [328,83; 331,70] 

mt19937ar 397,49 [395,73; 399,26] 

pytorchTasksetAtOnce 436,27 [432,13; 440,41] 

numpyAtOnce 568,32 [545,56; 591,07] 

tensorflowAtOnce 649,36 [647,65; 651,08] 

well19937a 663,01 [655,98; 670,04] 

pcg64O3 711,70 [698,83; 724,56] 

pcg64O2 724,40 [714,69; 734,11] 

pytorchAtOnce 821,43 [792,63; 850,23] 

numpyMtAtOnce 950,24 [908,91; 991,58] 

pcg64 982,61 [979,65; 985,56] 

mrg32k3aO3 998,58 [978,85; 1018,31] 

numpyPhiloxAtOnce 1111,94 [1077,21; 1146,68] 

mrg32k3aO2 1442,61 [1439,33; 1445,88] 

mrg32k3a 2000,77 [1972,93; 2028,61] 

pythonOneByOne 2375,43 [2339,25; 2411,61] 

pythonTasksetAtOnce 4629,02 [4486,43; 4771,62] 

pythonAtOnce 8202,27 [7645,45; 8759,08] 

numpyOneByOne 32740,55 [31842,13; 33638,98] 

numpyMtOneByOne 199270,14 [195515,66; 203024,62] 

numpyPhiloxOneByOne 202400,80 [197143,08; 207658,52] 

pytorchOneByOne 224148,23 [208316,06; 239980,39] 

 
 

4.4. Statistical quality 
 
Now, we examine the quality of the pseudo random 

numbers generated by each technology. Integer results are 
presented in Table 9, and double results are presented in 
Table 10. First, we notice that the quality of the double 
generation behaves more as expected than integers. Indeed, 
each PRNG algorithm is known to fail specific Big Crush 
tests, so we can use the tests as markers to recognize one 
PRNG or another. In the double generation, all 

implementations of the Mersenne Twister algorithm—
including MT in C, Python, and NumPy—failed to the 
LinearComp tests 80 and 81, aligning with expectations 
since those tests are linked to crypto-security. The Well 
algorithm also demonstrated similar failures; its internal 
structure is similar to MT with huge feedback shift registers. 
Conversely, PCG and its NumPy variant employing the PCG 
128/64 XSL-RR algorithm passed all tests, corroborating the 

assertions of the author of PCG. However, some flaws were 
observed by conducting extensive tests with the TestU01 
statistical testing library (discussed later). Additionally, the 
Numpy documentation notes that statistical weaknesses have 
been identified in the PCG64 algorithm when used in 
massively parallel contexts. Consequently, a new version 

called PCG64DXSM has been introduced. Despite this, even 
this new version, and all previous versions of PCG from the 
original author have recently been reported to have statistical 
flaws according to Vigna (Vigna’s homepage: 
https://pcg.di.unimi.it/pcg.php). The Philox algorithm from 
NumPy failed the BirthdaySpacings test, in contrast to its 
TensorFlow counterpart, which passed all assessments.  

From our experience, we acknowledge that PRNGs may 

occasionally fail tests they are not expected to [5]. Further 
scrutiny into each behavior of PRNG would necessitate 
multiple replications with varying initial statuses to verify 
consistency across the entire period. Regrettably, we had to 
exclude PyTorch data from table 10 due to its failure in 62 
statistical tests (among 106 tests). This result requires 
additional investigation, this high failure rate suggests 
inferior statistical quality (58% of the big crush battery 

failed). Interestingly, the pseudo random number generation 
of PyTorch on 32-bit integers was way better, failing only 3 
tests. 

Concerning the 32 bits integers, results were a bit more 
surprising. First, we can notice that, while the original C 
code Mersenne Twister fails the two tests 80 and 81, the 
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NumPy MT implementation only failed one test. 
Surprisingly, the Python version passed all tests, more 
investigations with different initial statuses could be 
interesting. PCG and Philox, in their different 

implementations, did fail some tests, but still remains good 
quality generators. It is interesting to note that they do indeed 
fail some tests, while authors assume that they do not fail 
any. In addition, they did not fail the same tests. For 
example, NumPy version of Philox failed the test 49 
MaxOft, while the TensorFlow version of Philox failed the 

test 9 CollisionOver. This makes us think that these PRNGs 
might be failing different statistical tests if we would try to 
do replications over the PRNGs periods, using different state 
of the PRNG. An unexpected observation was the failure of 

PyTorch at three specific tests, notably the RandomWalk and 
two LinearComp tests. Although the documentation of 
PyTorch suggests Philox as its underlying PRNG, the 
observed failures look like the “signature” of a Mersenne 
Twister, raising questions about its implementation. 

 

Table 9 

Failed BigCrush tests for each experiment, based on 32 bits integer 
 

Generator 
Number of Failed 

Tests 
Failed Tests 

philoxInt32 
6 

34 Gap, 35 Gap, 36 Gap, 37 Gap, 65 SumCollector, 68 

MatrixRank 

pytorchInt32 3 77 RandomWalk1, 80 LinearComp, 81 LinearComp 

pcgInt32 1 5 CollisionOver 

mtInt32 2 80 LinearComp, 81 LinearComp 

numpyMtInt32 1 80 LinearComp 

numpyPhiloxInt32 1 49 MaxOft 

numpyInt32 0  

tensorflowInt32 1 9 CollisionOver 

pythonInt32 0  

 

Table 10 

Failed BigCrush tests for each experiment, based on 64 bits double. PyTorch excluded for readability, failing 62 tests 
 

Generator 
Number of Failed 

Tests 
Failed Tests 

pcgReal 0  

tensorflowReal 0  

MRG32k3aReal 0  

wellReal 2 80 LinearComp, 81 LinearComp 

numpyReal 0  

mtReal 2 80 LinearComp, 81 LinearComp 

numpyPhiloxReal 1 21 BirthdaySpacings 

pythonReal 2 80 LinearComp, 81 LinearComp 

numpyMtReal 2 80 LinearComp, 81 LinearComp 

 

4.5. Numerical reproducibility 
 
An important finding of this study is the absence of 

reproducibility in the numbers generated across various 
platforms. Though initially designed to be portable, the 

Mersenne Twister algorithm, initialized with the same seed, 
will give different numbers with the different C, Python and 
NumPy implementations. The same applies for PCG with 
NumPy and C code, and also for Philox with NumPy and 
TensorFlow frameworks. In addition to portability issues, 

the reason might be because people are using simple seeds 

to initialize our PRNG, instead of using the full state for a 
proper initialization of modern generator. Many scientists 
are confused by the ‘seeding’ terminology, they can think 
that seeds correspond to states. If this was often the case at 
the end of the previous century, modern and high quality 
generators now have large internal states. Seeds are just 
indexes transformed into PRNG states. The function 
transforming a seed into a full state might differ between the 
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technologies or frameworks, and this can lead to a loss of 
numerical reproducibility between the technologies. 

 

 

5. Discussions 
 
From what has been discovered comes more questions: if 

the loss of reproducibility does not come from the seeding 
functions, this leads us to a critical inquiry: how can we 
ascertain that the algorithm in use is a correct 
implementation of the generator? For us, this is an open 

question. The ideal solution would be for original authors to 
supply a sample of generated pseudo-random numbers, 
which we should be able to compare with the numbers we 
are generating, to ensure perfect reproducibility. To our 
knowledge, Mersenne Twister is the only PRNG that offers 
this feature with the expected output. Numerical 
reproducibility is not only important for the advancement of 
Science but also for debugging [11]. Does the change of 

hardware or software stack affect the reproducibility of a 
PRNG? What we observe is that the portability of PRNGs 
should not be considered as granted. Here, we are using 
different technologies with the same environment, and we 
obtained different results and different statistical quality. 
Another way to identify the PRNG not based on the 
numerical result would be to perform statistical tests to try to 
identify the underlying algorithm, as some failed statistical 

tests can serve as markers for some PRNGs, at least to 
identify PRNGs from the same family. However, as we 
found in a deep study [5], the same PRNG algorithm might 
fail several different statistical tests. For example, over 4096 
replications, it appears that the Mersenne Twister algorithm 
fails all 106 BigCrush tests at least once. We could expect a 
similar behavior from other PRNGs. This would also need 
further investigations. Ensuring the use of a specific 
algorithm, in the absence of perfect numerical 

reproducibility, is far from trivial. 
In the discussions surrounding high-performance 

computing (HPC), it is undeniable that it is a high-
consuming endeavor in terms of time, financial investment, 
and energy. With the inexorable march towards greater 
computational power and despite technological innovation, 
these costs have only intensified due to inflation in hardware, 
energy prices and also the Jevons paradox. Meanwhile, ML 

has emerged as an indispensable tool in a plethora of fields 
such as the now famous Large Language Models (LLMs), 
but also in more common domains like autonomous vehicles, 
healthcare, and so on. The sophistication of ML models 
comes with its own demands on computational and energy 
resources. When considering the generation of pseudo-
random numbers — an essential component for stochastic 
processes, simulations, and even for the operation of ML 

algorithms themselves — the comparison between 
traditional C-coded generators such as Philox, Mersenne 
Twister, and PCG, and those implemented within ML 
frameworks (using PyTorch, TensorFlow, Python, and 
NumPy), presents a complex picture. Energy consumption is 
a critical factor; while there is no actual data on the exact 
energy costs of random number generation within neural 
network training, it is reasonable to assume that the 

proportion is non-negligible. Profiling such applications to 
evaluate the exact proportion of time used in the generation 
of pseudo random numbers, depending on the size of the 
neural network, would be valuable. With a neural network 

like GPT-4 LLM provided by OpenAI, we have around 175 
billion parameters (edges of the graph), we can easily 
imagine that a very large number of pseudo random numbers 
have been used. Generating pseudo-random numbers is an 
integral part of the training phase of neural networks, 
especially in processes such as weight initialization, 
shuffling, and during stochastic gradient descent where 
randomness is used to ensure convergence. The results of our 

investigation suggest that ML implementations can match 
the statistical quality and speed of their C code counterparts. 
However, the ease and speed of generating pseudo-random 
numbers using ML frameworks leads to a little increase of 
the energy consumption cost dedicated to this task (around 
10%).  

In future works, we want to ascertain that Powerjoular, 
utilizing RAPL, provides reliable measurements of energy 
consumption. In Khan et al. [39], they tested the reliability 

of RAPL, on a Finnish supercomputing cluster, and on 
Amazon EC2, leading to the conclusion that RAPL is 
accurate and have negligible performance overhead. 
Powerjoular adds a layer on top of this. This layer was also 
very useful to track power leakage [40]. We reasonably think 
that our results are reliable and can be corroborated by 
others. In future work will try to measure the impact of the 
PRNG quality and the parallelization technique [41] on 

machine learning applications. 
 
 

6. Conclusion 
 

Machine learning frameworks rely on Pseudo-Random 
Number Generators (PRNGs) for neural network training. 
The inclusion of stochastic sources has proven beneficial to 
the machine learning field. However, research into the 
quality of generated pseudorandom numbers, as well as the 
generation time and power requirements, remains 

incomplete. This study evaluates the efficiency of 
pseudorandom number generation in machine learning 
frameworks compared to traditional implementations in C. 
Specifically, we examined Python, PyTorch, TensorFlow, 
and NumPy. Our findings indicate that various Python-based 
libraries and frameworks are well-optimized. Specifically, 
we examined Python, PyTorch, TensorFlow, and NumPy 
with the mind set on reproducibility and energy 
consumption.  

The NumPy library excels in terms of time efficiency and 
quality, closely aligning with C-implemented PRNGs. 
Nevertheless, two drawbacks were identified: first, machine 
learning frameworks consume approximately 10% more 
energy; second, there is inconsistent numerical repeatability 
when using identical seeds across different PRNG 
implementations, which poses a portability issue. This raises 
questions about fidelity to the original PRNG specifications 

or the possibility of differences in transformation functions 
from the seed to the full PRNG state. The implementation of 
PRNGs in machine learning tools should produce identical 
results when initialized similarly to their C counterparts. 
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Despite claims on the official PCG website describing it as 
“very fast” compared to the “acceptable” speed of the 
Mersenne Twister, our analysis suggests that these claims 
may be overstated. In fact, the generation of double values, 

which is essential for many simulations, is 2.5 times faster 
with the original MT. We observed performance differences 
between the generation of 32-bit integers and 64-bit double 
pseudorandom values. The C implementation of PCG 
performs similarly to the NumPy implementation. 
Furthermore, PCG exhibited failures in certain BigCrush 
tests, despite being described as crush-resistant. PCG should 
be avoided for massively parallel computing, as noted in the 

NumPy documentation, which recommends using 
PCG64DXSM. However, Vigna on his home page also, 
shows the statistical failure of the latter 
(https://pcg.di.unimi.it/pcg.php). Further research is needed 
to explore each PRNG in greater depth. ML frameworks and 
other applications needing fast pseudo random number 
generation could consider testing xoroshiro128++ [34], a 
very fast generator which can also have seeding issues. 
Although the impact of PRNG quality on neural network 

training outcomes has not been extensively studied, insights 
from recent studies, discussed in Section 2, suggest that 
PRNG quality could indeed influence the performance of 
trained neural networks, based on quality metrics [14, 15]. 
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