

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/

licenses/by/4.0/). 1

Received: 2 August 2024 | Revised: 9 October 2024 | Accepted: 11 November 2024 | Published online: 18 November 2024

RESEARCH ARTICLE

Random Numbers for Machine

Learning: A Comparative Study of

Reproducibility and Energy

Consumption

Journal of Data Science and Intelligent Systems

yyyy, Vol. XX(XX) 1–5

DOI: 10.47852/bonviewJDSIS42024012

Benjamin Antunes
1,*

 and David R.C. Hill
1

1 Polytechnic Institute of Clermont-Auvergne, Clermont Auvergne University, France.

*Corresponding author: Benjamin Antunes, Polytechnic Institute of Clermont-Auvergne, Clermont Auvergne University, France. Email:

Benjamin.antunes@uca.fr

Abstract: Pseudo-Random Number Generators (PRNGs) have become ubiquitous in machine learning (ML) technologies because
they are interesting for numerous methods. In the context of ML, multiple stochastic streams, produced in black boxes for methods
such as stochastic gradient descent or dropout, can produce a lack of repeatability, impacting the ability to debug and explain
results. The field of machine learning holds the potential for substantial advancements across various domains. However, despite

the growing interest, persistent concerns include issues related to reproducibility and energy consumption. Reproducibility is crucial
for robust scientific inquiry and explainability, while energy efficiency underscores the imperative to conserve finite global
resources. This study delves into the investigation of whether the leading Pseudo-Random Number Generators (PRNGs) employed
in machine learning languages, libraries, and frameworks uphold statistical quality and numerical reproducibility when compared
to the original C implementation of the respective PRNG algorithms. Additionally, we aim to evaluate the time efficiency and
energy consumption of various implementations. Our experiments encompass Python, NumPy, TensorFlow, and PyTorch, utilizing
the Mersenne Twister, Permuted Congruential Generator (PCG), and Philox algorithms. Remarkably, we verified that the temporal
performance of machine learning technologies closely aligns with that of C-based implementations, with instances of achieving

even superior performances. On the other hand, it is noteworthy that ML technologies consumed only 10% more energy than their
C-implementation counterparts. However, while statistical quality was found to be comparable, achieving numerical reproducibility
across different platforms for identical seeds and algorithms was not achieved.

Keywords: reproducible research, machine learning, pseudo random numbers, energy consumption

1. Introduction

Contemporary machine learning (ML) researchers

predominantly use high-level programming languages and
frameworks to conduct their studies. Python is the principal
programming language in ML, leading to the widespread
adoption of frameworks such as PyTorch and TensorFlow,
often coupled with NumPy. In this paper, we want to study
the statistical quality, reproducibility, energy and time
consumption of the pseudo random number generation in
these technologies. The literature on the quality of Pseudo-

random number generators (PRNGs) within ML
technologies remains sparse; our investigation addresses this
gap.

In Python, the default PRNG algorithm used is
Mersenne Twister (MT) [1]. In TensorFlow, the default
PRNG algorithm is Philox (Threefry from the same family
of crypto secure generator is also available) [2], similarly to
PyTorch. NumPy offers a variety of PRNGs, and thus more

flexibility. The default PRNG algorithm proposed by
NumPy is PCG [3]. For our study, we check and compare

reproducibility, performance, statistical quality and energy
consumption, for the following PRNGs: MT, Philox, PCG
and Mrg32k3a [4] as a reference. We use the original C
implementations provided by the PRNGs authors.

As described in Antunes [5], Salmon et al. introduced
the Philox, Threefry and ARS algorithms at the 2011
Supercomputing Conference; they incorporate

cryptographic techniques akin to AES (Adanced Encryption
Standard). Although their cryptographic nature makes them
relatively slow, their statistical properties are commendable,
albeit with some repeatability issues in the first versions.
MRG32k3a, devised by L’Ecuyer in 1999, is a combined
recursive pseudo-random number generator chosen
specifically since it was built to obtain the best statistical
results when faced to TestU01, the most complete statistical
test battery developed to assess PRNGs [6]. This software

proposes more than 100 tests at the “big Crush” level, it will
be discussed below. MRG32k3a can be significantly slower
than the famous Mersenne Twister, 15 to 20 times slower
when comparing optimized C implementations. PCG,
developed in 2014 by O’Neill, is touted for its superior

https://en.wikipedia.org/wiki/Clermont_Auvergne_University
https://en.wikipedia.org/wiki/Clermont_Auvergne_University

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 2

statistical attributes compared to other generators, but this
could not be confirmed with a thorough TestU01 campaign.
The initial Mersenne Twister generator was introduced in
1998 by Matsumoto and Nishimura, it has known limits but

is renowned for its long period. Its 2002 version improved
its initialization. SFMT version, designed by Saito &
Matsumoto in 2006 [7], capitalizes on modern processor
capabilities and offers twice as more speed and even superior
statistical qualities. A GP-GPU version was proposed and is
known as MTGP. However, it is important to note that the
Mersenne Twister family is not apt for cryptographic
applications. Though it presents some minor statistical flaws,

we are not aware of applications that have been impacted and
it is particularly well spread in many scientific libraries.

To assess the quality of a Pseudorandom Number
Generator (PRNG), statistical evaluations are employed to
distinguish between superior and inferior PRNGs.
Historically, Donald Knuth introduced an initial array of
statistical evaluations for PRNGs in the second volume of
"The Art of Computer Programming". Despite their age,
these tests remain relevant. In 1996, Marsaglia introduced a

concise suite comprising 15 tests known as Die Hard. The
original source code for Die Hard is no longer available but
the historical code can be found via a "wayback machine".
Brown, along with his Australian associates, extended
Marsaglia's work and introduced an updated set of tests,
released as open source software. This suite was aptly named
Die Harder. The National Institute of Standards and
Technology's (NIST) Statistical Test Suite is regarded as the

benchmark for assessing random and pseudorandom number
generators, especially in cryptographic contexts [8].
L’Ecuyer and Simard unveiled an open source library
dedicated to the empirical evaluation of random number
generators. Known as TestU01 as previously cited, this suite
offers a comprehensive array of tests, categorized into
various levels of scrutiny such as Small Crush, Crush, and
Big Crush, among others. To measure the quality of pseudo

random numbers generated in ML technologies, we used the
Big Crush test battery from TestU01, consisting in 106
statistical tests. Random sampling is particularly interesting
in training artificial intelligence models. In the category of
"General Game Playing", where machines must play a new
game starting with its basic rules, an annual competition is
organized by Stanford. In this field, the evolution of machine
capabilities has allowed the stochastic approach of Monte

Carlo Tree Search (MCTS) to become more and more
efficient. In particular, as of 2007, these methods have
proven to be very successful in the game of Go, and it is
interesting to note that all world champion programs in two-
player GGP now use MCTS and this method is now also
used in bioinformatics [9].

The rise of deep learning and complex models in ML
necessitates efficient computational resources to process
vast amounts of data. Hardware accelerator manufacturers

are racing to propose better performances at an impressive
pace. Performance, often quantified by the time taken to
compute or the speed of operations, directly impacts the
feasibility of training larger models and iterating over them
during the research phase. While an optimized algorithm or
efficient hardware can improve time efficiency, the energy
consumed during computations also becomes a significant

concern, especially with the current emphasis on
environmental sustainability [10]. High energy consumption
not only leads to higher operational costs but also contributes
to increased carbon footprints in data centers. Therefore,

understanding and optimizing the performance and energy
efficiency of computations, including those of PRNGs, are
imperative. Efficient PRNGs can lead to faster
initializations, shuffling, and other stochastic operations in
ML workflows, further reducing both time and energy
consumption.

Another aspect of science advancement has to be
tackled: reproducibility as a cornerstone of scientific

integrity [11]. It enables researchers to validate, build upon,
or challenge prior findings. In the realm of ML,
reproducibility ensures that results obtained in one run can
be consistently achieved in subsequent runs, given the same
configurations. This consistent outcome is crucial for
debugging, model comparison, validation, and ensuring the
reliability of the technology in real world applications.
PRNGs play a pivotal role in this context. Since many ML
processes, from data splitting to weight initialization, rely on

pseudorandom sequences, the reproducibility of PRNG
outputs is vital. Without repeatable and consistent PRNG
outputs, subtle differences can amplify through the training
process, leading to markedly different outcomes. Beyond
individual experiments, reproducibility is also vital for the
broader scientific community [12]. When results can be
reliably reproduced, it fortifies the foundation upon which
future research is built, ensuring a progressive and

trustworthy scientific trajectory. A full survey dealing with
all aspects of reproducibility is now available in Computer
Science Review [13]. In this paper, we aim to answer to the
following questions:
- Are PRNGs implemented in ML frameworks giving the

same results as their initial C codes proposed by the
original PRNGs implementations when identically
initialized?

- Does pseudo-random numbers generated with ML main
language, libraries and frameworks have the same
statistical quality than those produced by the original code
given by the PRNG authors?

- Is the process of generating random numbers in ML
frameworks more time-consuming when compared to the
original C codes?

- Does random number generation within ML frameworks

require more energy than its C code counterparts?
- Taking into account the previous points, is there a

consistency between the performance of 32-bit integer and
64-bit double precision of the generated numbers?

Our discussion will begin with an overview of prior

research on the application of stochastic processes in
machine learning. Subsequently, we will present the method
employed in our experiments. Following this, we will

present the findings about time performance, energy
consumption by minutes, overall energy consumption and
numerical reproducibility. Finally, we talk about the
implications and future directions of our results.

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 3

2. The Importance of PRNGs in Machine

Learning

To underline the importance of the PRNG statistical
quality on the neural network training, a recent work from
Huk [14] attempted to quantify the potential differences in
classification performance of CNNs and MLPs when
varying the PRNG. They draw the 95% confidence interval
for each quality measurement, for different PRNGs. The
results indicated minor variations in quality associated with
different PRNGs, as evidenced by non-overlapping

confidence intervals. This study shows that the PRNG
algorithm used might have an incidence (needing to double
the confidence intervals of evaluation metrics) over the
quality of the neural network training. Koivu et al. [15] also
shows a correlation between the statistical quality of a PRNG
and the resulting quality of the dropout method applied to the
neural network. Additional research is necessary to explore
various neural network architectures, and assess the impact

of PRNG quality on neural network performance, and
replicate these results, given the scarcity of literature on this
topic. The quality of the PRNGs used in ML is not well
studied, and it would be interesting to investigate. Indeed,
stochastic processes have become increasingly important in
ML over the years due to its efficiency in some cases. As a
result, PRNGs have become indispensable in ML
technologies.

To illustrate the importance of PRNGs in machine
learning, we consider multiple stochastic methods such as
the Stochastic Gradient Descent (SGD). It is a cornerstone
optimization algorithm for training models in machine
learning and deep learning. It operates by using a single or a
small batch of training samples to calculate the gradient and
update parameters, rather than using the entire training
dataset. Knowing that the SGD training example order is
impacting the convergence rate, accelerated rates were

recently obtained by using randomness: permutation of the
sample orders with approaches like shuffling once, random
reshuffling with or without data echoing… Markov Chain
Gradient Descent has also been tested. Lu et al. [16] used a
quasi-Monte-Carlo method to obtain unprecedented
accelerated convergence rates for learning with data
augmentation (they also used smart fixed scan-order).

Beyond the commonly employed SGD algorithm,

known for its efficiency, it is worth noting the significant
role of regularization techniques that have demonstrated
considerable utility and similarly require elements of
randomness. Dropout is one such regularization strategy
tailored for neural networks to mitigate overfitting.
Overfitting transpires when a model excessively conforms to
training data, compromising its ability to generalize, which
results in subpar performance on novel data. Dropout

addresses this by randomly omitting a selection of neurons
and their connections throughout the training process.

Additionally, the concept of stochastic depth, another
regularization technique reliant on randomness, was
designed to overcome obstacles inherent in training deep
convolutional networks, such as vanishing gradients and
protracted training durations. It streamlines the training
process by randomly omitting a set of layers in each training

batch and seamlessly connecting the remaining ones using
the identity function, thus reducing training time and
potentially increasing test accuracy [17].

Randomness is also instrumental in data augmentation,

a method aimed at expanding the data set by incorporating
modified replicas of existing data or generating new
synthetic data. This approach is particularly beneficial in
machine learning, enhancing model performance through a
more robust dataset. For image-related tasks, data
augmentation can involve alterations like rotation, cropping,
or flipping. Notable algorithms that employ data
augmentation include the Expectation-Maximization

algorithm, the algorithm for posterior sampling, and Markov
chain Monte Carlo methods for posterior sampling [18]. In
deep learning for images, augmentation techniques that
incorporate randomness span a wide spectrum, from
geometric adjustments and color space alterations to kernel
filters, image mixing, random erasing, and even neural style
transfer. Moreover, test-time augmentation introduces
variability during model evaluation, which is critical for
enriching datasets and fortifying model resilience [19].

Additionally, the concept of bootstrapping
complements these techniques by providing another layer of
randomness and robustness. Bootstrapping, involving the
creation of multiple subsets of the dataset through sampling
with replacement, allows for the generation of diverse
training conditions. This technique is instrumental in
enhancing model accuracy and stability, particularly in
ensemble learning methods where it contributes to a more

comprehensive exploration of the data space and better
generalization of the model [20].

A recent survey highlights the pervasive application of
randomness in machine learning as a trade-off for hardware
efficiency and computational performance [21]. The usage
of PRNGs in machine learning is wildly spread. Examples
include Bayesian neural networks [22], Variational
autoencoders presented in Wei and Mahmood[23] and

Reinforcement Learning [24]. Additionally, some methods
propose the injection of gradient noise as a strategy to
enhance deep neural network training [25].

Some recent works are more focused on the use of
pseudo random generation and the power consumption of
neural networks. In Kim et al. [26], they used stochastic
computing on deep neural networks and obtained better
results for latency and power consumption. In this case, the

old stochastic computing (SC) approach, originally
introduced by John Von Neumann in the beginning of the
sixties, where information is represented and processed
using random bit streams, serve for complex computations
operated with bit-wise operations. In Liu et al. [27], authors
point out that SC can be costly in term of energy efficiency
when used in deep neural networks.

Furthermore, the evolving landscape of machine
learning has seen the rise of Transformer architectures used

in many domains. For instance, Generative Adversarial
Networks (GANs), are interestingly successful for
synthesizing the images [28], but the most famous usage is
for large language models. These architectures, exemplified
by models like GPT (Generative Pre-trained Transformer),
still rely on randomness in their training phase. This
randomness manifests in the form of stochastic gradient

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 4

descent and dropout techniques, essential for preventing
overfitting and promoting model generalization. The
strength of the generator used is also important for any
Machine Learning system, in Pranav et al. [29], Pranav et al

consider how attackers can compromise a machine learning
system using only the randomness on which they commonly
rely. A last reference in computational learning theory also
used pseudorandom generators as a criterion for PAC
(Probably Approximately Correct) learning [30].

We can cite some usage of machine learning in real life
applications, such as analyzing drop coalescence in
microfluidic devices [31, 32], where they are using random

forest, a widely used machine learning method. As the name
suggests, this algorithm relies on randomness introduced by
pseudo-random number generators. While these
complexities may be abstracted away by high-level
frameworks, they play a crucial role in the behavior and
outcome of the algorithm. In Gundersen et al. [33] list the
sources of , irreproducibility in machine learning including
the lack of mastery of pseudo-random number generators.

With this short literature review, we can confirm that

randomness, along with PRNGs, are prominent artificial
intelligence technologies that will become ubiquitous in our
lives. Since the quality of pseudo-random numbers in
machine learning frameworks remains under-explored, as
our literature search yielded no relevant studies, we want to
bridge this knowledge gap.

3. Materials and Methods

To address the questions raised in introduction, we

selected prominent ML frameworks, specifically PyTorch

and TensorFlow, along with the Python and the NumPy
library due to their widespread use in the ML field. For
benchmark purposes, we have retained the original C code
implementations of Mersenne Twister, PCG, Philox, and
Mrg32k3a as a standard of comparison (all codes are
proposed on the authors’ web pages). The last version of
Xoshiro by Blackman and Vigna, based on a ‘‘XOR, shift,
rotate’’ principle, could be interesting but we did not found

its usage in Machine Learning [34].
The Mersenne Twister supports native generation of

both 32-bit integers and 64-bit doubles. On the other hand,
Mrg32k3a is limited to generating only 64-bit doubles. In
order to maintain fidelity to the original implementations, we
restricted our use of Mrg32k3a to experiments involving 64-
bit doubles. Conversely, the Philox algorithm was only
available for generating 32-bit integers from its authors.
PCG offers the possibility for both, but the author prefers to

stick with integer “Like the Unix rand and random facilites,
this library does not provide a direct facility to generate
floating point random numbers. It turns out that generating
random floating point values is surprisingly challenging.”
[35].

However, as the author provides a solution to generate
double, we used PCG in both cases, like MT. ML
frameworks, with their advanced APIs, allow for the

straightforward generation of either 32-bit integers or 64-bit
doubles. The most recent version of TensorFlow suggests
using a Generator object, which we explicitly applied to the
Philox algorithm. For PyTorch, while the underlying

algorithm is believed to be Philox based on documentation,
the user cannot specify his generator choice. NumPy stands
out as perhaps the most versatile library for handling various
PRNGs, offering clear documentation and a range of

available algorithms. With NumPy we used the Generator
object, setting it to explicitly use Mersenne Twister, Philox,
and PCG.

These technologies differ from traditional scientific
computing practices in C, C++, or Fortran, where random
numbers are typically generated individually as needed. In
contrast, ML frameworks are optimized to generate random
numbers in bulk as part of tensor objects (akin to matrices).

Therefore, we conducted experiments both ways: generating
numbers one by one and in bulk. For Python, the most
efficient approach was to generate numbers individually.

As PCG propose different versions, for 64 bits we
choose the exact same version as NumPy (PCG 128/64 XSL-
RR) and for 32 bits we used PCG 64/32 XSH-RR.

We initialized all PRNGs with the same seed value. To
neutralize language-specific data type disparities, we used
the seed value '0', ensuring a zero-filled seed memory pointer

across different data types. Although initializing with zero
can be problematic for some PRNGs [7], this was
intentionally done to observe the resultant behavior. It is
imperative for researchers in the scientific community to
recognize that a seed and the complete state of a PRNG are
distinct entities. The state of the PRNG is determining the
output value it generates. In contrast, utilizing a seed
involves the application of a specific function to convert the

seed into the full state of the PRNG. It is noteworthy that this
transformation process may vary across different
technological platforms. Given that the entire machine
learning framework is fundamentally dependent on the
seeding function, our study is primarily focused on studying
this aspect.

Our evaluation utilized various Bash scripts: one to run
time and energy consumption assessments—generating 230

numbers one by one or at once and timing the process with
the Unix “time” command. Energy consumption was
monitored over a set period (e.g., 30 seconds), with results
extrapolated over the entire duration. We replicated these
measurements 30 times to strengthen the statistical validity
of our measures, this leads to the study of samples of a bit
less than 235 numbers. The reason why we generate 230
numbers one by one or at once is because in machine

learning frameworks, random numbers generation is
optimized to generate numbers by batch, and generating
numbers one by one would be much slower. To have a faire
comparison between C and Python implementations, we
used one by one and at once (batch) methods. Here is how
the study was conducted. We have C codes and Python codes
for each random number generation with each technology,
considering one by one or at once generation, with 32 or 64
bits numbers, and also considering O2 and O3 compilation

optimization for C codes. We generate 230 numbers,
measuring the execution time with the Unix “time”
command, which returns real, user and system time. We run
each experiment 30 times; all the results are stored in files.
We use Python code in a Jupyter notebook to compute the
mean and the 95% confidence interval for each experiment.

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 5

These results are shown in the tables in the next section. The
same procedure applies for energy consumption.

Energy measurements were obtained using
PowerJoular [36]. This tool offers the possibility to measure

the energy consumption of a given Process ID, using RAPL
Intel feature [37], also available on recent AMD chips. We
compiled all C codes with different optimization levels
(none, -O2, and -O3) to discern the impact of compiler
optimizations on time and energy efficiency.

For quality evaluation, we ran another set of Bash
scripts. The TestU01 BigCrush test battery, which typically
requires a bit more than 238 numbers based on TestU01

documentation, prompting us to generate 239 numbers (one
order of magnitude over). Given that BigCrush is not
designed to read numbers from a file in its original form, we
made a C-code interface. We stored the ML-generated
numbers in a binary file and subsequently, the C program
reads the numbers sequentially from this file to provide the
inputs required by BigCrush. This method was also applied
to the PRNGs coded in C for a fair comparison. Preliminary
tests showed no significant difference between the modified

approach and the original one, confirming the validity of our
method. However, it is important to note that storing 239
doubles takes 4.4TB of storage and 2.2TB for 32 bits
integers. In this context, we saved one 239 random numbers
stream for each technology (i.e. Tensorflow, Pytorch,
Numpy-MT, Numpy-PCG, Numpy-Philox, original MT,
original PCG, original Philox), and then we apply the
BigCrush test battery on each random number stream, to

check statistical quality. Further studies dealing with
statistical quality, could go deeper on each PRNG, studying
multiple huge streams.

Finally, for numerical reproducibility, we generated
100 pseudo random numbers in a readable file, and
computed “diff” command over files, the algorithm being the
same, seeded identically, we expect bitwise identical results
(if the seeding method to generate the full state of the

generator is the same between the different technologies).
All data were saved in text files, and then collected

using Jupyter Notebook to analyze all the results and run all

bash scripts to easily reproduce the experiments.
Experiments were performed on a machine with two AMD
7763 64-cores processors, leading to 128 physical cores and
256 logical cores. The machine has 512GB of RAM, and

7.7TB of NVMe storage. We had root access, so we were
able to perform energy consumption measurements (RAPL
needs root access to be used). The Python version used is
3.11.5. The GCC version used is 13.2.0. The operating
system is Linux, Debian 6.4.13-1.

4. Results

4.1. Time performance

Tables 1 and 2 illustrate the time required to generate

230 numbers in each experiment. First, distinct performance
discrepancies between 32-bit integers and 64-bit doubles are
observed. Notably, the PCG algorithm demonstrates
superior speed for 32-bit integers but requires quadrupling
its generation time for 64-bit doubles. The Mersenne Twister

code, in its original implementation, takes the same time for
both. When implemented using NumPy, the MT algorithm
demonstrates a pronounced divergence in generation time,
taking approximately 4.5 seconds for 32-bit integers versus
13 seconds for 64-bit doubles (for 1 billon drawings),
whereas the original version maintains a consistent 4-second
duration for each. However, we can see that PRNG
implementations via ML Python frameworks have a good

computational efficiency, as Python and C code execution
times are mixing in the performance rankings. However, the
MT algorithm is significantly slower in pure Python. For the
PCG and Philox algorithms, implementations utilizing ML
technologies appear to outperform the original versions (in
C code), despite the use of –O2 or –O3 compilation
optimizations (when we were able to use them, because
sometimes, the usage of compilation optimization leads to

the malfunction of the code).

Table 1

Real time and user time taken for each experiment, for 230 32 bits integer random number generation

Generator Real time (s) Real time 95% CI User time (s) User time 95% CI

pcg32Integer 2,45 [2,27; 2,64] 2,45 [2,27; 2,63]

numpyIntegerTasksetAtOnce 2,60 [2,59; 2,60] 2,20 [2,19; 2,22]

tensorflowIntegerAtOnce 3,22 [3,19; 3,25] 17,89 [17,70; 18,08]

numpyIntegerAtOnce 3,42 [3,23; 3,61] 3,98 [3,80; 4,15]

mt19937arIntegerO3 4,29 [4,17; 4,42] 4,29 [4,17; 4,41]

numpyIntegerMtAtOnce 4,55 [4,42; 4,68] 5,15 [5,02; 5,27]

mt19937arIntegerO2 4,74 [4,68; 4,81] 4,74 [4,67; 4,81]

numpyIntegerPhiloxAtOnce 6,77 [6,63; 6,92] 7,37 [7,23; 7,51]

tensorflowIntegerTasksetAtOnce 7,08 [7,04; 7,13] 6,23 [6,20; 6,27]

mt19937arInteger 7,10 [6,96; 7,24] 7,10 [6,95; 7,24]

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 6

pytorchIntegerTasksetAtOnce 8,06 [8,00; 8,13] 7,12 [7,06; 7,18]

pytorchIntegerAtOnce 9,09 [8,99; 9,19] 8,93 [8,85; 9,01]

philoxInteger 90,06 [89,74; 90,39] 90,06 [89,73; 90,38]

pythonIntegerOneByOne 425,92 [424,24; 427,60] 425,91 [424,23; 427,58]

pythonIntegerTasksetAtOnce 486,11 [484,14; 488,09] 452,94 [451,32; 454,55]

pythonIntegerAtOnce 489,02 [487,30; 490,75] 453,29 [451,88; 454,70]

pytorchIntegerOneByOne 2281,79 [2248,98; 2314,61] 2282,33 [2249,51; 2315,16]

numpyIntegerMtOneByOne 6327,76 [6228,26; 6427,27] 6328,50 [6228,97; 6428,02]

numpyIntegerOneByOne 6458,61 [6396,91; 6520,31] 6459,50 [6397,77; 6521,23]

numpyIntegerPhiloxOneByOne 6552,21 [6472,50; 6631,91] 6553,13 [6473,41; 6632,85]

The primary distinction between the original C code
and ML-based code lies in the unsuitability of the latter for
generating numbers sequentially, resulting in significantly
poor performance when trying to generate the random

numbers sequentially and, in the case of TensorFlow, an
infeasibility due to RAM overload, despite the availability of
more than 500GB of RAM in our test. Finally, when
comparing User time and Real time, we can see that
TensorFlow is the only technology that is using implicit
parallelization. We can then suppose that if less cores were

available in the machine, or if the machine was overloaded
due to some other running processes, the TensorFlow
generation would have taken more time than NumPy and
similar to PyTorch, due to the fact that doing parallelization

on an already overloaded machine will not improve
performance and can even worsen them. Using taskset to set
affinity of a single process to only one core shows a slight
improvement for ML frameworks, except for TensorFlow,
due to its native implicit parallelization.

Table 2

Real time and user time taken for each experiment, for 230 64 bits double random number generation

Generator Real time (s) Real time 95% CI User time (s) User time 95% CI

tensorflowAtOnce 3,38 [3,28; 3,47] 32,33 [31,90; 32,76]

mt19937arO3 4,20 [4,06; 4,34] 4,20 [4,06; 4,34]

numpyTasksetAtOnce 4,35 [4,32; 4,39] 3,56 [3,52; 3,61]

mt19937arO2 4,50 [4,34; 4,67] 4,50 [4,34; 4,67]

well19937O3 4,96 [4,85; 5,08] 4,96 [4,85; 5,07]

well19937O2 4,97 [4,83; 5,12] 4,97 [4,83; 5,12]

numpyAtOnce 5,77 [4,73; 6,82] 5,75 [4,71; 6,79]

pytorchTasksetAtOnce 6,02 [5,94; 6,11] 5,31 [5,25; 5,36]

pytorchAtOnce 6,90 [6,76; 7,05] 7,01 [6,90; 7,12]

mt19937ar 7,48 [7,31; 7,66] 7,48 [7,31; 7,66]

tensorflowAtOnce 8,18 [8,12; 8,24] 6,67 [6,63; 6,72]

pcg64O3 11,00 [10,83; 11,17] 11,00 [10,83; 11,16]

pcg64O2 11,07 [10,92; 11,23] 11,07 [10,91; 11,23]

numpyMtAtOnce 13,08 [11,56; 14,60] 7,27 [7,16; 7,38]

well19937a 13,08 [13,08; 13,09] 13,08 [13,07; 13,09]

pcg64 13,18 [13,05; 13,31] 13,18 [13,05; 13,31]

numpyPhiloxAtOnce 13,26 [12,59; 13,92] 12,00 [11,89; 12,11]

mrg32k3aO3 19,97 [19,80; 20,14] 19,96 [19,79; 20,13]

mrg32k3aO2 31,47 [31,21; 31,72] 31,46 [31,21; 31,71]

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 7

pythonOneByOne 36,87 [36,23; 37,51] 36,86 [36,22; 37,50]

mrg32k3a 43,13 [42,96; 43,29] 43,12 [42,96; 43,29]

pythonTasksetAtOnce 69,52 [69,02; 70,03] 43,89 [43,66; 44,12]

pythonAtOnce 75,46 [72,06; 78,86] 48,48 [47,23; 49,73]

numpyMtOneByOne 319,89 [318,05; 321,74] 320,83 [318,99; 322,67]

numpyPhiloxOneByOne 323,06 [321,28; 324,85] 323,98 [322,20; 325,76]

numpyOneByOne 330,98 [326,41; 335,54] 331,88 [327,31; 336,44]

pytorchOneByOne 2388,41 [2381,38; 2395,44] 2388,85 [2381,80; 2395,90]

In Tables 3 and 4, our observations also extended to the
time required to generate and store 239 pseudorandom
numbers (in minutes). As anticipated, the duration for
generating and storing these numbers is approximately half

as long for 32-bit values compared to 64-bit values. Notably,
the Mrg32k3a generator exhibits the slowest performance
over C-coded generators, although it successfully passes all
statistical benchmarks. We can notice that the PCG generator
is faster than Mrg32k3a, and sometimes “Crush resistant”. It
is unexpectedly clear that generating integers with Python is
considerably more time-consuming; in both 32-bit and 64-
bit instances, it is the least efficient technology (using MT

algorithm). For the creation of 239 numbers, we employed a
strategy that favors ML frameworks inclined towards
blocking: generating segments of 220 numbers sequentially
until the full 239 was reached. Among these frameworks,

TensorFlow demands the most system and user time, a likely
consequence of its underlying parallelization which could be
problematic on limited computational resources.
Interestingly, ML frameworks demonstrate competitive
performance relative to C implementations. This outcome
was unforeseen and underscores the high degree of
optimization present in these advanced-level frameworks.

Table 3

Time taken to save 239 32 bits integer numbers for each framework

File
Real

Time

User

Time

Sys

Time

timeIntegerNumpySaving.txt 91,2 27,6 63,4

timeIntegerNumpyMtSaving.txt 97,6 36,4 61,1

timeIntegerPytorchSaving.txt 121,0 41,6 79,4

timeIntegerNumpyPhiloxSaving.txt 125,6 57,6 67,8

timeIntegerTensorflowSaving.txt 131,4 826,9 149,6

timeIntegerPcgSaving.txt 164,4 98,1 66,0

timeIntegerMtSaving.txt 180,9 107,2 73,4

timeIntegerPhiloxSaving.txt 229,8 150,8 78,8

timeIntegerPythonSaving.txt 4957,1 4890,9 65,5

Table 4

Time taken to save 239 64 bits double numbers for each framework

File
Real

Time

User

Time

Sys

Time

timeNumpySaving.txt 170,6 33,1 137,3

timePytorchSaving.txt 176,2 43,2 132,5

timeNumpyMtSaving.txt 177,5 48,4 128,6

timeNumpyPhiloxSaving.txt 231,9 96,7 135,0

timeMtSaving.txt 281,8 126,0 154,4

timeWellSaving.txt 283,0 127,4 155,2

timeTensorflowSaving.txt 288,8 1893,2 393,4

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 8

timePcgSaving.txt 346,8 185,8 160,6

timeMrgSaving.txt 449,9 307,2 142,2

timePythonSaving.txt 1355,8 1218,5 136,7

4.2. Energy consumption by minutes

In Tables 5 and 6, the energy consumption is presented

in terms of Joule by minutes for each experiment,
corresponding to 32-bit integers and 64-bit doubles,

respectively. From these findings, it is obvious that ML
technologies consume around 10% more energy than
traditional C code implementations. We notice that the
PRNG Philox is identified as a particularly high-energy-
consuming algorithm relative to its counterparts. It is
supposed to be crypto-secure, a characteristic typically
associated with an increased computing time because of
additional complexity. However crypto-secure pseudo-

random number generators (CS-PRNGs), even though found
traditionally slower, have a high rate of success in passing
statistical tests. According to the paper by M. O’Neill on
PCG, the variants employed in this study (PCG 128/64 XSL-
RR and PCG 64/32 XSH-RR) are also claimed to be crypto-
secure. They are supposed to be successful in passing the big
crush TestU01 battery, but we encountered problems.
Further investigation would be needed to ensure the claim

the PCG is crypto-secure, for instance with the NIST
Statistical Test Suite (STS) but this is out of the scope of our
paper. We can also see that, for all ML frameworks, the
block generation “at once” uses less energy than generating
“one by one”, especially in the case of 32 bits integers. In the
next section, we will talk about energy consumption, but
based on the real time taken to compute, not by minutes.

Figure 1 outlines the differences between the energy
consumption by minutes between the different versions (C

code and ML library or framework) of an implemented
PRNG algorithm. Overall, we compare the energy
consumption of all C implementations and all Python
implementations, resulting in around 20% more energy
consumed by minutes by Python implementations. In this
figure, we did not take into account one by one numbers
generation from NumPy because of they consume much
more energy per minute (see tables 5 and 6). This difference

is probably due to the low efficiency of NumPy to generate
one by one pseudo random numbers, the blocks approach
being much more efficient.

In table 5 (32 bits integer), data clearly illustrates that C
implementations consume significantly less energy
compared to Python-based implementations across different

random number generators of the same generation. For

example, the PCG generator implemented in C consumes
3209.70 J/min, which is markedly lower than the energy
consumption of the Numpy counterpart, when comparing the
PCG in C to the NumpyOneByOne (5925.94 J/min) and
NumpyAtOnce (4688.14 J/min). Similarly, the MT
generator in C (mt19937arIntegerO2 at 3323.89 J/min and
mt19937arIntegerO3 at 3607.74 J/min) demonstrates
significantly lower energy consumption compared to
NumpyMTatOnce (4847.67 J/min). Lastly, the Philox

generator in C (4845.48 J/min) has similar performances
with its counterparts in Python-based frameworks like
TensorFlow (4893.72 J/min) and PyTorch (4812.53 J/min),
as well as Numpy-Philox (4849.22 J/min). These
comparisons highlight the energy efficiency of C
implementations across the board, especially when
compared to their Python-based alternatives. These
differences are statistically significant as the gaps outrange

largely the 95% confidence intervals, it is not useful to apply
Levene and Student-T tests in this case to verify the
relevance on variance and mean using p-value.

 In table 6 and figure 1 (64 bits double), the comparison
between the energy consumption of C implementations and
Python-based implementations clearly shows that C
implementations are also significantly more energy-
efficient. For instance, the mt19937arO2 in C consumes

3179.17 J/min, mt19937ar in C at 3186.49 J/min and
mt19937arO3 at 3226.83 J/min, it outperforms
pythonTasksetAtOnce, which consumes 3994.90 J/min and
is also notably lower than the Python pythonOneByOne at
3865.71 J/min

When comparing the C version of PCG pcg64O3 at
3882.55 J/min to Numpy (numpyOneByOne and
numpyAtOnce), which consume 5935.29 J/min and 5906.65

J/min respectively, the efficiency of C is evident.
Further comparisons reveal that mt19937ar

implementations consume significantly less energy
compared to numpyMtAtOnce, which uses 4358.07 J/min.
All values given here are means that are based on 30
replications, and we can ensure significance based on the
95% confidence intervals.

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 9

Table 5

Energy consumption in Joule by minutes for each experiment, on 32 bits integer

Generator Energy consumption (J/min) Energy consumption 95% CI

pcg32Integer 3209,70 [3185.35; 3234.05]

mt19937arIntegerO2 3323,89 [3226.38; 3421.40]

mt19937arInteger 3419,13 [3285.98; 3552.27]

mt19937arIntegerO3 3607,74 [3476.79; 3738.68]

pythonIntegerTasksetAtOnce 4298,72 [4260.00; 4337.43]

pythonIntegerAtOnce 4375,21 [4110.53; 4639.88]

numpyIntegerAtOnce 4688,14 [4669.67; 4706.61]

numpyIntegerTasksetAtOnce 4766,35 [4747.59; 4785.10]

pytorchIntegerTasksetAtOnce 4766,96 [4748.06; 4785.86]

tensorflowIntegerTasksetAtOnce 4800,25 [4784.14; 4816.36]

pytorchIntegerAtOnce 4812,53 [4775.33; 4849.73]

philoxInteger 4845,48 [4824.15; 4866.81]

numpyIntegerMtAtOnce 4847,67 [4828.75; 4866.58]

numpyIntegerPhiloxAtOnce 4849,22 [4829.80; 4868.63]

tensorflowIntegerAtOnce 4893,72 [4862.41; 4925.04]

pythonIntegerOneByOne 5410,52 [5185.95; 5635.09]

numpyIntegerOneByOne 5925,94 [5579.41; 6272.47]

pytorchIntegerOneByOne 8846,44 [8492.64; 9200.24]

numpyIntegerMtOneByOne 45223,56 [42623.11; 47824.02]

numpyIntegerPhiloxOneByOne 64212,81 [61111.12; 67314.50]

Figure 1

Consumption by minute in Joule - Differences between C and Python code implementations, for each PRNG

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 10

Table 6

Energy consumption in Joule by minutes for each experiment, on 64 bits double

Generator
Energy

consumption (J/min)
Energy consumption 95% CI

mrg32k3aO2 2750,80 [2744,56; 2757,03]

mrg32k3a 2783,59 [2744,86; 2822,31]

well19937O2 2979,42 [2970,81; 2988,02]

well19937O3 2991,04 [2981,97; 3000,10]

mrg32k3aO3 3000,87 [2941,58; 3060,15]

well19937a 3040,66 [3008,42; 3072,90]

mt19937arO2 3179,17 [3168,29; 3190,04]

mt19937ar 3186,49 [3172,36; 3200,62]

mt19937arO3 3226,83 [3159,98; 3293,67]

pythonOneByOne 3865,71 [3806,83; 3924,59]

pcg64O3 3882,55 [3812,37; 3952,73]

pcg64O2 3925,18 [3872,56; 3977,79]

pythonTasksetAtOnce 3994,90 [3871,83; 4117,96]

pytorchTasksetAtOnce 4348,02 [4306,74; 4389,30]

numpyMtAtOnce 4358,07 [4168,48; 4547,65]

pcg64 4473,07 [4459,61; 4486,52]

numpyTasksetAtOnce 4550,28 [4530,53; 4570,03]

tensorflowTasksetAtOnce 4762,63 [4750,04; 4775,22]

numpyPhiloxAtOnce 5033,01 [4875,79; 5190,22]

tensorflowAtOnce 5131,12 [5100,87; 5161,37]

pytorchOneByOne 5630,90 [5233,18; 6028,62]

numpyAtOnce 5906,65 [5670,16; 6143,13]

numpyOneByOne 5935,29 [5772,42; 6098,16]

pythonAtOnce 6521,71 [6078,98; 6964,44]

pytorchAtOnce 7141,50 [6891,12; 7391,88]

numpyMtOneByOne 37375,55 [36671,35; 38079,75]

numpyPhiloxOneByOne 37590,44 [36613,97; 38566,92]

4.3. Overall energy consumption

Table 7 and Table 8 illustrate the energy consumption in
Joule during the real time taken by each experiment (e.g. 230
random number generation, depending on the algorithm and
the technology). Last tables were about the energy
consumption in Joule by minutes, but we are looking here at

the energy consumption during the time taken for each
experiment. While C implementations are more energy-

efficient per minute, the competitive overall execution time
of Python enables it to rival C implementations. Underlying
implementations of machine learning technologies in Python

are often using C, C++ or CUDA. For 32-bit integers, the
PCG algorithm demonstrates notable efficiency, outpacing
other C implementations and followed closely by NumPy,
while also maintaining reasonable energy consumption
given its execution time. The Mersenne Twister algorithm in
C exhibits the highest consistency, yielding similar results in

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 11

both integer and double generation. Regrettably, aside from
MT and PCG, other C-based PRNGs are dedicated to a
specific output type. For instance, Mrg32k3a and Well [38]
are dedicated to generating double values and Philox is

generating integers. Unlike Mersenne Twister, PCG displays
a significant discrepancy between its integer and double
generation performance. Although O2 or O3 optimization
does not affect per-minute energy consumption, its reduction
of total computation time contributes to lower the overall
energy needed. It is noteworthy that for PCG and Philox (in

32-bits generation), O2 and O3 optimizations were not
applied since the use of these optimizations causes code
malfunctions, resulting in immediate termination without
executing the intended operations. The O3 optimization

level is known as aggressive and may often produce non
reproducible results or strange behavior and this is
documented. However, it is the first time in more than 30
years of computer experiments that we observed the O2 level
producing unusable and thus non reproducible results.

Table 7

Energy consumption in Joule during real computation time, for 32 bits integers

Generator
Energy consumption

during real time (J)

Energy consumption during

real time 95% CI

pcg32Integer 131,17 [130.18; 132.17]

numpyIntegerTaskseAtOnce 206,41 [205.60; 207.22]

mt19937arIntegerO3 258,09 [248.73; 267.46]

tensorflowIntegerAtOnce 262,52 [260.84; 264.20]

mt19937arIntegerO2 262,77 [255.07; 270.48]

numpyIntegerAtOnce 267,33 [266.28; 268.38]

numpyIntegerMtAtOnce 367,77 [366.33; 369.20]

mt19937arInteger 404,65 [388.90; 420.41]

numpyIntegerPhiloxAtOnce 547,38 [545.19; 549.58]

tensorflowIntegerTasksetAtOnce 566,63 [564.73; 568.53]

pytorchIntegerTasksetAtOnce 640,54 [638.00; 643.08]

pytorchIntegerAtOnce 728,84 [723.20; 734.47]

philoxInteger 7273,10 [7241.08; 7305.12]

pythonIntegerTasksetAtOnce 34827,75 [34514.05; 35141.44]

pythonIntegerAtOnce 35659,70 [33502.49; 37816.92]

pythonIntegerOneByOne 38407,42 [36813.25; 40001.59]

pytorchIntegerOneByOne 336428,77 [322973.74; 349883.80]

numpyIntegerOneByOne 637889,20 [600587.67; 675190.72]

numpyIntegerMtOneByOne 4769399,46 [4495148.41; 5043650.52]

numpyIntegerPhiloxOneByOne 7012261,80 [6673546.74; 7350976.87]

Table 8

Energy consumption in Joule during real computation time, for 64 bits double

Generator
Energy consumption

during real time (J)

Energy consumption during

real time 95% CI

mt19937arO3 225,74 [221,06; 230,42]

mt19937arO2 238,60 [237,79; 239,42]

well19937O2 247,04 [246,33; 247,75]

well19937O3 247,41 [246,66; 248,16]

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 12

tensorflowAtOnce 288,69 [286,99; 290,40]

numpyTasksetAtOnce 330,27 [328,83; 331,70]

mt19937ar 397,49 [395,73; 399,26]

pytorchTasksetAtOnce 436,27 [432,13; 440,41]

numpyAtOnce 568,32 [545,56; 591,07]

tensorflowAtOnce 649,36 [647,65; 651,08]

well19937a 663,01 [655,98; 670,04]

pcg64O3 711,70 [698,83; 724,56]

pcg64O2 724,40 [714,69; 734,11]

pytorchAtOnce 821,43 [792,63; 850,23]

numpyMtAtOnce 950,24 [908,91; 991,58]

pcg64 982,61 [979,65; 985,56]

mrg32k3aO3 998,58 [978,85; 1018,31]

numpyPhiloxAtOnce 1111,94 [1077,21; 1146,68]

mrg32k3aO2 1442,61 [1439,33; 1445,88]

mrg32k3a 2000,77 [1972,93; 2028,61]

pythonOneByOne 2375,43 [2339,25; 2411,61]

pythonTasksetAtOnce 4629,02 [4486,43; 4771,62]

pythonAtOnce 8202,27 [7645,45; 8759,08]

numpyOneByOne 32740,55 [31842,13; 33638,98]

numpyMtOneByOne 199270,14 [195515,66; 203024,62]

numpyPhiloxOneByOne 202400,80 [197143,08; 207658,52]

pytorchOneByOne 224148,23 [208316,06; 239980,39]

4.4. Statistical quality

Now, we examine the quality of the pseudo random

numbers generated by each technology. Integer results are
presented in Table 9, and double results are presented in
Table 10. First, we notice that the quality of the double
generation behaves more as expected than integers. Indeed,
each PRNG algorithm is known to fail specific Big Crush
tests, so we can use the tests as markers to recognize one
PRNG or another. In the double generation, all

implementations of the Mersenne Twister algorithm—
including MT in C, Python, and NumPy—failed to the
LinearComp tests 80 and 81, aligning with expectations
since those tests are linked to crypto-security. The Well
algorithm also demonstrated similar failures; its internal
structure is similar to MT with huge feedback shift registers.
Conversely, PCG and its NumPy variant employing the PCG
128/64 XSL-RR algorithm passed all tests, corroborating the

assertions of the author of PCG. However, some flaws were
observed by conducting extensive tests with the TestU01
statistical testing library (discussed later). Additionally, the
Numpy documentation notes that statistical weaknesses have
been identified in the PCG64 algorithm when used in
massively parallel contexts. Consequently, a new version

called PCG64DXSM has been introduced. Despite this, even
this new version, and all previous versions of PCG from the
original author have recently been reported to have statistical
flaws according to Vigna (Vigna’s homepage:
https://pcg.di.unimi.it/pcg.php). The Philox algorithm from
NumPy failed the BirthdaySpacings test, in contrast to its
TensorFlow counterpart, which passed all assessments.

From our experience, we acknowledge that PRNGs may

occasionally fail tests they are not expected to [5]. Further
scrutiny into each behavior of PRNG would necessitate
multiple replications with varying initial statuses to verify
consistency across the entire period. Regrettably, we had to
exclude PyTorch data from table 10 due to its failure in 62
statistical tests (among 106 tests). This result requires
additional investigation, this high failure rate suggests
inferior statistical quality (58% of the big crush battery

failed). Interestingly, the pseudo random number generation
of PyTorch on 32-bit integers was way better, failing only 3
tests.

Concerning the 32 bits integers, results were a bit more
surprising. First, we can notice that, while the original C
code Mersenne Twister fails the two tests 80 and 81, the

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 13

NumPy MT implementation only failed one test.
Surprisingly, the Python version passed all tests, more
investigations with different initial statuses could be
interesting. PCG and Philox, in their different

implementations, did fail some tests, but still remains good
quality generators. It is interesting to note that they do indeed
fail some tests, while authors assume that they do not fail
any. In addition, they did not fail the same tests. For
example, NumPy version of Philox failed the test 49
MaxOft, while the TensorFlow version of Philox failed the

test 9 CollisionOver. This makes us think that these PRNGs
might be failing different statistical tests if we would try to
do replications over the PRNGs periods, using different state
of the PRNG. An unexpected observation was the failure of

PyTorch at three specific tests, notably the RandomWalk and
two LinearComp tests. Although the documentation of
PyTorch suggests Philox as its underlying PRNG, the
observed failures look like the “signature” of a Mersenne
Twister, raising questions about its implementation.

Table 9

Failed BigCrush tests for each experiment, based on 32 bits integer

Generator
Number of Failed

Tests
Failed Tests

philoxInt32
6

34 Gap, 35 Gap, 36 Gap, 37 Gap, 65 SumCollector, 68

MatrixRank

pytorchInt32 3 77 RandomWalk1, 80 LinearComp, 81 LinearComp

pcgInt32 1 5 CollisionOver

mtInt32 2 80 LinearComp, 81 LinearComp

numpyMtInt32 1 80 LinearComp

numpyPhiloxInt32 1 49 MaxOft

numpyInt32 0

tensorflowInt32 1 9 CollisionOver

pythonInt32 0

Table 10

Failed BigCrush tests for each experiment, based on 64 bits double. PyTorch excluded for readability, failing 62 tests

Generator
Number of Failed

Tests
Failed Tests

pcgReal 0

tensorflowReal 0

MRG32k3aReal 0

wellReal 2 80 LinearComp, 81 LinearComp

numpyReal 0

mtReal 2 80 LinearComp, 81 LinearComp

numpyPhiloxReal 1 21 BirthdaySpacings

pythonReal 2 80 LinearComp, 81 LinearComp

numpyMtReal 2 80 LinearComp, 81 LinearComp

4.5. Numerical reproducibility

An important finding of this study is the absence of

reproducibility in the numbers generated across various
platforms. Though initially designed to be portable, the

Mersenne Twister algorithm, initialized with the same seed,
will give different numbers with the different C, Python and
NumPy implementations. The same applies for PCG with
NumPy and C code, and also for Philox with NumPy and
TensorFlow frameworks. In addition to portability issues,

the reason might be because people are using simple seeds

to initialize our PRNG, instead of using the full state for a
proper initialization of modern generator. Many scientists
are confused by the ‘seeding’ terminology, they can think
that seeds correspond to states. If this was often the case at
the end of the previous century, modern and high quality
generators now have large internal states. Seeds are just
indexes transformed into PRNG states. The function
transforming a seed into a full state might differ between the

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 14

technologies or frameworks, and this can lead to a loss of
numerical reproducibility between the technologies.

5. Discussions

From what has been discovered comes more questions: if

the loss of reproducibility does not come from the seeding
functions, this leads us to a critical inquiry: how can we
ascertain that the algorithm in use is a correct
implementation of the generator? For us, this is an open

question. The ideal solution would be for original authors to
supply a sample of generated pseudo-random numbers,
which we should be able to compare with the numbers we
are generating, to ensure perfect reproducibility. To our
knowledge, Mersenne Twister is the only PRNG that offers
this feature with the expected output. Numerical
reproducibility is not only important for the advancement of
Science but also for debugging [11]. Does the change of

hardware or software stack affect the reproducibility of a
PRNG? What we observe is that the portability of PRNGs
should not be considered as granted. Here, we are using
different technologies with the same environment, and we
obtained different results and different statistical quality.
Another way to identify the PRNG not based on the
numerical result would be to perform statistical tests to try to
identify the underlying algorithm, as some failed statistical

tests can serve as markers for some PRNGs, at least to
identify PRNGs from the same family. However, as we
found in a deep study [5], the same PRNG algorithm might
fail several different statistical tests. For example, over 4096
replications, it appears that the Mersenne Twister algorithm
fails all 106 BigCrush tests at least once. We could expect a
similar behavior from other PRNGs. This would also need
further investigations. Ensuring the use of a specific
algorithm, in the absence of perfect numerical

reproducibility, is far from trivial.
In the discussions surrounding high-performance

computing (HPC), it is undeniable that it is a high-
consuming endeavor in terms of time, financial investment,
and energy. With the inexorable march towards greater
computational power and despite technological innovation,
these costs have only intensified due to inflation in hardware,
energy prices and also the Jevons paradox. Meanwhile, ML

has emerged as an indispensable tool in a plethora of fields
such as the now famous Large Language Models (LLMs),
but also in more common domains like autonomous vehicles,
healthcare, and so on. The sophistication of ML models
comes with its own demands on computational and energy
resources. When considering the generation of pseudo-
random numbers — an essential component for stochastic
processes, simulations, and even for the operation of ML

algorithms themselves — the comparison between
traditional C-coded generators such as Philox, Mersenne
Twister, and PCG, and those implemented within ML
frameworks (using PyTorch, TensorFlow, Python, and
NumPy), presents a complex picture. Energy consumption is
a critical factor; while there is no actual data on the exact
energy costs of random number generation within neural
network training, it is reasonable to assume that the

proportion is non-negligible. Profiling such applications to
evaluate the exact proportion of time used in the generation
of pseudo random numbers, depending on the size of the
neural network, would be valuable. With a neural network

like GPT-4 LLM provided by OpenAI, we have around 175
billion parameters (edges of the graph), we can easily
imagine that a very large number of pseudo random numbers
have been used. Generating pseudo-random numbers is an
integral part of the training phase of neural networks,
especially in processes such as weight initialization,
shuffling, and during stochastic gradient descent where
randomness is used to ensure convergence. The results of our

investigation suggest that ML implementations can match
the statistical quality and speed of their C code counterparts.
However, the ease and speed of generating pseudo-random
numbers using ML frameworks leads to a little increase of
the energy consumption cost dedicated to this task (around
10%).

In future works, we want to ascertain that Powerjoular,
utilizing RAPL, provides reliable measurements of energy
consumption. In Khan et al. [39], they tested the reliability

of RAPL, on a Finnish supercomputing cluster, and on
Amazon EC2, leading to the conclusion that RAPL is
accurate and have negligible performance overhead.
Powerjoular adds a layer on top of this. This layer was also
very useful to track power leakage [40]. We reasonably think
that our results are reliable and can be corroborated by
others. In future work will try to measure the impact of the
PRNG quality and the parallelization technique [41] on

machine learning applications.

6. Conclusion

Machine learning frameworks rely on Pseudo-Random
Number Generators (PRNGs) for neural network training.
The inclusion of stochastic sources has proven beneficial to
the machine learning field. However, research into the
quality of generated pseudorandom numbers, as well as the
generation time and power requirements, remains

incomplete. This study evaluates the efficiency of
pseudorandom number generation in machine learning
frameworks compared to traditional implementations in C.
Specifically, we examined Python, PyTorch, TensorFlow,
and NumPy. Our findings indicate that various Python-based
libraries and frameworks are well-optimized. Specifically,
we examined Python, PyTorch, TensorFlow, and NumPy
with the mind set on reproducibility and energy
consumption.

The NumPy library excels in terms of time efficiency and
quality, closely aligning with C-implemented PRNGs.
Nevertheless, two drawbacks were identified: first, machine
learning frameworks consume approximately 10% more
energy; second, there is inconsistent numerical repeatability
when using identical seeds across different PRNG
implementations, which poses a portability issue. This raises
questions about fidelity to the original PRNG specifications

or the possibility of differences in transformation functions
from the seed to the full PRNG state. The implementation of
PRNGs in machine learning tools should produce identical
results when initialized similarly to their C counterparts.

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 15

Despite claims on the official PCG website describing it as
“very fast” compared to the “acceptable” speed of the
Mersenne Twister, our analysis suggests that these claims
may be overstated. In fact, the generation of double values,

which is essential for many simulations, is 2.5 times faster
with the original MT. We observed performance differences
between the generation of 32-bit integers and 64-bit double
pseudorandom values. The C implementation of PCG
performs similarly to the NumPy implementation.
Furthermore, PCG exhibited failures in certain BigCrush
tests, despite being described as crush-resistant. PCG should
be avoided for massively parallel computing, as noted in the

NumPy documentation, which recommends using
PCG64DXSM. However, Vigna on his home page also,
shows the statistical failure of the latter
(https://pcg.di.unimi.it/pcg.php). Further research is needed
to explore each PRNG in greater depth. ML frameworks and
other applications needing fast pseudo random number
generation could consider testing xoroshiro128++ [34], a
very fast generator which can also have seeding issues.
Although the impact of PRNG quality on neural network

training outcomes has not been extensively studied, insights
from recent studies, discussed in Section 2, suggest that
PRNG quality could indeed influence the performance of
trained neural networks, based on quality metrics [14, 15].

Funding Support

Mr. Antunes’ thesis is financed by the French Ministry of
Education and Research.

Ethical Statement
This study does not contain any studies with human or
animal subjects performed by any the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
this work.

Data Availability Statement

The data that support the findings of this study are openly
available in GitLab at: https://gitlab.isima.fr/beantunes/

random-numbers-in-machine-learning/

Author Contribution Statement

Benjamin Antunes: Conceptualization, Software,
Investigation, Writing - original draft, Writing - review &

editing. David R. C. Hill: Validation, Writing - review &
editing, Visualization, Supervision, Project administration,
Funding acquisition.

References

[1] Matsumoto, M., & Nishimura, T. (1998). Mersenne

twister : A 623-dimensionally equidistributed uniform

pseudo-random number generator. ACM Transactions
on Modeling and Computer Simulation , 8(1), 3–30.

[2] Salmon, J. K., Moraes, M. A., Dror, R. O., & Shaw, D.
E. (2011). Parallel random numbers : As easy as 1, 2, 3.

In International conference for high performance
computing, networking, storage and analysis, 1–12.

[3] O’neill, M. E. (2014). PCG: A family of simple fast
space-efficient statistically good algorithms for random
number generation. ACM Transactions on
Mathematical Software.

[4] L’Ecuyer, P. (1999). Good parameters and
implementations for combined multiple recursive

random number generators. Operations Research,
47(1), 159–164.

[5] Antunes, B., & Hill, D.R.C. (2023). Identifying quality
mersenne twister streams for parallel stochastic
simulations. In Winter Simulation Conference, 2801–
2812.

[6] L’Ecuyer, P., & Simard, R. (2007). TestU01 : AC
library for empirical testing of random number
generators. ACM Transactions on Mathematical

Software (TOMS), 33(4), 1–40.
[7] Saito, M., & Matsumoto, M. (2006). SIMD-oriented

fast Mersenne Twister: A 128-bit pseudorandom
number generator. In Monte Carlo and Quasi-Monte
Carlo Methods 2006, 607-622.

[8] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker,
E., Leigh, S., … & Heckert, A. (2001). A statistical test
suite for random and pseudorandom number

generators for cryptographic applications. USA:
National Institute of Standards and Technology.

[9] Roucairol, M., & Cazenave, T. (2024). Comparing
search algorithms on the retrosynthesis
problem. Molecular Informatics, e202300259.

[10] Goralski, M. A., & Tan, T. K. (2020). Artificial
intelligence and sustainable development. The
International Journal of Management Education,

18(1), 100330.
[11] Drummond, C. (2009). Replicability is not

reproducibility: nor is it good science. In Proceedings
of the Evaluation Methods for Machine Learning
Workshop at the 26th ICML.

[12] Hart, M., Idanwekhai, K., Alves, V. M., Miller, A. J.,
Dempsey, J. L., Cahoon, J. F., ..., & Tropsha, A. (2024).
Trust not verify? The critical need for data curation

standards in materials informatics. Chemistry of
Materials. https://doi.org/10.1038/s41563-023-01790-
z

[13] Antunes B., & Hill D.R.C. (2024). Reproducibility,
replicability and repeatability: A survey of reproducible
research with a focus on high performance computing,
Computer Science Review, 53, 100655.

[14] Huk, M., Shin, K., Kuboyama, T., & Hashimoto, T.
(2021). Random number generators in training of

contextual neural networks. In Asian Conference on
Intelligent Information and Database Systems, 717–
730.

[15] Koivu, A., Kakko, J. P., Mäntyniemi, S., & Sairanen,
M. (2022). Quality of randomness and node dropout
regularization for fitting neural networks. Expert
Systems with Applications, 207, 117938.

https://gitlab.isima.fr/beantunes/random-numbers-in-machine-learning/
https://gitlab.isima.fr/beantunes/random-numbers-in-machine-learning/
https://doi.org/10.1038/s41563-023-01790-z
https://doi.org/10.1038/s41563-023-01790-z

Journal of Data Science and Intelligent Systems Vol. Iss. 2024

__

 16

[16] Lu, Y., Meng, S.Y., & De Sa, C. (2022). A general
analysis of example-selection for stochastic gradient
descent. In International Conference on Learning
Representations (ICLR), 44.

[17] Antorán, J., Allingham, J., & Hernández-Lobato, J.M.
(2020). Depth uncertainty in neural networks. Advances
in Neural Information Processing Systems, 33, 10620–
10634.

[18] Mumuni, A., & Mumuni, F. (2022). Data augmentation:
A comprehensive survey of modern approaches. Array,

16, 100258.

[19] Maleki, F., Ovens, K., Gupta, R., Reinhold, C., Spatz,
A., & Forghani, R. (2022). Generalizability of machine
learning models: Quantitative evaluation of three

methodological pitfalls. Radiology: Artificial
Intelligence, 5(1), e220028.

[20] Tsamardinos, I., Greasidou, E., & Borboudakis, G.
(2018). Bootstrapping the out-of-sample predictions for
efficient and accurate cross-validation. Machine
Learning, 107, 1895–1922.

[21] Liu, Y., Liu, S., Wang, Y., Lombardi, F., & Han, J.
(2020). A survey of stochastic computing neural

networks for machine learning applications. In IEEE
Transactions on Neural Networks and Learning
Systems, 32(7), 2809–2824.

[22] Magris, M., & Iosifidis, A., (2023), Bayesian learning
for neural networks: An algorithmic survey. Artificial
Intelligence Review, 56(10), 11773–11823.

[23] Wei, R., & Mahmood, A. (2020). Recent advances in
variational autoencoders with representation learning
for biomedical informatics: A survey. IEEE Access, 9,

4939–4956.
[24] Ladosz, P., Weng, L., Kim, M. & Oh, H. (2022).

Exploration in deep reinforcement learning: A survey.
Information Fusion, 85, 1–22.

[25] Xioa, Li, Zhang, Z., Huang, K., & Peng, Y. (2022).
Noise optimization in artificial neural networks. In
IEEE International Conference on Automation Science
and Engineering, 1595–1600.

[26] Kim, K., Kim, J., Yu, J., Seo, J., Lee, J., & Choi, K.
(2016). Dynamic energy-accuracy trade-off using
stochastic computing in deep neural networks. In
Annual Design Automation Conference, 1–6.

[27] Liu, Y., Wang, Y., Lombardi, F., & Han, J. (2018). An
energy efficient online learning stochastic computa-
tional deep belief network. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, 8(3), 454–

465.
[28] Dubey, S. R., & Singh, S. K. (2024). Transformer-

based generative adversarial networks in computer
vision: A comprehensive survey. IEEE Transactions on
Artificial Intelligence, 1–16.

[29] Pranav, D., Shumailov, I., & Anderson, R. (2023).
Machine learning needs better randomness standards:
Randomised smoothing and prng-based attacks. arXiv

Preprint: 2306.14043.
[30] Daniely, A., & Vardi, G. (2021). From local

pseudorandom generators to hardness of learning. In
Conference on Learning Theory, 1358–1394.

[31] Hu, J., Zhu, K., Cheng, S., Kovalchuk, N. M., Soulsby,
A., Simmons, M. J. H., ..., & Arcucci, R. (2024).

Explainable AI models for predicting drop coalescence
in microfluidics device. Chemical Engineering
Journal, 481, 148465.

[32] Zhu, K., Cheng, S., Kovalchuk, N., Simmons, M., Guo,

Y. K., Matar, O. K., & Arcucci, R. (2023). Analyzing
drop coalescence in microfluidic devices with a deep
learning generative model. Physical Chemistry
Chemical Physics, 25(23), 15744–15755.

[33] Gundersen, O. E., Coakley, K., Kirkpatrick, C., & Gil,
Y. (2022). Sources of irreproducibility in machine
learning: A review. arXiv Preprint: 2204.07610.

[34] Blackman, D., & Vigna, S. (2021). Scrambled linear

pseudorandom number generators. ACM Transactions
on Mathematical Software, 47(4), 1–32.

[35] PCG, A Family of Better Random Number Generators.
(2018). Using the Minimal C Implementation. Retrived
from: https://www.pcg-random.org/using-pcg-c-
basic.html

[36] Noureddine, A. (2022). Powerjoular and joularjx:
Multi-platform software power monitoring tools.
In 2022 18th International Conference on Intelligent

Environments (IE), 1-4.
[37] David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R.,

& Le, C. (2010). RAPL: Memory power estimation and
capping. In ACM/IEEE International Symposium on
Low Power Electronics and Design, 189–194.

[38] Panneton, F., L'ecuyer, P., & Matsumoto, M. (2006).
Improved long-period generators based on linear
recurrences modulo 2. ACM Transactions on

Mathematical Software, 32(1), 1-16.
[39] Khan, K. N., Hirki, M., Niemi, T., Nurminen, J. K., &

Ou, Z. (2018). Rapl in action : Experiences in using rapl
for power measurements. ACM Transactions on
Modeling and Performance Evaluation of Computing
Systems , 3(2), 1–26.

[40] Zhang, Z., Liang, S., Yao, F., & Gao, X. (2021). Red
alert for power leakage: Exploiting intel RAPL-induced

side channels. In ACM Asia Conference on Computer
and Communications Security, 162–175.

[41] Hill, D. R. C, Passerat-Palmbach, J., Mazel, C., &
Traore, M.K. (2013). Distribution of Random Streams
for Simulation Practitioners. Concurrency and
Computation: Practice and Experience, 25(10), 1427–
1442.

https://www.pcg-random.org/
https://www.pcg-random.org/using-pcg-c-basic.html
https://www.pcg-random.org/using-pcg-c-basic.html
https://www.pcg-random.org/using-pcg-c-basic.html

	1. Introduction
	2. The Importance of PRNGs in Machine Learning
	3. Materials and Methods
	4. Results
	4.1. Time performance
	4.2. Energy consumption by minutes
	4.3. Overall energy consumption
	4.4. Statistical quality
	4.5. Numerical reproducibility
	5. Discussions
	6. Conclusion
	Funding Support
	Conflicts of Interest
	Data Availability Statement
	References

