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Abstract: Federated learning (FL) is an approach to enable the training of shared Machine learning (ML) models on private data of multiple
independent participants. While FL greatly improves data privacy, it also yields a multitude of new threats, such as the combined
reconstruction and poisoning attack (CRPA). CRPA allows any FL participant to manipulate the central model, causing it to misclassify
arbitrary class combinations. Any participant may reconstruct samples from an arbitrary unknown class and consequently use these
samples to deceive the central model into misclassifying it for another class. Previously, proposed attack scenarios only featured a single
class combination as well as a single static data distribution. However, in realistic scenarios, the adversary cannot know which class
combinations are vulnerable to CRPA and must adapt to the existing data distribution among the participants. In this paper, we answer
the question of whether CRPA is influenced by these two parameters and observe the attack accuracy. To this end, the efficiency of
CRPA is examined, focusing on the vulnerability of all class combinations, the effect of unbalanced data distribution, and the
application of differential privacy (DP). We show that the success of the attack for the MNIST and FMNIST datasets is strongly
influenced by the selected class combination as well as the underlying data distribution, with differences of up to 46% in attack accuracy
in the worst case. Additionally, we were able to prevent the reconstruction of human-identifiable images with DP, which in our case also
mitigated the poisoning attack. Our results indicate that the success of reconstruction and poisoning attacks diminishes in scenarios with
an unbalanced data distribution among participants and that DP can be an effective defense against the combined attack in any type of scenario.
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1. Introduction

Federated learning (FL) is a promising method to train machine
learning (ML) models on private data by exchanging ML models
instead of the data. This allows collaborative training of models on
private data silos and opens the door to a multitude of new areas of
application, which previously were inaccessible, like training models
with data from multiple small devices without having to transfer the
data from them [1, 2]. Participants engage in FL to obtain ML
models with the capability of generalizing over different data silos
without requiring explicit sharing of such data. The promise is that
no third party has access to the private data and no sensitive
information is revealed. However, recent research has shown that the
promise of privacy and security in FL is not always justified [3, 4].
That is because it is possible to recreate samples similar to the
contributed private data. Moreover, these samples can be used to
poison the model [5–7]. The applicability and implications of this
severe issue for privacy and security have not yet been fully studied.

Our work examines the applicability of the combined
reconstruction and poisoning attack (CRPA) with respect to class
selection, unbalanced class distribution, and prevention techniques.

We demonstrate that these factors do influence the results of the
reconstructed sample as well as the success of the poisoning attack.
Although sensitive data in FL remains at the participants’ locations,
information about it is learned and forwarded through the
collaboratively trained global model. CRPA consists of two parts:
the reconstruction of samples from the private distribution as well
as the poisoning of the central model. Reconstruction aims to
recover information about the private data in FL. In our work, a
generative adversarial network (GAN) is used to this end. Poisoning
aims to purposely mislabel training samples to manipulate the
global model into misclassifying a specific class for another. To
execute the poisoning attack, the adversarial client is required to
hold samples of the to-be misclassified class. The combination of
reconstruction and poisoning attacks enables adversaries to target
classes for which they do not hold samples by generating them.
This leads to the possibility of attacking any class.

Previouswork has focused on targeting a single class combination
within a single static class distribution among the participants in FL
[5–7]. However, in a realistic case of CRPA, the adversarial
participant must choose which combination to target. This decision
is likely made without knowing the most vulnerable combinations.
Additionally, an attacker must adapt to the existing data distribution,
which will most likely be unbalanced in realistic cases.
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Our hypothesis is that class selection, data distribution, and
application of common defense measures like differential privacy
(DP) are key factors affecting the performance of CRPA.
Therefore, a study considering these factors would contribute to a
better understanding of CRPA in real-world scenarios. This could
improve the ability to analyze the threats of CRPA for concrete
applications and the assessment of DP as a countermeasure. To
this end, our work examines how the targeted class and the
underlying data distribution influence the success of CRPA.
Furthermore, we show that CRPA can be prevented using DP [8].

To show that, we have examined the vulnerability for all possible
class combinations for theMNIST and FMNIST datasets by observing
the average attack accuracy (AAA). This selection of datasets,
although limited, provides a solid set of initial results, with a robust
methodology that can be applied in future work with more complex
images or a higher number of class combinations. To determine
which distributions contribute to the success of CRPA, several
degrees of class distributions using the Dirichlet distribution [9] and
their effect on the attack accuracy are examined. Finally, we show
that DP can prevent CRPA in our case by dropping AAA close to
zero, though at the cost of reduced global model accuracy. In
summary, the paper provides the following contributions:

1) First, we provide a fundamental study that explores the threats of
CRPAs (CRPA) to FL-based systems considering practically
relevant factors including class-specific vulnerability and different
types of federated data distribution. The study enables readers to
understand the implications of the CRPA pattern for their own FL
processes and conduct similar experiments to assess their security.

2) Second, we present a follow-up study that explores the effectiveness
of DP as a security measure to counteract CRPAs under practically
relevant conditions, thereby supporting readers in developing
strategies to explicitly secure their threatened FL processes.

Our findings demonstrate that several factors can influence the
success of CRPAs. The selection of specific classes for
reconstruction and poisoning can determine whether an attack
succeeds or fails. Moreover, data distribution among FL participants
may hinder poisoning while leaving the reconstruction process
unaffected. Finally, contrary to prior research [10], our findings
suggest that DP can prevent the reconstruction attack, thereby
rendering the poisoning attack ineffective. Overall, we believe that
our work provides valuable insights for practitioners aiming to
enhance FL security and privacy. Additionally, our methodology
and findings can inspire further research on more complex image
datasets, reconstruction attacks capable of bypassing DP, or
defenses that preserve training performance better than DP.

In the following, Section 2 introduces reconstruction and
poisoning attacks as well as their combination. Next, Section 3
references previous approaches and their choices of class selection,
class distribution, and possible defenses. Then, Section 4 shows
why class selection and data distribution influence CRPA. The
setup of the experimental framework and the settings for the
executed experiments are explained in Section 5. The results of
these are presented and discussed in Section 6. Finally, Section 7
summarizes the results and provides an outlook.

2. Background

The following section presents the concepts underlying our
work. Subsection 2.1 presents FL, describing the steps of the
process, and the vulnerabilities that can arise from it.
Subsections 2.2 and 2.3 introduce reconstruction attacks that
harm the privacy of participants by reconstructing training data,

and poisoning attacks that affect model performance by
tampering with the training data. Finally, subsection 2.4 explains
the combination of the two attacks.

2.1. FL

FL [11] is a novel approach whose application yields a
multitude of new attack vectors [3, 4]. An FL session thereby
consists of multiple steps, which take place at either the central
curator or the participants. Initially, the curator must set up the
global model with an architecture suitable to solve the ML task.
Then, the actual federated training starts, which repeats three steps:
First, a copy of the global model is distributed from the curator to
all participants. In the second step, the local training takes place,
where each participant trains its copy of the global model on its
private data. This yields an updated model for each participant that
has learned the patterns and regularities from its private data. In the
third step, the curator collects the model updates from all
participants and aggregates them to the new global model. After
multiple federated training rounds, the global model learns the
patterns and regularities of all the private data, and the FL session
ends. Thereby participants rely on the assumption that their private
data is protected from third-party access and that the resulting
model is reliable and trustworthy. Nevertheless, further research has
identified additional threats to both the privacy of data and the
reliability of the global model. An additional factor influencing the
model quality is the data distribution [9]. A balanced distribution,
where each class is represented equally often at each participant, is
used in scientific setups. However, one finds an uneven distribution
of data in most realistic FL, which raises the question of how this
influences FL beyond its impact on model accuracy.

2.2. Reconstruction attack

In the reconstruction attack, any adversarial participant might
reconstruct samples similar to the private training data of other
participants [10]. Our work focuses on reconstruction attacks
utilizing a GAN that allows the generation of samples from an
arbitrary class. A GAN consists of two neural networks, the
generator and discriminator network that are jointly trained to learn
to generate data from the distribution of a training dataset. The
generator network learns to generate samples with the help of the
discriminator network as a teacher that judges whether samples
originate from the training data distribution. In the reconstruction
attack, the generator part of the GAN is controlled by the adversarial
participant, while the global model is used as a discriminator. In the
local training runs, the benign participants train the global model on
their local data. The adversarial participant not only trains on its local
data but also trains the generator network using the global model as
the discriminator. The training of the generator is repeated in the FL
process. Consequently, the global model learns the patterns of all
participants’ private data, assisting the generator model in learning to
regenerate samples of other participants’ private training data.

2.3. Poisoning attack

Poisoning attacks aim to compromise the reliability of the
model by deceiving it into misclassifying samples. The adversarial
participant achieves this by purposely mislabeling its training data
during FL [3]. Poisoning can cause samples to be misclassified
randomly (untargeted) or focus on a specific source class
(targeted). In this work, poisoning attacks refer to the targeted
version. When participating in FL training, the adversarial client
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teaches the global model to misclassify the targeted classes by
poisoning its own training data. The resulting global model is
likely to misclassify samples of the source class as the target class.

2.4. Combined reconstruction and poisoning

The goal of the CRPA is to poison a specific class unknown to
the adversarial participant, as described by Zhang et al. [7]. Unknown
in this context means that the adversarial participant does not possess
samples or have information about this class.

The reconstruction attack assumes an adversarial client A, who
possesses data relevant to the FL setup. This allows the adversarial
client to legally participate in the training process. In addition to the
normal training, it aims to generate instances of a classG for which it
possesses no samples and about which it has no prior knowledge. The
goal of A is to generate samples of the class G and trick the global
model into classifying them as another target class T. This is achieved
by applying a poisoning attack on the global model.

At the beginning of FL, the adversarial client submits an
additional label to the label voting. This will lead to an extra
output in the global model, which is used as the fake label
required to train the generator model. The adversarial client then
needs the following additional capabilities in its local training
process to execute the reconstruction attack: It must be able to
intercept the global model, change the global model parameters,
and manipulate its private training data in the FL process.

We consider an approach that combines reconstruction and
poisoning attacks. Figure 1 [7] shows the process of this attack

scheme in five steps. In the initial step 0, the adversarial participant
submits an additional label during the label voting stage. In step 1,
the global model is distributed to all participants. Steps 2 and 3 take
place on the adversarial client A exclusively. In step 2, A trains the
generator network on the global model learning to produce samples
of class G. In step 3, samples of the class G are generated and
mislabeled with the labels of the target class T. The mislabeled data
are added to the training data of A. In step 4, the local training
takes place, where all participants train their copy of the global
model on their local dataset. A thereby uses the modified dataset,
poisoning the model in its local training. Finally, in step 5, all
models are collected and aggregated by the curator.

This approach has advantages for adversaries, which makes it a
powerful attack. First, it does not require the adversarial participant
to possess samples of the classes it aims to attack. This is an
advancement compared to general poisoning attacks, which
always require access to samples of the target class. In addition,
these samples can be used to observe the reconstructed
characteristics of an unknown class and thereby leak private
information, but this is outside the scope of this work. Second,
only a single adversarial client is necessary to perform this attack,
and it does not need any additional capabilities in the FL setup
except sufficient computational power to train the GAN.

3. Related Work

The following section presents existing work related to our
study. Subsections 3.1 and 3.2 list work on reconstruction and

Figure 1
CRPA using a GAN. The adversarial client reconstruct samples of class 1, which is

unknown to it, and mislabels them as class 9 to poison the global model
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poisoning attacks. Subsection 3.3 outlines work regarding the
combination of both reconstruction and poisoning attacks. Finally,
subsections 3.4 and 3.5 present work on defenses employed
against reconstruction and poisoning attacks.

3.1. Reconstruction attack in FL

Reconstruction attacks in FL based on GANs were introduced
by Hitaj et al. [10], who also compared them to another
reconstruction method called model inversion. They show that the
GAN reconstruction attack is far superior in a federated setting.
Additionally, they were able to reconstruct human-identifiable
images despite using DP at the record level. An alternative
approach is to execute the reconstruction attack from the central
curator instead of an adversarial client as mentioned by Wang
et al. [5]. Their approach is based on an adversarial curator, rather
than an adversarial client, which utilizes a GAN to reconstruct
samples. Neither investigates the influence of class selection or
data distribution, and both consider only a single static class
combination and data distribution.

3.2. Data poisoning attacks on FL

Data poisoning attacks in FL and their effects were investigated
by Tolpegin et al. [12]. They show that the attack is highly effective
even with a minor proportion of adversarial clients. Their attack
setup uses only a balanced data distribution, and they do not
investigate the effects of other distributions. Their work is
important, but it does not provide a comprehensive view of the
effectiveness of poisoning attacks on specific classes. They
conclude that there is not necessarily a correlation between non-
poisoned misclassification performance and attack effectiveness.

3.3. CRPA

The CRPA was introduced by Zhang et al. [7]. It features a
GAN-based reconstruction attack combined with a data poisoning
attack. They show that a CRPA can be very effective in both
reconstructing samples and poisoning the global model. They
further enhanced their attack scheme by including backdoor
attacks [6]. However, all previous approaches are executed for a
single class combination, with a single static data distribution, and
they are not tested against DP.

3.4. Defenses against reconstruction attacks

Defenses against reconstruction attacks are mainly based on
noising the model gradients or parameters, which avoids the
reconstruction of images that have similarity to those of the
private data. In their initial paper on the reconstruction attack,
Hitaj et al. successfully reconstruct images despite the application
of added noise using DP [10]. Subsequently, they state that DP is
not a countermeasure against GAN reconstruction attacks because
as long as the accuracy of the global model improves, the
generator model can learn from the distribution of the
discriminator model. Ziegler et al. state that the reconstruction of
images using the gradient leakage attack could be prevented using
different levels of DP [13]. Another less generic approach is to
obfuscate the private training data in order to prevent
reconstruction [14]. However, this technique requires a sufficient
number of training data to generate the shadow dataset, which is
not always available for each participant

3.5. Defenses against poisoning attacks

Defenses against poisoning attacks are based on anomaly
detection and rely on the test accuracy, model updates, or gradient
updates sent to the central curator [12, 15]. The analysis of test
accuracy and model updates is intended to exclude adversarial
clients but requires a balanced data distribution. In scenarios with
unbalanced distributions, it would falsely detect honest participants
as outliers and exclude them from training. The MUD-HoG
approach [16] manages to detect poisoning clients also in
unbalanced setups by assuming access to the gradient updates of
the participants.

All protections against model poisoning require that the central
curator owns a sufficient test dataset or has access to either the
parameters or gradient updates of the participants. However, these
requirements are not always met in all FL setups, and some
aggregation methods, such as SMPC, specifically avoid sending
parameter or gradient updates to the central curator to protect them
from inference attacks such as deep leakage from gradients [17].

Previous work has also investigated the effectiveness of DP
against poisoning attacks in FL [18, 19]. They showed that DP
cannot protect the model against poisoning attacks, but stricter
privacy guarantees do lead to less successful attacks. Therefore, DP
increases robustness against poisoning, but it cannot fully prevent it.

4. Applicability of CRPA

Previous work has shown that the CRPA can be highly
effective. However, we argue that its success strongly depends on
(a) the targeted classes, (b) the underlying data distribution, and
(c) the presence of countermeasures. In the following, we discuss
the state of research and the remaining research gaps that our
work addresses in these three areas.

a) Class-Specific Vulnerability: Selecting a class combination for
the CRPA affects the difficulty of reconstructing a sample and the
success of the poisoning attack. This can be shown for both
attacks. A well-known phenomenon called mode collapse
shows that a GAN tends to use the simplest solution of
producing samples that belong to only a single or very few
classes [20]. When dealing with classes containing multiple
sample variations, such as a class with multiple dog breeds, the
GAN may collapse into generating only a single variant or
breed of a specific class. This shows that a GAN tends to learn
only the simplest representation of its respective task.

Regarding poisoning attacks, research has shown that their
effectiveness depends on the specified class targeted for the attack
[21]. This is the case because a mislabeled sample X might be
more likely to be misclassified as class A than as class B. The
likelihood that a sample from class X is misclassified as target
class B depends on several factors, such as feature similarity,
overall class similarity, and the distribution of the remaining
classes. Despite that, it can be observed that attacks on certain
classes tend to be more effective than others. The number of
possible combinations that the attack can choose from to
reconstruct and poison the data increases with the number of
available classes. Furthermore, the effect of each combination is
different for each dataset. Thus, it is not possible to answer the
question of which combinations are most successful in general,
but only within each dataset. Therefore, we focus on studying the
effects of all combinations of the MNIST and FMNIST datasets.
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Although the related studies of Zhang et al. use the same datasets [6,
7], they do not explain how they chose their combinations. It is
possible that they picked them randomly or selected those
yielding better results. Tolpegin et al. [12] did indeed explain
that they look into how likely two samples were misclassified to
choose the attack. Nevertheless, their selection does not seem to
correlate with the misclassification results. Therefore, a study
exploring more combinations could provide valuable insights
into the problem. To shed light on this open question, we study
the success of the CRPA for each possible class combination in
the MNIST and FMNIST datasets.

b) Class Distribution Influence: InMLandFL, the performance of
a trained model strongly depends on the underlying training data
distribution. A strong factor is the class balance of the
underlying dataset [9]. Experiments in FL, as well as its
attack scenarios, are mostly based on a balanced data
distribution. However, in many real-world scenarios, the
distribution of classes is unbalanced [11]. GANs tend to
produce samples from variations that are more often
represented in a dataset [22]. For example, when training a
GAN on a dataset that includes pictures of cats from different
breeds (variations), it is more likely to produce samples of
those breeds that are more frequent in the dataset. Thus, an
unbalanced variation within a dataset or a specific class leads
to fewer variations in the generated samples. In other words,
it follows that producing samples of more frequently
represented classes or variations is easier.

The class distribution strongly influences how accurate the
global model is in learning to classify each class. A more
balanced distribution thereby leads to a more accurate prediction
because the local models are not skewed towards the underlying
training data. The more unbalanced the local training data
becomes, the more skewed toward the majority class the
resulting model will be. This will also lead to a skew in the
global model when aggregating the local models. Consequently,
data distribution directly influences the effectiveness of the
targeted poisoning attack. The adversarial participant tries to
trick the global model into misclassifying a class G as a class T.
It does so by mislabeling the local data accordingly and thus
teaches it a wrong classification task on purpose. This results in
an artificially skewed model, which is then aggregated with
other models, which may also be skewed due to the unbalanced
data distribution. This way the artificial skew of the adversarial
model is influenced by the class distribution.

The CRPAs presented in the related work [6, 10] only consider a
static data distribution, which is a balanced distribution across
participants. As the effects of a class imbalance are well-known in
FL, the exploration of the attack under a variety of such scenarios
seems highly relevant. We fill this gap by focusing on how class
distributions among participants affect the CRPA.

c) Effectiveness of DP: While DP was explored by Hitaj et al. [10],
its effectiveness was only investigated for the reconstruction side of
the attack and within a limited set of scenarios. Under the CRPA,
DP can also be effective as a defense against the poisoning attack.
This is because DP canmake the GANgenerate samples with more
noise, which in turn could reduce their effectiveness in poisoning
the model. This could result from missing key features in the
generated samples. Additionally, unbalanced distribution
scenarios remain underexplored in this regard. For this reason,
we aim to explore how effective DP can be in this expanded set
of scenarios.

5. Experimental Setup

This section introduces the experimental setup used tomeasure the
influence of class selection, class distribution, andDPon theCRPA.We
also describe the framework and settings used for the experiments.

5.1. Datasets and models

For our study, we have executed experiments on theMNIST [23]
and Fashion MNIST (FMNIST) datasets [24]. Both include grayscale
images of ten different classes with a resolution of 28 × 28 pixels. The
MNIST dataset features handwritten numbers from 0 to 9. The
FMNIST dataset features images of ten different fashion objects of
the following categories: t-shirt/top, trouser, pullover, dress, coat,
sandal, shirt, sneaker, bag, and ankle boot. Both datasets are
divided into a set for training and another set for testing, each
combination featuring 60,000 and 10,000 samples. To achieve a
balanced class distribution in the MNIST dataset, each class is cut
down to the size of 5,000 samples. For better comparability, the
same is done for the FMNIST dataset, although it already has a
balanced distribution. As a result, there are a total of 50,000
samples in each training set featuring 5,000 samples per class. To
show the effects of class selection, class distribution, and DP on the
CRPA, we utilized the open-source implementation provided by
Jaskiee1. It utilizes the Keras library [25] and is based on the initial
reconstruction attack proposed by Hitaj [10]. We extended the
implementation to generate and poison arbitrary classes, create
alternative data distributions, and apply DP mechanisms during the
training process by leveraging the TensorFlow Privacy library [26].

Executing FL with the reconstruction attack requires two neural
networks with distinct roles. The first network is trained and shared
in the FL, serving as both the global model and discriminator. The
second network, located at the adversarial client, reconstructs
images of other classes and is called the generator. The
architecture of both models is specified in Figure 2.

We provide the full implementation of our experiments by
means of a Git repository on GitHub2. We invite readers to
explore the code to gain deeper insights, replicate our findings, or
extend the research through additional experiments.

5.2. Experiment settings

Wehave carried out three experiments, each consisting of multiple
FL runs with a different class combination, class distribution, or the
application of DP. For better comparability, each experiment builds
on the results of the previous one under different conditions.

The experiments are compared by calculating theAAA, denoted
as A, across the entire training period of an experiment. In this
approach, samples of the class G are generated and mislabeled as
a target class T. The attack accuracy A is the number of correctly
misclassified samples nGT from class G as T, divided by the total
number of samples in G, denoted as NG. It is calculated using the
global model wr for each global training round r.

We calculate the AAA values for various class combinations,
denoted A G

T , across all global training rounds R, as shown in
Equation (1). This is done because the attack accuracy is not strictly
increasing but fluctuating during the training process (depicted in
Figure 3). We assume that the exchange of weights leads to an
alternating learning and unlearning cycle, resulting in this pattern.

1https://github.com/Jaskiee/GAN-Attack-against-Federated-Deep-Learning
2https://github.com/fed-crpa/fl_crpa
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A G
T ¼ 1

R

XR�1

r¼0

nGT
NG with wr (1)

Each run is executed three times. Then, both A and the standard
deviation σ are calculated across all runs, following a similar pro-
cedure to that of Tolpegin [12]. When interpreting the AAA, the
worst case occurs when the attack accuracy switches between 0
and 1.0 in each training round, similar to a sawtooth pattern. In such
a pattern, an average of 0.5 is considered a good result, since the
maximum achievable mean is 0.5.

5.3. Vulnerability of class combinations

To answer the question of whether all classes are equally
vulnerable to the CRPA, we tested all possible combinations.
Typically, attackers must decide which combination of
reconstruction and target poisoning classes to attack. We conducted
FL experiments with 10 participants, where each class’s samples
were exclusively assigned to one participant. A single adversarial
participant then executed the attack on the specified combination,
ensuring that this participant held neither samples of the generator
class G nor of the target class T. Each FL run was performed for all
possible combinations over 300 global training rounds until the

generated images stopped improving in quality, and no further
improvement in the attack accuracy overlineA was achieved. This
yielded a total of 10� 10� 10 ¼ 90 combinations, excluding cases
where the same class was used for both generation and poisoning.

5.4. Class distribution influence

We assess how the underlying class distribution affects theAAA
by examining various distribution scenarios. Classes are distributed
among the 10 participants according to the Dirichlet distribution par-
ameterized by α [9]. A distribution value of 0.0 indicates a com-
pletely isolated distribution, while higher values correspond to
more balanced distributions determined by the Dirichlet parameter
α. Specifically, a distribution value of 0.0 denotes a fully unbalanced
setting, where each client holds samples from only one class, as in the
previous experiment. Higher distribution values correspond to a
more balanced class distribution. To ensure that the adversarial par-
ticipant held no samples from the generator classG or the target class
T, we sampled repeatedly from the distribution and selected only
those meeting this condition. We adopted the distribution values
α ¼ 0:0; 0:05; 0:1; 0:2; 0:5; 1:0; 10:0f g from Hsu’s approach
[27], covering both balanced and unbalanced distributions.

We repeated the FL runs for three combinations: the least
vulnerable, the most vulnerable, and a moderately vulnerable one.
Thus, we selected the combinations with the lowest and highest A
values, as well as the one closest to the mean A from each dataset.
We evaluated each of the three combinations using all seven distri-
bution values, yielding meaningful insights into how data distribu-
tion influences CRPA across three distinct vulnerability levels.

5.5. Application of DP

We evaluated the influence of DP by applying it at the record
level, following the approach of Hitaj et al. [10]. In our
implementation, we used the DP-SGD optimizer from TensorFlow
Privacy [26]. Based on the official documentation, we configured
the following parameters:

1) The noise_multiplier parameter was reduced from 1.3 to 0.3 to
ensure FL convergence by strongly reducing the applied noise.

2) The num_microbatches parameter was reduced from its default
value of 250 to 1, ensuring DP is applied at the record level
rather than across a set of gradients.

3) The l2_norm and learning_rate parameters remained
unchanged, as they do not directly affect the privacy
guarantee. According to the documentation, their respective
values are 1.5 and 0.25.

Figure 3
Attack accuracy for an experiment performed on the MNIST
dataset, showing fluctuations over time. The exponentially

weighted moving average (EMA) indicates a steady increase in
attack accuracy throughout the training process

Figure 2
Global (discriminator) model architecture (left) and generator model architecture (right), derived from the Keras model summary
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We repeated the previous experiments with DP applied, using
distribution values of 0.0 and 10.0. These α values were chosen to
evaluate DP’s effectiveness in both unbalanced and balanced class
distributions.

6. Results and Discussion

To shed light on the effectiveness of the CRPA, we present and
discuss the results of multiple experiments in this section. First, we
assess the vulnerability of class combinations for both datasets.
Second, we examine the influence of different class distributions on
theCRPAsuccess. Third,we analyzewhetherDPcanprevent theCRPA.

6.1. Vulnerability of classes

An attacker must decide which combination of reconstruction
class and target poisoning class to select for the CRPA. To
determine whether all classes are equally vulnerable to the CRPA,
we compare the AAA of all combinations, as explained in
Section 5. In the following, the term A 4

9 denotes the AAA of a FL
run that generates samples of class 4, mislabels them with label 9,
and has a standard deviation of σ4

9. The experiments are limited to
the MNIST and FMNIST datasets, as no general assumption can
be made for all datasets. However, they provide a solid methodology
that can be extended for further experiments on other datasets.

Figure 4 presents the results using a combination matrix showing
the AAA for all combinations of the MNIST and FMNIST datasets.
The y-axis represents the generator label, while the x-axis denotes
the poisoned label. The higher theAAA, the more successful the attack
on the corresponding label combination. Reconstructing and poisoning
the same label does not result in poisoning. Therefore, these combina-
tions are omitted, and themain diagonal is always zero. AnAAA of 0:5
is considered a very good result in our experiments, as explained in
Section 5. We do not delve into the details of each specific FL run
but instead highlight the most important findings.

First, we discuss the results for the MNIST dataset in the
combination matrix on the left of Figure 4. It shows that the

attack’s effectiveness ranges from very successful, with a
maximum AAA of 0:51, to moderately effective, with a minimum
AAA of 0:16. The mean AAA for all runs is 0:33, with a standard
deviation of 0:03, indicating low fluctuation in attack accuracy across
different runs. The three best-performing class combinations are
A 4

9 ¼ 0:51,A 7
9 ¼ 0:46, andA 4

8 ¼ 0:44. The three combinations with
the lowest performance are A 0

1 ¼ 0:16, A 9
0 ¼ 0:19, and A 9

1 ¼ 0:2.
The two worst-performing combinations both involve class 9 as
the generator class, which might suggest that it is highly vulnerable
to generator attacks. However, this assumption does not hold, as the
row for class 9 does not consistently show significantly lower values.
Only four combinations involving generator class 9 show relatively
low values, while three others are close to the mean and the remain-
ing combinations perform well.

The findings for the FMNIST dataset are similar to those of the
MNIST dataset. They are depicted on the right of Figure 4, showing
that the attack’s effectiveness ranges from extremely successful, with
a maximum AAA of 0:55, to minimally effective, with the lowest
AAA of 0:07. The mean AAA for all runs is 0:30, with a standard
deviation of 0:02, indicating low fluctuation in attack accuracy
across different runs. The three best-performing combinations are
A 7

5 ¼ 0:55,A 7
9 ¼ 0:54, andA 0

5 ¼ 0:52. Twoof the best combinations
involve generator class 7, but the remaining seven combinations in the
row are very close to the mean, indicating no particular vulnerability.
The three combinations with the lowest performance are A 6

7 ¼ 0:07,
A 6

0 ¼ 0:08, and A 6
5 ¼ 0:07. These combinations all involve class 6

as the generator class, suggesting that it might be highly vulnerable
to generator attacks. However, this assumption does not hold, as the
row for class 6 does not consistently show significantly lower values.

Generally, no significant row or column pattern indicating a
particularly vulnerable or resistant generator or poisoning class
can be observed in either combination matrix. One might assume
that the combinations are generally symmetrical and that the
generator and poisoning classes can be interchanged to achieve
similar or equal AAA. However, this is not the case, as many combi-
nations achieve significantly different AAA values compared to their
mirrored counterparts. For example,A 4

9 performs significantly better

Figure 4
Average attack accuracy (AAA) for the combined reconstruction and poisoning attack (CRPA) across all combinations of generator
and poisoning labels in the MNIST (left) and FMNIST (right) datasets. Each class in the datasets is assigned to a single participant,

resulting in a total of ten participating clients over 300 global training rounds
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than A 9
4. We believe that the attack’s success might depend on

whether the reconstructed image possesses unique features compared
to the target image. This could hinder the attack, as honest updates
might detect features that nullify its effect.

To compare the attack’s success on the MNIST and FMNIST
datasets, the histogram in Figure 5 shows the distribution of AAA
values for all tested combinations, as depicted in Figure 4. The attack
onMNIST shows a pronounced peak at its mean value of 0:33, with a
relatively even distribution around it, skewed toward higher values.
A standard deviation of 0:07 indicates a stable distribution of values.

Attack accuracies range from 0:2 to 0:45, excluding a single outlier
with an accuracy above 0:5. When the outlier is excluded, the
smoothed distribution remains centered around the mean but is
shifted toward higher average accuracies.

In contrast, attack accuracies on FMNIST are more dispersed
around the mean of 0:3, as indicated by a high standard deviation
of 0:13. FMNIST attack accuracies range from a minimum AAA
of 0:0 to values exceeding 0:55. Notably, ten attacks achieved very
low AAA values below 0:1, while ten combinations recorded excep-
tionally high AAA values above 0:45. Excluding the MNIST outlier,
the top FMNIST attacks significantly outperform the best MNIST
attacks. Furthermore, FMNIST exhibits extreme cases, ranging from
minimal success to high susceptibility to the attack. This comparison
highlights the dependency of dataset vulnerability on the chosen
attack combination in both cases.

In conclusion, the attacks on MNIST consistently succeed in
poisoning the central model. In contrast, attacks on FMNIST are
more likely to perform significantly better or worse than their
respective mean AAA. This demonstrates that the attack’s success
heavily depends on the dataset and classes selected for poisoning.

6.2. Class distribution influence

We conducted the CRPA using various class distributions to
illuminate their effect on both the MNIST and FMNIST datasets.
The selected attack combinations include those with the highest,
lowest, and closest-to-mean AAA values. When selecting the class
distribution, it is ensured that the attacking client holds no samples
of the attacked generator class. Figure 6 presents the comparison
for both datasets, with the MNIST attack results on the left and
the FMNIST attack results on the right. The AAA indicates the
CRPA’s success for tested combinations across distributions of
α ¼ 0:0; 0:05; 0:1; 0:2; 0:5; 1:0; 10:0f g as explained in Section 5.

The experiments with the MNIST and FMNIST datasets
reveal a clear trend of decreasing AAA with a more balanced data

Figure 5
The histogram of the average attack accuracy (AAA)
taken from the experiments in Figure 2. It shows that
the success of the attacks is distributed around their

respective mean for both datasets

Figure 6
Results of executing the CRPA with different data distributions generated using the Dirichlet distribution

for the MNIST (left) and FMNIST (right) datasets
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distribution, as shown in Figure 6. Attacks with a distribution value
of 0:05 already exhibit a significant decrease in AAA compared to a
distribution value of 0:0, dropping below 0:1. Subsequent distribu-
tions yield negligible AAA below 0:04.

Although the AAA value for the combination A 7
5 in the

FMNIST attacks does not strictly decrease for every increment of
the distribution value, the results clearly indicate that a more bal-
anced class distribution leads to less attack accuracy. This irregular-
ity is observed at distribution values of 0:2, 0:5, and 10:0, which show
an increase compared to preceding distribution values. We assume
that this outlier results from the specific class distribution among par-
ticipants. The presence or absence of specific class samples, particu-
larly for the attacking client but also the other clients, can influence
the success of the attack. However, it remains unclear how the pres-
ence or absence of specific class samples affects the success of the
CRPA. Despite the outliers, the \\overline chart clearly illustrates a
significant reduction in AAA as the distribution value increases.

In conclusion, a clear trend emerges toward less successful
poisoning attacks with more balanced data distributions, as

observed in both datasets. The diminishing success of the attack is
not attributable to the results of the reconstruction attack. The
quality of the recreated samples remains consistent or even
improves slightly with more balanced distributions across all
combinations, as depicted in Figure 7. We conclude that the
CRPA’s weakness stems from the poisoning attack. Our
experiments demonstrate that a more balanced data distribution
enhances the reconstruction attack with GANs but hinders the
success of the poisoning attack. This occurs because the skewed
representation of the poisoned model update is offset by honest
updates. This effect is particularly evident when honest updates
identify features that enable the model to differentiate between the
targeted and poisoned classes.

6.3. DP

For comparison, we repeated the experiments using data
distributions of 0:0 and 10:0while applying DP. As a brief reminder,
an alpha value of 0:0 represents a fully isolated distribution, while a

Figure 7
Reconstructed images generated by executing the CRPA on the MNIST (top) and FMNIST (bottom) datasets across different data

distributions. Columns represent distribution values from left to right: 0.0, 0.05, 0.1, 0.2, 0.5, 1.0, and 10.0

Figure 8
Results of executing the CRPA with differential privacy for the MNIST (left) and FMNIST (right) datasets.

The results show that the effect of the CRPA is practically negligible due to the application of DP
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value of 10:0 indicates that all classes are present across all partici-
pants. The DP settings remain the same as described in Section 5.

Figure 8 presents the resulting AAA values from experiments
involving DP for both datasets. The AAA values for the two most
vulnerable combinations in both datasets reach only 0:07 and 0:09
for a distribution value of 10. Moreover, these very low and \\over-
lineely perceptible values might result from random misclassifica-
tions, given that training with DP achieves test accuracies of only
0:6 for a distribution value of 10. The AAA values for all other com-
binations and distributions in both datasets remain below 0:04 and
are therefore insignificant. Consequently, the impact of the attack
under these conditions can be considered negligible.

The poor performance of the attacks stems from the failed
reconstruction attacks in both datasets. Applying DP results in the
generation of images that appear as noisy black-and-white pixel
patterns. While these images are not interpretable by humans, they
might be interpretable by the model. This possibility arises
because the generator could learn to produce only those features
relevant to the model’s classification process, even if they are not
human-readable. This seems to be the case for the best-performing
combinations, which exhibit significant spikes in attack accuracy
and occasionally sustain short periods of consistent poisoning
success. Despite this limited success, the attack was not sufficient
to establish a persistent misclassification.

To conclude, the success of the CRPA is significantly weakened,
or even prevented, by applying DP in our setup. This occurs due to the
failure of the reconstruction attack using the GAN. The reconstructed
samples did not, or only partially, include the features necessary to
deceive the central model, appearing instead as random noise. It is
worth noting that this result is achieved without rendering the
training process ineffective. Applying DP reduces accuracy from an
average of 99% to 89% for a distribution value of 10 and from an aver-
age 88% to 45% for a distribution value of 0:0. While this represents a
significant performance reduction, Hitaj et al. reported that sample
reconstruction using DP was only prevented when the model entirely
failed to learn any patterns [10]. Our work demonstrates that DP can
stop the reconstruction attack while still allowing the training process
to continue. However, although this may prevent the reconstruction of
human-identifiable images and thereby mitigate privacy leakage, it
does not always prevent the reconstructed images from successfully
poisoning the global model.

7. Conclusions and Future Work

Previous research has demonstrated that an adversarial participant
can CRPA to generate samples of an arbitrary class G and poison the
global model into misclassifying them as an arbitrary class T. In more
realistic multi-class classification scenarios, where numerous
combinations of G and T exist, data distribution among participants
varies, and privacy-enhancing techniques like DP are commonly
applied, the characteristics of CRPA have not yet been thoroughly
studied. Our work addresses this gap by providing insights to better
manage the existing security threats posed by CRPA.

To this end, we found that (I) the choice of target classes
significantly affects the success of CRPA. We conducted experiments
on the MNIST and FMNIST datasets, isolating each class to a single
client, to evaluate the success of CRPA across all possible
combinations. The results demonstrated that class selection affects
the quality of attack outcomes. No consistent pattern indicating a
general vulnerability among class types was found, suggesting that
each combination exhibits unique vulnerability characteristics.

The poisoning attack inherently skews the central model toward
incorrect class predictions. We demonstrated that (II) a more balanced

class distribution reduces the success of CRPA. This occurs because a
more balanced distributionmakes itmore difficult to deceive the global
model with skewed representations of poisoned model updates. In
contrast, the quality of reconstructed samples improves with a more
balanced data distribution.

DP is a privacy-enhancing technique frequently applied in FL to
safeguard training data privacy. We found that (III) DP prevents
CRPA by disrupting sample reconstruction. Contrary to previous
findings suggesting that DP is ineffective against CRPA, our
experiments successfully disrupted sample reconstruction and,
consequently, the poisoning attack.

Overall, both the aforementioned results and the methodology
presented in the paper contribute to a better understanding of how
reconstruction and poisoning attacks operate in more realistic
scenarios. These findings also open several promising research
directions. For instance, future research could investigate the
applicability of novel methods for reconstruction attacks.
Additionally, future research could focus on more advanced
poisoning attacks and alternative defenses designed to maintain
model accuracy. From our perspective, we identified several
specific research directions. For instance, to ensure comparability,
the number of mislabeled samples assigned to the adversarial client
remained constant throughout the experiments. Consequently, we
did not examine how the ratio of mislabeled samples affects local
and global data distributions. However, this ratio likely influences
the success of the poisoning attack. Investigating the optimal ratio,
particularly in scenarios where clients hold varying amounts of data,
could provide valuable insights into the attack’s applicability. An
extreme scenario could involve testing the impact of a free-rider
attack (i.e., a client that does not contribute training data but solely
focuses on CRPA) on federated training. Moreover, the total
number of class samples is evenly distributed among all
participants, and each participant holds the same number of data
samples. Examining how an unequal distribution of class and data
samples per client affects CRPA could provide further insights.

While we have demonstrated that DP can prevent the
reconstruction of human-identifiable images, this does not necessarily
counter CRPA. Despite appearing as random noise, the reconstructed
samples might still be suitable for poisoning, as they sufficiently
represent the model’s internal perception of a class. Although some
defenses can be implemented to mitigate such attacks [16], a
sufficiently unique target class could still make it challenging for the
server to identify the attacker. The primary defense lies in preventing
the reconstruction attack altogether. However, preventing the
reconstruction attack is only feasible through the application of DP.
This is because the attacker cannot be prevented from using the
global model received during the FL process to train a GAN and
extract information from it. Future research could optimize CRPA by
shifting the focus from reproducing human-identifiable samples to
specifically targeting the poisoning of the central model. Additionally,
research could focus on optimizing settings that balance model
quality and defense against reconstruction attacks by considering a
range of DP parameter values. Furthermore, this approach could be
combined with optimization algorithms to achieve the best possible
trade-off between accuracy and security.

Recommendations

Our work aims to equip practitioners with deeper insights into
potential threats in FL. New threats may emerge within FL,
potentially compromising data privacy – the very issue FL was
designed to address. Therefore, practitioners implementing FL
should be aware of its inherent limitations and potential risks. We
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recommend assessing the criticality of data privacy and applying
appropriate security mechanisms during training if necessary.
However, implementing such mechanisms may reduce model
performance. Thus, a balance between security and performance
must be carefully maintained throughout the process.

Funding Support

This work was supported by the German Federal Ministry of
Education and Research under Grant 16KIS1142K (project KIWI)
as well as the European Regional Development Fund Interreg
Upper Rhine initiative (project aura.ai).

Ethical Statement

This research does not involve any studies with human or
animal subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

The data supporting the findings of this study are openly
available in the MNIST Database at http://yann.lecun.com/exdb/
mnist/ and onGitHub at https://github.com/zalandoresearch/fashion-
mnist.

Author Contribution Statement

Christian Becker: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Resources, Data curation,
Writing – original draft, Writing – review & editing, Visualization.
José Antonio Peregrina: Conceptualization, Methodology,
Resources, Writing – review & editing, Visualization, Supervision.
Frauke Beccard: Conceptualization, Methodology, Resources,
Writing – review & editing, Supervision, Project administration,
Funding acquisition. Marisa Mohr: Conceptualization,
Methodology, Resources, Writing – review & editing, Supervision,
Project administration, Funding acquisition. Christian Zirpins:
Conceptualization, Methodology, Resources, Writing – review &
editing, Visualization, Supervision, Project administration, Funding
acquisition.

References

[1] Gong, H., Cheng, S., Chen, Z., Li, Q., Quilodrán-Casas, C., Xiao,
D.,&Arcucci,R. (2022).Anefficient digital twin basedonmachine
learning SVD autoencoder and generalised latent assimilation for
nuclear reactor physics. Annals of Nuclear Energy, 179, 109431.
https://doi.org/10.1016/j.anucene.2022.109431

[2] Gong, H.-L., Li, H., Xiao, D., &Cheng, S. (2024). Reactor field
reconstruction from sparse and movable sensors using Voronoi
tessellation-assisted convolutional neural networks. Nuclear
Science and Techniques, 35(5), 43. https://doi.org/10.1007/
s41365-024-01400-w

[3] Bouacida, N., & Mohapatra, P. (2021). Vulnerabilities in
federated learning. IEEE Access: Practical Innovations,
Open Solutions, 9, 63229–63249. https://doi.org/10.1109/
ACCESS.2021.3075203

[4] Zhang, J., Li, M., Zeng, S., Xie, B., & Zhao, D. (2021). A
survey on security and privacy threats to federated learning.

In 2021 International Conference on Networking and
Network Applications, 319–326. https://doi.org/10.1109/
NaNA53684.2021.00062

[5] Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., & Qi, H.
(2019). Beyond inferring class representatives: User-level
privacy leakage from federated learning. In Proceedings:
IEEE INFOCOM, 2512–2520. https://doi.org/10.1109/
INFOCOM.2019.8737416

[6] Zhang, J., Chen, B., Cheng, X., Binh, H. T. T., & Yu, S. (2021).
PoisonGAN: Generative poisoning attacks against federated
learning in edge computing systems. IEEE Internet of Things
Journal, 8(5), 3310–3322. https://doi.org/10.1109/JIOT.2020.
3023126

[7] Zhang, J., Chen, J., Wu, D., Chen, B., & Yu, S. (2019). Poisoning
attack in federated learning using generative adversarial nets. In
2019 18th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications/13th
IEEE International Conference on Big Data Science and
Engineering (TrustCom/BigDataSE), 374–380. https://doi.org/
10.1109/TrustCom/BigDataSE.2019.00057

[8] Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., : : : ,
& Vincent Poor, H. (2020). Federated learning with differential
privacy: Algorithms and performance analysis. IEEE
Transactions on Information Forensics and Security, 15,
3454–3469. https://doi.org/10.1109/TIFS.2020.2988575

[9] Li, Q., Diao, Y., Chen, Q., & He, B. (2022). Federated learning
on non-IID data silos: An experimental study. In 2022 IEEE
38th International Conference on Data Engineering,
965–978. https://doi.org/10.1109/ICDE53745.2022.00077

[10] Hitaj, B., Ateniese, G., & Perez-Cruz, F. (2017). Deep models
under the GAN: Information leakage from collaborative deep
learning. In Proceedings of the ACM Conference on
Computer and Communications Security, 603–618. https://
doi.org/10.1145/3133956.3134012

[11] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M.,
Bhagoji, A. N., : : : , & Zhao, S. (2021). Advances and open
problems in federated learning. Foundations and Trends® in
Machine Learning, 14(1–2), 1–210. https://doi.org/10.1561/
2200000083

[12] Tolpegin, V., Truex, S., Gursoy, M. E., & Liu, L. (2020). Data
poisoning attacks against federated learning systems. In L.
Chen, N. Li, K. Liang & S. Schneider (Eds.), Computer
security: ESORICS 2020 (pp. 480–501). Springer International
Publishing. https://doi.org/10.1007/978-3-030-58951-6_24

[13] Ziegler, J., Pfitzner, B., Schulz, H., Saalbach, A., & Arnrich, B.
(2022). Defending against reconstruction attacks through
differentially private federated learning for classification of
heterogeneous chest X-ray data. Sensors, 22(14), 5195.
https://doi.org/10.3390/s22145195

[14] Zhang, X., & Luo, X. (2020).Exploiting defenses against GAN-
based feature inference attacks in federated learning, 1–16.

[15] Bhagoji, A. N., Chakraborty, S., Mittal, P., & Calo, S. (2019).
Analyzing federated learning through an adversarial lens. In
Proceedings of the 36th International Conference on
Machine Learning, 634–643. https://proceedings.mlr.press/
v97/bhagoji19a.html

[16] Gupta, A., Luo, T., Ngo, M. V., & Das, S. K. (2022). Long-
short history of gradients is all you need: Detecting
malicious and unreliable clients in federated learning.
Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 13556 LNCS(Ml), 445–465. https://doi.org/
10.1007/978-3-031-17143-7_22

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2025

11

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://doi.org/10.1016/j.anucene.2022.109431
https://doi.org/10.1007/s41365-024-01400-w
https://doi.org/10.1007/s41365-024-01400-w
https://doi.org/10.1109/ACCESS.2021.3075203
https://doi.org/10.1109/ACCESS.2021.3075203
https://doi.org/10.1109/NaNA53684.2021.00062
https://doi.org/10.1109/NaNA53684.2021.00062
https://doi.org/10.1109/INFOCOM.2019.8737416
https://doi.org/10.1109/INFOCOM.2019.8737416
https://doi.org/10.1109/JIOT.2020.3023126
https://doi.org/10.1109/JIOT.2020.3023126
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00057
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00057
https://doi.org/10.1109/TIFS.2020.2988575
https://doi.org/10.1109/ICDE53745.2022.00077
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1561/2200000083
https://doi.org/10.1561/2200000083
https://doi.org/10.1007/978-3-030-58951-6_24
https://doi.org/10.3390/s22145195
https://proceedings.mlr.press/v97/bhagoji19a.html
https://proceedings.mlr.press/v97/bhagoji19a.html
https://doi.org/10.1007/978-3-031-17143-7_22
https://doi.org/10.1007/978-3-031-17143-7_22


[17] Zhu, L., & Han, S. (2020). Deep leakage from gradients. Lecture
Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 12500
LNCS(NeurIPS), 17–31. https://doi.org/10.1007/978-3-030-
63076-8_2

[18] Jagielski, M., & Oprea, A. (2021). Does differential privacy
defeat data poisoning? ICLR 2021.

[19] Ma, Y., Zhu, X., & Hsu, J. (2019). Data poisoning against
differentially-private learners: Attacks and defenses. In
International Joint Conference on Artificial Intelligence,
4732–4738. https://doi.org/10.24963/ijcai.2019/657

[20] Saad, M. M., O’Reilly, R., & Rehmani, M. H. (2024). A survey
on training challenges in generative adversarial networks for
biomedical image analysis. Artificial Intelligence Review,
57(2), 19. https://doi.org/10.1007/s10462-023-10624-y

[21] Zhao, B., & Lao, Y. (2022). Towards class-oriented poisoning
attacks against neural networks. In Proceedings: 2022 IEEE/
CVF Winter Conference on Applications of Computer Vision,
2244–2253. https://doi.org/10.1109/WACV51458.2022.00230

[22] Bau, D., Zhu, J. Y., Wulff, J., Peebles, W., Zhou, B., Strobelt,
H., & Torralba, A. (2019). Seeing what a GAN cannot generate.
In Proceedings of the IEEE International Conference on
Computer Vision, 4501–4510. https://doi.org/10.1109/ICCV.
2019.00460

[23] Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/
10.1109/5.726791

[24] Kayed, M., Anter, A., & Mohamed, H. (2020).
Classification of garments from fashion MNIST dataset
using CNN LeNet-5 architecture. In 2020 International
Conference on Innovative Trends in Communication and
Computer Engineering, 238–243. https://doi.org/10.1109/
ITCE48509.2020.9047776

[25] Ketkar, N. (2017). Introduction to Keras. In N. Ketkar (Ed.),Deep
learning with Python: A hands-on introduction (pp. 97–111).
Apress. https://doi.org/10.1007/978-1-4842-2766-4_7

[26] TensorFlow. (2024). Implement differential privacy with
TensorFlow privacy. (2022). Retrieved from: https://www.tenso
rflow.org/responsible_ai/privacy/tutorials/classification_privacy

[27] Hsu, T.-M. H., Qi, H., & Brown, M. (2019). Measuring the
effects of non-identical data distribution for federated visual
classification. arXiv Preprint:1909.06335.

How to Cite: Becker, C., Peregrina, J. A., Beccard, F., Mohr, M., & Zirpins, C.
(2025). A Study on the Efficiency of Combined Reconstruction and Poisoning
Attacks in Federated Learning. Journal of Data Science and Intelligent Systems.
https://doi.org/10.47852/bonviewJDSIS52023970

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2025

12

https://doi.org/10.1007/978-3-030-63076-8_2
https://doi.org/10.1007/978-3-030-63076-8_2
https://doi.org/10.24963/ijcai.2019/657
https://doi.org/10.1007/s10462-023-10624-y
https://doi.org/10.1109/WACV51458.2022.00230
https://doi.org/10.1109/ICCV.2019.00460
https://doi.org/10.1109/ICCV.2019.00460
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ITCE48509.2020.9047776
https://doi.org/10.1109/ITCE48509.2020.9047776
https://doi.org/10.1007/978-1-4842-2766-4_7
https://www.tensorflow.org/responsible_ai/privacy/tutorials/classification_privacy
https://www.tensorflow.org/responsible_ai/privacy/tutorials/classification_privacy
https://doi.org/10.47852/bonviewJDSIS52023970

	A Study on the Efficiency of Combined Reconstruction and Poisoning Attacks in Federated Learning
	1. Introduction
	2. Background
	2.1. FL
	2.2. Reconstruction attack
	2.3. Poisoning attack
	2.4. Combined reconstruction and poisoning

	3. Related Work
	3.1. Reconstruction attack in FL
	3.2. Data poisoning attacks on FL
	3.3. CRPA
	3.4. Defenses against reconstruction attacks
	3.5. Defenses against poisoning attacks

	4. Applicability of CRPA
	5. Experimental Setup
	5.1. Datasets and models
	5.2. Experiment settings
	5.3. Vulnerability of class combinations
	5.4. Class distribution influence
	5.5. Application of DP

	6. Results and Discussion
	6.1. Vulnerability of classes
	6.2. Class distribution influence
	6.3. DP

	7. Conclusions and Future Work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


