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Abstract: In this study, we examined the potential of integrating multivariate data analysis methods as a preliminary stage for machine
learning techniques to augment their predictive power. These methods encompass principal component analysis, multiple
correspondence analysis, and non-linear categorical principal component analysis with optimal scaling. The machine learning approaches
evaluated include Support Vector Machines, Stochastic Gradient Descent, Naïve Bayes, K-Nearest Neighbor, Decision Trees, Random
Forests, Adaptive Boosting, and Multinomial Logistic Regression. We conducted experiments using data from a nationwide survey,
comprising a total sample of 42,593 adolescents who answered more than 155 questions related to their eating habits. The dependent
variable, body mass index (BMI), was measured and employed in the analysis as both a quantitative and qualitative variable. The index
values were initially classified based on the World Health Organization’s recommendations. The results indicated that predictions are
more reliable when utilizing the BMI as a qualitative variable within a four-class structure. Implementing a multivariate data analysis
strategy before applying machine learning algorithms not only conserves time but also facilitates the selection of the most effective
predictive model. Although dimensionality reduction may not consistently enhance the models’ predictive abilities, it contributes to the
“interpretability” of the results.

Keywords: multivariate data, principal component analysis, categorical principal component analysis, machine learning algorithms, SVC,
random forest classifier, multinomial logistic regression

1. Introduction

Data analysis (Analyse des Données in French) provides an
alternative methodological and philosophical approach to
statistical inference. It includes three main families of methods
[1, 2]: (a) the correspondence analysis (CA) or Analyse Factoriel
des Correspondances—AFC (bivariate and multivariate), (b)
principal component analysis (PCA), and (c) hierarchical cluster
analysis. A distinctive characteristic of these methods is the
symmetrical treatment of the variables, with no distinction made
between dependent and independent. The aim of these methods is
to reveal and describe latent structures potentially present in
multi-dimensional data tables; accomplished through dimension
reduction and transformation of the initial mathematical space that
represents the phenomenon under study. The new dimensions,

which are usually structured by complex relationships between
variables, are ultimately interpreted as new composite variables or
“factors”, “dimensions”, “components”, or “factorial axis”. A
crucial aspect of these methods is that they do not necessitate an a
priori assumption of the existence of some theoretical distribution
or assumption regarding the parameters of the population under
consideration.

Machine learning falls within the realm of computer science and
focuses on the development of algorithms that “learn” from collected
data utilizing prior knowledge and experience without being
programmed with explicit rules. The objective is to discover
patterns and relationships to make predictions or decisions. There
are three fundamental forms of machine learning [3]: (a)
supervised learning, in which the algorithm constructs a function
mapping given inputs (training set) to known desired outputs,
with the aim of generalizing the function to inputs with unknown
outputs, (b) unsupervised learning, where the algorithm constructs*Corresponding author: Nikolaos Papafilippou, Laboratory of Agronomy,
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a model for a set of inputs in the form of observations without
knowledge of the desired outputs, and (c) reinforcement learning
in which the algorithm learns an action strategy through direct
interaction with the environment. The first form is employed in
classification, prediction, and interpretation problems; the second
form in association analysis, clustering, and dimensionality
reduction problems; and the third form in planning problems, such
as controlling a robot’s movements.

When applying the algorithms, the data set is divided into a
subset for training (train_set), a subset for testing (test_set), and
sometimes also a subset for validation (cross_validation).
The model is trained on the training subset, and its predictive
ability is assessed using the testing subset [4–7]. We also
applied classes such as Standarscaler, GridSearch, Ada-
boosting, and pipeline to improve the algorithms’ prediction
accuracy.

Predicting health-related outcomes, such as body mass index
(BMI), is crucial for understanding and managing risks associated
with adolescent health [8, 9]. One approach to enhancing
prediction accuracy is through the integration of traditional data
analysis methods and machine learning techniques. This study
aims to explore how data analysis methods, typically employed in
the preparatory stage of machine learning (commonly known as
“data preprocessing”), can improve the performance of predictive
models. Despite the growing interest in applying machine learning
to health-related data, few studies have examined the synergy
between data analysis methods, such as CA or PCA, and machine
learning algorithms. This paper aims to fill that gap by focusing
on a specific health metric (BMI) and its relationship with dietary
habits, using a dataset of 140 food consumption frequencies
collected from adolescent students in Greece. The research
problem lies in predicting BMI with higher accuracy by
leveraging latent structures within the dietary data that could be
missed by conventional machine learning techniques alone. This
study proposes a hybrid methodology that combines dimension
reduction techniques from data analysis with supervised learning
algorithms.

The purpose of this study is to examine the potential of
incorporating data analysis methods during the data preparation
stage before applying machine learning algorithms, in order to
enhance their predictive capabilities. The expected results are that
data analysis, prior to the application of algorithms, can offer
significant advantages in prediction accuracy. For instance, if a
particular data analysis or statistical method provides a
satisfactory level of explanation for the variability of BMI, the
analysis can be concluded at that point without proceeding further
with machine learning algorithms.

This article is structured as follows: Section 2 provides a
detailed literature review, covering both the multivariate data
analysis methods and the machine learning algorithms evaluated.
The emphasis is placed on how data analysis methods
can enhance the preprocessing stage of machine learning.
In Section 3, we describe the research methodology, outlining
the research design, participant information, and the process of
integrating data analysis methods before machine learning
application, and present the results of the multivariate analysis
and the predictive accuracy of the machine learning algorithms.
The discussion in Section 4 focuses on the importance of
combining data analysis techniques in the preparatory stage,
particularly when a method successfully explains the variability
of BMI. Finally, in Section 5 we conclude with insights on the
potential impact of this approach.

2. Literature Review

2.1. The multivariate methods of analysis

The data analysis methods examined in this study include PCA
[1, 10, 11], multiple correspondence analysis (MCA) [1, 2, 12],
categorical principal component analysis with optimal scaling
(CATPCA) [2, 13], categorical regression with optimal scaling
(CATREG) [14], and chi-squared automatic interaction detection
(CHAID) [15].

PCA [11] is a statistical technique employed to identify patterns
and relationships in high-dimensional datasets. It involves
transforming the original data into a new coordinate system such
that the first coordinate axis (first principal component) accounts for
the maximum possible variance in the data, with subsequent axes
accounting for the maximum remaining variance. The primary
objective of PCA is to reduce data dimensionality, while preserving
as much of initial variation as possible. This is achieved by
identifying the principal components, which are linear combinations
of the initial variables, and projecting the data onto these
components. Typical steps for performing PCA include the following:

1) Standardize the data by subtracting the mean and dividing by the
standard deviation

2) Compute the covariance matrix of the standardized data [that is
equivalent to pair-wise correlation matrix (with Pearson’s r
correlation coefficients)]

3) Compute the eigenvectors and eigenvalues of the covariance
matrix

4) Sort the eigenvectors according to their corresponding
eigenvalues (in descending order) to obtain the principal
components

5) Project the data onto the principal components to obtain a new,
lower-dimensional representation.

MCA [1, 2] is a statistical technique used for analyzing
categorical data, serving as an extension of PCA for handling
categorical variables. MCA identifies patterns and relationships
among categorical variables by transforming the original data into
a new coordinate system. MCA involves creating a special
contingency table of categorical variables (the Burt Table) and
computing the chi-square distance between all pairs of categories.
The chi-square distance measures the similarity between two
categories, and this information is used to identify groups of
similar categories. Like PCA, MCA also identifies principal
components (or factorial axes) that explain the maximum possible
variance (inertia) in the data. The first principal component
accounts for the maximum inertia, the second for the maximum
remaining, and so on. MCA is useful for exploring the data
structure and identifying patterns and relationships among
categorical variables not evident from simple frequency tables.
Visualization of data using graphical representations (French plots
and biplots) can also aid in this process.

CATPCA [11] is another statistical technique for analyzing
categorical data, similar to MCA. CATPCA is an extension of
PCA that can simultaneously handle categorical variables
(nominal, ordinal) and scale variables. CATPCA is valuable when
dealing with large datasets containing numerous categorical and
scale variables, as it can help identify the most important features
and reduce noise in the data. It is also useful for visualization,
data compression, and feature extraction [11].

CATREG [14] is a statistical method used to analyze the
relationship between a categorical or scale-dependent variable and
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one or more continuous or categorical variables. CATREG uses
optimal scaling to transform categorical variables into scale ones
that can be used in regression analysis. This transformation is
achieved by assigning numerical values to each category of the
categorical variables using the alternating least squares algorithm.
CATREG is useful in situations where the relationship between
the dependent and independent variables is not linear or where
there are non-linear interactions between the independent
variables. The output of CATREG typically includes coefficients
for the independent variables, standard errors, and significance
levels. These coefficients can be used to interpret the relationship
between the dependent and independent variables.

CHAID [15] is a decision tree-based statistical technique used
for conducting exploratory data analysis and predictive models. It is
particularly suited for analyzing datasets with categorical (nominal or
ordinal) variables as both predictors and the target variable. CHAID
uses a recursive partitioning algorithm that iteratively splits the data
into subgroups based on the categories of predictor variables, aiming
to maximize the homogeneity (i.e., similarity) of the target variable
within each subgroup. The splitting is performed based on the chi-
squared statistic, which measures the independence between the
predictor and the target variable. The CHAID algorithm continues
to split the data into subgroups until certain stopping criteria, such
as a minimum sample size or a maximum number of levels, are met.

2.2. The machine learning algorithms

The machine learning algorithms applied in this study include
the support vector classifier (SVC), Stochastic Gradient Descent
(SGDClassifier), Naïve Bayes (GaussianNB), K-Nearest Neighbor
(KNN), Decision Tree Classifier, Random Forest Classifier, and
Logistic Regression Multinomial [4–6, 16].

2.2.1. Support vector machines (SVM)
SVM [17] is a machine learning algorithm that is commonly

used for classification and regression analysis. SVM is based on
the idea of finding the maximum margin hyperplane, which is the
line or plane that separates data points into different classes with
the maximum possible margin or distance between classes. In the
case of two-class classification problem, the SVM finds the
hyperplane that best separates the data into two classes. The
hyperplane is selected in a way that it maximizes the margin
between the two classes, which is the distance between the
hyperplane and the closest data points from each class. The data
points that are closest to the hyperplane are called support vectors.
In multi-class classification, multiple binary classifiers are trained,
one for each pair of classes. SVM can efficiently handle high-
dimensional data and data with high “noise”, as the maximum
margin approach helps to reduce the influence of noisy points.
Additionally, SVM can handle non-linearly separable data by
projecting it into higher dimensional space, where a linear
boundary can be found. This is achieved by using kernel
functions, which map the data to a higher dimensional space.

SVM can handle both linearly separable and non-linearly
separable data by using different types of kernel functions, such
as linear, polynomial, radial basis function (RBF), and sigmoid.
The choice of kernel function depends on the nature of the data
and the classification problem. The function maps input values to
output values based on Euclidean distances from a central point or
multiple central points in multi-dimensional space and is defined as:

f xð Þ ¼
X

m
i
ϕ kx � ci kð Þ;ϕ kx � ci kð Þ ¼ expð�γ kx � cik2Þ;

where x is the input vector, ci is the central vector, k � k is the Euclid-
ean distance between the input vector and the central vector, and γ is a
parameter that controls the shape of the decision boundary. A small
value of γ means a larger radius for the RBF kernel, resulting in a
smoother decision boundary and amodel more tolerant of the “noise”
and outliers. In contrast, a large value leads to a smaller radius for the
kernel, resulting in a more complex decision boundary that best fits
the training data, but is more prone to overfitting. Another kernel
function is the sigmoid, which maps each real value to a value
between 0 and 1, given by the relation:

σ xð Þ ¼ 1=ð1þ expð�xÞÞ;

where x is the input vector probabilities and binary
decisions.

Other parameters of the SVM algorithm [17], include class
weights, which accounts for class imbalances in the data by
assigning different weights to each class, the tolerance for
stopping criterion, which determines the minimum improvement
in the objective function required to continue the iterations and
the regularization parameter C, which determines the trade-off
between maximizing the margin and minimizing classification
error. A smaller C value results in a wider margin, which can lead
to more misclassifications, while a larger C value results in a
narrower margin, which can lead to overfitting. These parameters
can be adjusted using techniques such as Grid Search, Random
Search, or Bayesian optimization to find the combination that
yields the best performance on the dataset.

2.2.2. Decision tree
A decision tree is a supervised machine learning algorithm used

for classification and regression tasks. It constructs a tree-like model
of decisions and their possible consequences based on features of the
input data. Each node of the tree represents a decision based on a
feature or a combination of features, and each branch represents a
possible outcome or further decision. The leaves of the tree
represent the final decision or prediction. For classification trees,
the prediction is the class label, while for regression trees, it is a
continuous value. The tree structure provides a visual
representation of the decisions and relationships between the
features and the target variable. Creating a decision tree involves
choosing the feature to be split at each node and determining the
optimal split point. One of the main advantages of decision trees
is their ease of understanding and interpretation, as they can
handle both linear and non-linear relationships between attributes
and the target variable.

There are several algorithms for creating decision trees [18],
such as ID3 (Iterative Dichotomizer 3), C4.5 an improved version
of ID3, and CART (Classification and Regression Trees). The
choice of algorithm depends on the specific problem and the type
of data used. ID3 uses information gain as a criterion to choose
the best feature to split the data. The information gain is
calculated as the difference between the entropy of the parent
node and the weighted sum of the entropies of the child nodes.
C4.5 uses the gain ratio to separate the data, while CART
constructs binary trees by recursively dividing the data into two
subsets based on the value of a single feature and uses the Gini
index as a criterion for separating the data choosing the attribute
that minimizes its value.

The Gini index [19] is calculated as the probability that one case
of a data set is misclassified if it is assigned a class label based on the
class distribution of cases in the data set and is defined as:
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Gini ¼ 1� p1
2 � p2

2 � . . .� pk
2 ¼ 1�

X
k
1
p2i

where pi is the probability that the case belongs to the i class out of the
k of the data set. The Gini index ranges from 0 to 1, with a value of 0
indicating a perfectly clean data set (all cases belong to the same
class) and a value of 1 indicating a perfectly impure data set
(cases are evenly distributed across all classes). For example,
consider a dataset with two classes A and B, and let’s assume
70% (pA= 0.7) of examples belong to class A and 30% (pB= 0.3)
belongs to class B., So, Gini is calculated:

Gini ¼ 1� 0:72 þ 0:32ð Þ ¼ 0:42

Entropy [19] is a measure of the purity or uncertainty of a set of
examples in a decision tree or any other machine learning
algorithm. The entropy value ranges from 0 to 1, where 0
indicates that the set is completely pure (all examples have the
same category) and 1 indicates that the set is equally balanced
(half positive and half negative). A high entropy value indicates
high uncertainty or impurity in the ensemble, while a low entropy
value indicates low uncertainty or purity in the ensemble. The
entropy of a set S is defined as:

Entropy Sð Þ ¼ �
X

k
i¼1

�
pi � log2 pið Þ�;

where pi is the proportion of the samples in the node that belong to
class i and k is the number of classes. For the same example, entropy
is calculated as:

Entropy Sð Þ ¼ � pA � log2 pAð Þ þ pB � log2 pBð Þð Þ ¼
Entropy Sð Þ ¼ �ð0:7 � log2 0:7ð Þ þ 0:3 � log2 0:3ð ÞÞ ¼ 0:8813

Information gain [19] is a measure used in decision tree algorithms to
determine the best feature to split a dataset. The feature that provides
the highest information gain is selected as the splitting criterion.
Information gain is based on the concept of entropy, which is a
measure of the impurity or randomness of a set of examples. In
decision trees, entropy is calculated for each attribute, and the
attribute with the highest information gain is chosen as the next
split. The formula for information gain is:

IG S;Að Þ ¼ Entropy Sð Þ �
X

Svj j=jSjð Þ � Entropy Svð Þ;

where S is the current dataset being split, A is an attribute being
considered for the split, Sv is the subset of S where the value of
attribute A is v, |Sv| is the number of examples in subset Sv, |S| is
the total number of examples in S, Entropy(S) is the entropy of S,
Entropy(Sv) is the entropy of subset Sv.

Let’s assume we have a dataset S with 10 samples, 6 samples
belong to class A, and 4 samples belong to class B. The entropy of the
full dataset S is:

Entropy Sð Þ ¼ � pA � log2 pAð Þ þ pB � log2 pBð Þð Þ
¼ � 0:6 � log2 0:6ð Þ þ 0:4 � log2 0:4ð Þð Þ ¼ 0:971

Now suppose we split the data on an attribute A that results in two
subsets: S1 (5 samples), 4 class A and 1 class B, S2 (5 samples), 2
class A and 3 class B. Entropy for each subset and IG are
calculated as:

EntropyðS1Þ ¼ � 0:8 � log2 0:8ð Þ þ 0:2 � log2 0:2ð Þð Þ ¼ 0:722

Entropy S2ð Þ ¼ � 0:4 � log2 0:4ð Þ þ 0:6 � log2 0:6ð Þð Þ ¼ 0:971
P

Svj j=jSjð Þ � Entropy Svð Þ ¼ 0:5 � 0:722þ 0:5 � 0:971 ¼ 0:8465

IG S;Að Þ ¼ 0:971� 0:8465 ¼ 0:1245

All three algorithms follow a top-down approach to growing the
decision tree, starting at the root node and recursively splitting the
data until a cut-off criterion is met. The stopping criterion can be
based on the depth of the tree (max_depth), the number of
instances in a leaf node, or the amount of purity in a node.
However, decision trees may also have some disadvantages, such
as the tendency to overfit the data and the instability of the tree
structure due to small changes in the data. To address these
issues, various techniques, such as pruning and random forests,
have been developed to improve their performance.

2.2.3. Random forest
Random forest is a machine learning algorithm that is used for

classification, regression, and other tasks. It is an ensemble learning
method that combines multiple decision trees and aggregates their
predictions to make more accurate predictions than any individual
tree. The idea behind random forest [20, 21] is to generate a large
number of decision trees, each trained on a randomly selected
subset of data. The randomness introduced by training each tree
on a different subset of the data helps reduce overfitting and
improve the generalizability of the model. It is more robust to
overfitting, has less variance, and can handle missing data and
noisy data more efficiently. It also provides a measure of feature
importance, which can be useful for feature selection. However,
random forest is a more complex algorithm and can be
computationally expensive, especially when the number of trees in
the forest is large. Additionally, the prediction time can be slower
than that of a decision tree, since each tree in the forest must
make a prediction.

2.2.4. Logistic regression
Logistic regression is a machine learning algorithm [22], used

for binary classification problems, where the goal is to predict a
binary output variable (e.g., true/false or positive/negative) based
on one or more input variables (also known as features or
predictors). It works by modeling the probability of the output
variable as a function of the input variables using a logistic
function, which maps any real-valued input to a value between 0
and 1. However, in some cases, we may have more than two
classes, so we use a variant of logistic regression called
multinomial logistic regression or softmax regression. The logistic
function is the sigmoid

σ zð Þ ¼ 1=ð1þ e�zÞ;

where z is the linear combination of the input variables and their
relative weights.

The logistic regression model is trained using a set of cases
where the output variable is known and the weights of the input
variables are adjusted to maximize the probability of the observed
outputs given the inputs. This is typically done using an
optimization algorithm, such as the Gradient Descent algorithm,
which iteratively adjusts the weights to minimize a cost function
that measures the difference between the predicted probabilities
and the actual probabilities. The cost function is typically the
cross-entropy loss, which is defined as:
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J wð Þ ¼ �1=m

�
X

y ið Þ � log h x ið Þð Þð Þ þ 1� y ið Þð Þ � log 1� h x ið Þð Þð Þ½ �;

wherew is the vector ofweights,m is the number of cases, x(i) and y(i) are
the input and output variables for the i-case, and h(x(i)) is the predicted
probability that the output variable is positive for the i-case. The goal of
model training is to find the set of weights w that minimizes the cross-
entropy loss function. In the case of polynomial logistic regression, the
probability of each class is modeled via the softmax function:

PðY ¼ jjX ¼ xÞ ¼ eðb�j þ w�j 0 �xÞÞ=
X

k
j ¼ 1

eðb�j þ w�j 0 �xÞÞ;

whereP(Y= j| X= x) is the probability that the outcome variable is jwith
input variables x, b_j is the bias term for class j, w_j is the weight vector
for class j, and k is the index for all classes. The cost function is similar to
the cost function used for binary logistic regression.

Let’s assume we have a classification problem where the
outcome variable Y have three classes (k= 3) and the input
variable X have two features x1 and x2 with two classes each of
them. The input features x1 = [1,0] and, x2 = [0,1], indicates that
the data points belongs to class 1 for x1 and to class 2 for x2. The
initial values of the weights wj and biases bj for each class of Y
are as follows: for class 1: w1 = [0.2, 0.4], b1= 0.1; for class 2:
w2 = [0.3, 0.3], b2 = 0.2; and for class 3: w3 = [0.1, 0.5], b3= 0.1.
The Softmax function for each observation is computed as follows:

For x1 ¼ 1; 0½ �

z1 ¼ b1 þ w10 � x1 ¼ 0:1þ 0:2 � 1þ 0:4 � 0ð Þ ¼ 0:3

z2 ¼ b2 þ w20 � x1 ¼ 0:2þ 0:3 � 1þ 0:3 � 0ð Þ ¼ 0:5

z3 ¼ b3 þ w30 � x1 ¼ 0:1þ 0:1 � 1þ 0:5 � 0ð Þ ¼ 0:2

PðY ¼ jjX ¼ x1Þ ¼
eðzjÞ

ðeðz1Þ þ eðz2Þ þ eðz3ÞÞ ; j ¼ 1; 2; 3

P Y ¼ 1jX ¼ x1ð Þ ¼ 0:3197

P Y ¼ 2jX ¼ x1ð Þ ¼ 0:3906

P Y ¼ 3jX ¼ x1ð Þ ¼ 0:2897

For x2 ¼ 0; 1½ �

z1 ¼ b1 þ w10 � x1 ¼ 0:1þ ð0:2 � 0þ 0:4 � 1Þ ¼ 0:5

z2 ¼ b2 þ w20 � x1 ¼ 0:2þ ð0:3 � 0þ 0:3 � 1Þ ¼ 0:5

z3 ¼ b3 þ w30 � x1 ¼ 0:1þ ð0:1 � 0þ 0:5 � 1Þ ¼ 0:6

P Y ¼ jjX ¼ x2ð Þ ¼ ezj

ez1 þ ez2 þ ez3
; j ¼ 1; 2; 3

P Y ¼1jX ¼ x2ð Þ ¼ 0:3220

P Y ¼ 2jX ¼ x2ð Þ ¼ 0:3220

P Y ¼ 3jX ¼ x2ð Þ ¼ 0:3559

For x1 (true class y1), the contribution to cost function is:

J1 ¼ �logðP Y ¼ 1jX ¼ x1ð ÞÞ ¼ �log 0:3197ð Þ ¼ 1:1140

For x2 (true class y2), the contribution to cost function is:

J2 ¼ �logðP Y ¼ 2jX ¼ x2ð ÞÞ ¼ �log 0:3220ð Þ ¼ 1:134

The total cost function is J wð Þ ¼ 1
2 J1 þ J2ð Þ ¼ 1:137

During the training process, through gradient descent, the
model adjusts the weights w to minimize this cost function and
improve the prediction accuracy.

2.2.5. Gradient descend
Gradient descent [23] is an iterative optimization algorithm

used to minimize a function by iteratively adjusting the values of
the parameters of the function in the direction of the negative
gradient of the function. It is a widely used optimization
technique in machine learning, especially in training neural
networks. The basic idea behind gradient descent is to start
with some initial values for the parameters of the function and
then compute the gradient of the function with respect to
each parameter. The gradient tells us the direction of steepest
increase of the function at the current point, so taking the negative
gradient gives us the direction of steepest decrease. We repeat this
process iteratively until we reach a minimum of the function, or
until we reach a stopping criterion such as a maximum number of
iterations.

2.2.6. Gaussian Naive Bayes
Gaussian Naive Bayes [4] is a probabilistic algorithm used for

classification in machine learning. It is based on Bayes’ theorem and
assumes that the features are independent and normally distributed.
Given a set of training data, the algorithm calculates the prior
probability of each class based on the frequency of that class in
the training data. For each feature in the training data, the
algorithm calculates the mean and variance of that feature for each
class. This is done separately for each class. To classify a new
data point, the algorithm calculates the conditional probability of
that data point belonging to each class, based on the mean and
variance of each feature for that class. The conditional probability
is calculated using the Gaussian distribution. The algorithm then
selects the class with the highest conditional probability as the
predicted class for the new data point.

2.2.7. KNNs
KNN [4] is a simple, non-parametric algorithm used for

classification and regression tasks in machine learning. It works
by finding the K closest data points (nearest neighbors) to a given
input data point and predicting the class (in classification) or the
value (in regression) based on the classes or values of those
nearest neighbors. The distance metric used to find KNNs can be
Euclidean distance, Manhattan distance, or other distance metrics.
Once the KNNs are identified, the algorithm uses a majority
voting scheme to determine the class of the new data point for
classification problems or a weighted average to determine the
value for regression problems.

One advantage of KNN is its simplicity and ease of
implementation. It can work well with both small and large
datasets and can be used for both binary and multi-class
classification problems. However, its performance may be affected
by the choice of K and the distance metric used. Additionally,
KNN may not work with datasets that have many irrelevant
features or features with high dimensionality.

2.2.8. Adaptive boosting
Adaptive boosting [24] is a boosting algorithm that combines

weak classifiers to form a strong one. It works by iteratively
training weak classifiers on the same dataset, with a different
weight assigned to each sample in the dataset at each iteration.
The weights of correctly classified samples from the previous
iteration are increased, and the weights of correctly classified
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samples are decreased. In this way, the subsequent weak classifiers
focus on the samples that the previous weak classifiers tried to
classify. Once all weak classifiers are trained, their predictions are
combined using weighted majority or weighted average,
depending on whether the task is classification or regression,
respectively. The weights of each weak classifier in the
final prediction are determined by its performance on the
training data.

2.2.9. Pipeline
In machine learning, a pipeline [25] is a sequence of data

processing steps that transform raw data into a final prediction
model. A pipeline typically includes several stages, such as data
preprocessing, feature extraction, model training, hyperparameter
tuning, and model evaluation. Each stage of the pipeline takes
input from the previous stage and produces output that is used as
input for the next stage. The main advantages of using a pipeline
in machine learning are as follows:

1) Consistency: A pipeline ensures that the same data preprocessing
and feature extraction steps are applied to both the training data
and the test data, ensuring consistency between them.

2) Reproducibility: A pipeline allows for easy replication of
experiments, as it ensures that the same sequence of processing
steps is used every time.

3) Automation: A pipeline automates many of the routine tasks
involved in machine learning, such as data preprocessing,
feature extraction, and hyperparameter tuning, saving time, and
reducing the risk of errors.

4) Modularity: A pipeline allows different stages to be easily
swapped out or modified, allowing for rapid experimentation
with different approaches.

2.3. Models evaluation and strategy steps

To evaluate the models, we divided the data set into a training
subset (train) and a test subset (test), where the size of the test subset
was set to 25% (test_size= 0.25). The accuracy metric and the
confusion matrix were used for evaluation. Accuracy measures the
percentage of correct predictions and is defined as Accuracy =
(Correct Positive Predictions + Correct Negative Predictions)/
Sample Size, while the confusion matrix indicates the true values
versus the predicted values in a table format, the main diagonal of
which has the true predictions, negative and positive [3, 26].

To improve accuracy, the data were transformed
(Standarscaler), while the best parameters of the algorithms were
searched, such as the maximum depth (max_depth) for the
Decision Tree algorithm or the number of KNNs for the KNN
algorithm, through the GridSearchCV class. In addition, the cross-
validation and bootstrapping methods were applied through the
AdaBoostingClassifier class, and all the previous ones in the
series were also implemented through the “pipeline” class [3, 25].
The above algorithms were implemented in the Python
programming environment.

The strategy followed in this work consisted of the following
steps (Figure 1):

1) Collection of a “representative” sample.
2) “Cleaning” of the data (data cleaning/cleansing).
3) Apply transformations to data.
4) Application of bivariate and multivariate correlation analyses.
5) Reduction of mathematical dimensions (data reduction).
6) Prediction with and without Machine Learning methods

3. Research Methodology

3.1. Research design

This study has employed to explore the feasibility of using data
analysis methods during the preparatory stage of applying machine
learning techniques (“data preprocessing” in machine learning), to
enhance their predictive power. Specifically, we examined the
prediction of BMI, based on the consumption frequencies of 140
foods by adolescent students in Greece [27]. The statistical
software used was Python 3.10 [28] via the Anaconda platform,
Jupyter notebook 6.4.5, and IBM SPSS Statistics v26.0.

The methodological approach involves a combination of
exploratory data analysis, dimensionality reduction, and model
fitting. This includes techniques such as PCA and other
multivariate methods to preprocess the data before applying
machine learning algorithms. The rationale for these methods is to
reduce dimensionality and improve the interpretability of the data,
thereby enhancing the predictive accuracy of the machine learning
models used in subsequent analyses.

The following research questions will guide this study:

1) Which data analysis method provides the best support for BMI
predictions?

2) How does the categorization of BMI affect the performance of
machine learning algorithms?

3.2. Participants

The dataset employed in this study consisted of real data
obtained through proportional stratified random sampling from
high schools in all Greek prefectures. This dataset was gathered
during a nationwide epidemiological study on adolescent
nutritional habits carried out from 2010 to 2012 by the
Department of Nutrition and Dietetics at the Alexandria
Technological Educational Institute of Thessaloniki. The study
received approval from the Pedagogical Institute and the Ministry
of Education, Research, and Religious Affairs. According to the
2011 census, the sample was representative of the entire
adolescent population in Greece [27].

The dataset contained information on 42,593 adolescents, aged
12 to 19 years (50.4% boys and 49.6% girls) along with 155 mixed-
type variables (characteristics). The BMI was defined as a dependent
variable and was employed in analyses as both a quantitative (scale)
variable (minimum value= 12.17, maximum value= 55.23) and an
ordinal variable with four classes, as per the World Health
Organization’s recommendations (Underweight: <18.50, Normal
weight: 18.50–24.99, Over-weight: 25.00–29.99 and Obese:
≥30.00) [8, 29]. Independent variables included the following:
140 choices of Greek cuisine food items and dishes (frequency of
consumption/week) as quantitative (scale) variables; daily hours of
sleep, the daily number of glasses of water consumed; weekly
consumption of fast food; daily number of meals; weekly
frequency of breakfast consumption and weekly delivery
frequency (these variables pertain to individual eating habits of
adolescents), which were also quantitative variables. Additional
independent variables were the weekly family meal frequency, an
ordinal variable with four categories (Never= 0, 1–2 times= 1,
3–4 times= 2, Daily= 3), and qualitative (nominal) variables, such
as gender (2 categories), prefecture (37 categories), geographical
area (3 categories: Urban= 1, Suburban= 2, Rural= 3), family
form structure (5 categories: Without parents= 0, With both
parents= 1, With one parent due to divorce= 2, With one parent
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due to death= 3, Single parent= 4), fasting 3 categories: No= 0,
Sometimes= 1, Yes= 2), delivery (2 categories: No= 0, Yes= 1),
(these variables concern the demographic characteristics and habits
of teenagers).

3.3. Statistical analysis

A detailed statistical analysis was performed to assess the
relationships between the independent variables and the BMI.
Initially, exploratory data analysis was conducted to understand
the distribution and correlations among variables

The methods chosen in this study were driven by the desire to
balance simplicity and complexity at different stages of the analysis.
Initially, we employed traditional statistical methods and regression
analyses to explore relationships between individual and social
characteristics and BMI. Despite the low predictive power, this
provided a foundation for understanding the data and served as a
baseline for comparison against more advanced models.

We then applied dimensionality reduction techniques to handle
the large number of food consumption variables, allowing us to distill
this high-dimensional data into a manageable number of factors.
Even though these factors did not yield high predictive power in
linear regression models, they provided a more structured
representation of the data.

Finally, by moving to classification trees and utilizing the
CHAID algorithm, we accounted for the non-linear and
interaction effects that were likely influencing BMI classification.
This method significantly improved predictive accuracy,
highlighting the importance of using more sophisticated machine
learning approaches when simpler models fail to capture the
underlying complexity of the data.

Given the nature of the problem—predicting BMI categories,
which is a multi-class classification task—the use of supervised
machine learning algorithms is necessary. The specific algorithms
chosen provide a balance between interpretability (Decision Trees,
Logistic Regression), complexity handling (SVM, Random
Forest), and efficiency (GaussianNB, SGD, KNN). Together,
these algorithms provide a comprehensive evaluation of the BMI
prediction problem, ensuring that both complex and simple
models are explored.

3.4. Results

3.4.1. Multivariate analysis of data
In the first stage, we investigated the relationship of the BMI

both as a quantitative and as a qualitative (ordinal) dependent
variable, with gender, individual and social characteristics, as well
as with individual and dietary habits. Various statistical tests were
performed including a t-test, one-way and multiway ANOVA,
simple and multiple regression with and without selection of
variables, and X2-test. The predictive power of the examined
models was found to be too low, with R2 coefficient values of the
general linear models ranging from 0.2% to 3.4% and the
Cramer’s V or Lambda or Goodman and Kruskal tau coefficients
ranging from 0.001 to 0.09. We then applied CATREG with
optimal scaling, considering BMI either as a quantitative (scale)
or as a qualitative (ordinal categorical) dependent variable, and
individual and social characteristics, as well as the individual and
eating habits of the adolescents, as independent variables. The
predictive power of the models remained low, with R2 coefficient
values ranging from 2.4% to 3.9%. This approach aimed to
examine the predictive power of reasonable independent variables

Figure 1
A general guide of strategy steps for analyzing the specific dataset
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(e.g., gender and other individual and social characteristics of the
adolescents) using relatively simple models and statistical
methods, hoping that these analyses might eliminate the need for
more complex statistical analyses utilizing the data of the 140
choices of food and “dishes” of the Greek cuisine (Figure 2).

In a second stage, we applied dimensionality reduction methods
to the 140 variables related to food consumption frequencies.
Specifically, we used PCA, CATPCA, and MCA, transforming
the quantitative variables into 3 classes (cut-off points 33.3% and
66.6%). From PCA, 28 factors explained 50% of the total inertia,
while 68 factors explained 73% of the total inertia. CATPCA
identified 10 significant factors explaining 34% of the total
inertia, while MCA yielded 8 significant factors, accounting for
37% of the total inertia (Figure 2).

Next, we considered the factor scores of the 28 factors resulting
from PCA as independent variables. We applied multiple linear
regression with BMI as the quantitative dependent variable,
CATREG with BMI as an ordinal dependent variable and factor
scores as independent variables, as well as CATREG with BMI as
a quantitative or categorical dependent variable and factor scores,
individual characteristics, and individual and dietary habits as
independent variables. The predictive power of the models
remained low with R2 coefficient values ranging from 0.1% to
5.9% (Figure 2).

Applying similar models to the factor scores of the 10-factor
CATPCA and the 8-factor MCA also resulted in low predictive
power, with R2 coefficient values ranging from 0.0% to 6% and
from 0.1% to 6.2% respectively (Figure 2).

Despite the low predictive power of the models and the low
values of the corresponding effect sizes, it is noteworthy that the
application of the Classification Trees—CHAID method,
considering BMI in categories as dependent, individual
characteristics and habits as independent, resulted in 64% correct
prediction (Figure 2).

3.4.2. Accuracy of machine learning algorithms
Lastly, we applied machine learning techniques through

classification algorithms [5] in order to predict BMI as a
categorical dependent variable (with 4 BMI classes according to
FAO), using both the raw original data and the factor scores,
resulting from the application of PCA, CATPCA, and MCA,
respectively. We used the accuracy measure to test the predictive
ability and compare the different methods. Using BMI as
categorical variable makes more sense for nutritional assessment.
Standardized BMI categories not only provide a world-level
framework for evaluating weight status, enabling more explicit
comparisons and descriptions of weight distribution within
populations, but also facilitate the identification of weight trends
and patterns over time [30]. Furthermore, there is considerable
evidence that each BMI category is associated with different
levels of risk for various chronic conditions, including
cardiovascular disease, type 2 diabetes, and certain types of cancer
[31]. Thus, the BMI classification system serves as a simplified
and practical tool for identifying priority groups for targeted
interventions or nutritional counseling [9, 32].

Figure 2
Multivariate analysis methods and summary results

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2025

08



We first applied the SVC algorithm to the raw original data,
which resulted in an accuracy of α= 0.66. This accuracy was not
improved by normalizing the data or by applying the optimal
parameters (kernel functions, C regularization, and γ parameter)
identified through the Grid Search class.

Next, we applied the SDG algorithm for classification
(SGDClassifier). On the raw original data, the evaluation yielded
an accuracy of α= 0.60, while data normalization improved the
accuracy to α= 0.65. Cross-validation (cv= 5) resulted in an
average accuracy of 0.63 with a standard deviation of s= 0.016.
The application of the GaussianNB resulted in an accuracy of
α= 0.38, while the KNN algorithm produced an accuracy of 0.60,
with an optimal value of K= 6, from the Grid Search class.

We then applied the “Decision Tree Classifier” algorithm,
where the initial evaluation yielded an accuracy of α= 0.51,
which was improved by applying the Adaboost algorithm to
α= 0.66. The assessment was similar (α= 0.66) when applying
the random forest algorithm for classification. We also searched
for the optimal parameters (Gini, Entropy, max_depth), through
the GridSearchCV class, identifying entropy and maximum depth
max_depth= 5 as the best criteria. Figure 3 displays a decision
tree for classifying the data with a depth of 3, highlighting the
characteristics used for separation.

The application of themultinomial logistic regression algorithm
(Logistic Regression), considering that we had four classes, yielded
an accuracy of α= 0.66. We then applied all the aforementioned
procedures to the raw original data using the automated pipeline

class, resulting in the second column (Accuracy) of the table
above (Table 1). The remaining three columns of the table
(Accuracy PCA_28, Accuracy CATPCA_10, Accuracy MCA_8)
were obtained from the application of machine learning
algorithms to the factor scores, which were derived from PCA,
CATPCA, and MCA, respectively. The results shown in
Table 1 were obtained by applying the pipeline code to each case
(Figure 4).

The results from the various machine learning algorithms, as
presented in Table 1, provide valuable insights into the
effectiveness of different data preprocessing methods on
predictive performance.

1) Multinomial Logistic Regression: The accuracy of 0.66
achieved using the multinomial logistic regression algorithm
indicates a solid performance given the complexity of
predicting BMI categories across four classes. This accuracy
serves as a benchmark for comparison against the results
obtained from dimensionality reduction techniques.

2) SVC: The SVC maintained an accuracy of 0.66 when applied to
both the raw data and the PCA-derived factors. This consistency
suggests that SVC is robust to dimensionality reduction and can
effectively leverage the reduced feature set without a loss in
predictive power.

3) KNN: The KNN algorithm exhibited a slightly lower accuracy of
0.60 across all data variations. This could imply that KNN may
require more discriminative features or that its performance is

Table 1
Prediction accuracy of BMI as a categorical dependent variable using machine learning algorithms and methods

Algorithm Accuracy using raw original data1 Accuracy PCA_282 Accuracy CATPCA_103 Accuracy MCA_84

Logistic Regression Multinomial 0.66 0.65 0.65 0.65
SVC 0.66 0.66 0.65 0.66
KNN 0.60 0.60 0.61 0.60
Decision Tree 0.52 0.52 0.51 0.53
Random Forest 0.66 0.66 0.67 0.66
SGD 0.64 0.65 0.65 0.65
Naive Bayes 0.38 0.61 0.63 0.63

1Raw original data: Application of an algorithm with initial (140 variables related to food consumption frequencies) after preprocessing data
2PCA_28: Application of an algorithm with characteristics of the 28 factors resulting from the principal component analysis
3CATPCA_10: Application of an algorithm with characteristics of the 10 factors resulting from the categorical principal component analysis
4MCA_8: Application of an algorithm with characteristics of the 8 factors obtained from the correspondence analysis

Figure 3
Decision tree with depth= 3 and BMI as the categorical dependent variable, using Gini index as a criterion at each node to split

samples into classes

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2025

09



sensitive to the choice of input features. The negligible difference
between the raw data and the PCA/CATPCA/MCA results
indicates that while KNN is affected by feature reduction, it
does not benefit significantly from it.

4) Decision Trees: The performance of the decision tree algorithm
was the weakest among the tested models, achieving an accuracy
of 0.52 on raw data and remaining relatively unchanged across
the factor scores. This suggests that decision trees may
struggle with the complexity of the data, possibly due to
overfitting or underfitting issues.

5) Random Forest: The Random Forest Classifier yielded the
highest accuracy of 0.67 when using the factor scores from
CATPCA. This result underscores the effectiveness of
ensemble methods in capturing complex interactions among
variables, indicating that the reduced set of factors from
CATPCA enhances the model’s predictive ability. The fact
that the random forest performs better with fewer features
suggests that it may have successfully identified the most
informative aspects of the data while mitigating noise.

6) SGD: The accuracy achieved with SGD was 0.64, with minimal
changes across different data sets. This consistency suggests that
SGD can generalize well across various input configurations,
reaffirming its utility in high-dimensional spaces.

7) Naïve Bayes: The Naïve Bayes algorithm showed a significant
increase in accuracy from 0.38 with raw data to 0.63 when
using factor scores from PCA, CATPCA, and MCA. This
highlights the advantages of feature reduction for Naïve Bayes,
suggesting that the algorithm benefits from a more compact
feature set that aligns better with its underlying assumptions of
independence among features.

Overall, the results reveal that dimensionality reduction
techniques, particularly CATPCA, can enhance the predictive
performance of certain algorithms, such as Random Forest and
Naïve Bayes. The minor performance variations among the
algorithms applied to the original and reduced datasets indicate
that many models can handle reduced dimensionality without
significant loss in accuracy, although some, like Naïve Bayes,
notably improve. These findings suggest that implementing
preprocessing steps like PCA, CATPCA, and MCA could lead to

more efficient models while maintaining or enhancing prediction
accuracy.

Additionally, the lack of significant performance deterioration
among most algorithms implies that reducing the feature space may
simplify the model training process and potentially improve
interpretability without sacrificing predictive power.

4. Discussion

The study results indicate that the initial multivariate analyses,
conducted to determine if some individual characteristics of
adolescents (e.g., demographic characteristics, habits) could have
higher predictive power than dietary characteristics, demonstrated
very low predictive power in each case. Similar results were obtained
when the analyses were conducted with the PCA, MCA, and
CATPCA factor scores as independent variables derived from the 140
variables related to food consumption frequencies. Interestingly, the
CHAID method emerged as a notable exception, offering relatively
good prediction accuracy. CHAID’s ability to capture interactions
between variables may explain its superior performance in this
context, suggesting that non-linear relationships in the data could
provide valuable insights that traditional linear methods overlook.
This observation highlights the need for incorporating a wider variety
of analytical techniques when exploring complex health-related data.

Consequently, we proceeded to apply the machine learning
methods to both the raw original data (140 variables related to
food consumption frequencies as prediction variables) and the
factor scores obtained from PCA, MCA, and CATPCA as
prediction variables, with the target variable in each case being
the BMI (categorical variable with four classes).

From the analysis, it was determined that for the specific data
set, the application of the algorithms (SVC, KNN, SGD, Naive
Bayes, Decision Tree Classifier, Random Forest Classifier,
Logistic Regression Multinomial) to data with reduced dimensions
yielded similar results and in some cases better than when applied
to raw original data. Additionally, the prediction is more reliable
when using BMI as the dependent variable as a qualitative
variable with four (4) classes.

In general, designing with a data analysis strategy helps save
time and chooses the best forecasting model. Dimensionality

Figure 4
Pipeline code
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reduction, if it does not improve the predictive ability of the models,
at least contributes to the “interpretability” of the results. This is
because the factors, which obtained from the PCA, the MCA, and
the non-linear CATPCA (28, 8, and 10, respectively), all had a
natural interpretation within the theoretical framework of the
study. As a result, the 140 variables can be represented by a
smaller number of components or by a smaller number of new
complex and most importantly, “interpretable” variables. This
approach illustrates how complex datasets can be reduced into
fewer, more interpretable variables, enhancing both the clarity of
the findings and their practical applications in public health.

Therefore, it is suggested to attempt dimensionality reduction
using various methods before applying machine learning methods.
Also, the small values of the R2 coefficients, obtained from the
samples examined in the preparatory stage (correlation analyses,
t-tests, one-way ANOVA, Simple and multiple regression,
X2-tests), indicate the necessity to check both the data quality and
to “clean” the data (data cleaning/cleansing), before applying any
method. This is provided that the variables used in both the preparatory
stage and the prediction models and algorithms are representative and
describe as completely as possible the phenomenon-system under
consideration.

5. Conclusion

The strategy proposed in this study involves first collecting a
representative sample and checking the quality of the data,
cleaning them (missing values, outliers), and coding and
transforming them appropriately for subsequent analysis. Next, it
is recommended to apply ordinary bivariate and multivariate
analyses, aiming to find potential characteristics of the sample that
largely explain the phenomenon under consideration. This
approach was followed in order to examine the predictive power
of reasonable independent variables using relatively simple
models and statistical methods, with the hope that these analyses
will eliminate the need for more complicated statistical analyses
utilizing the data of the 140 choices of food and “dishes” of the
Greek cuisine.

If no single characteristics are found that largely explain the
phenomenon under consideration, it is then proposed to reduce the
dimensions with various multivariate methods and apply
prediction methods to the new resulting variables (factorial
scores), using both statistical methods and machine learning
algorithms, in order to find the best prediction method or algorithm.

Our findings underscore that a well-structured data analysis
strategy not only saves time but also aids in selecting the most
suitable prediction model. Moreover, while dimensionality
reduction may not always enhance predictive accuracy, it
significantly contributes to the interpretability of the results,
facilitating a clearer understanding of the underlying relationships
within the data. The importance of employing a diverse range of
analysis methods and machine learning algorithms is evident, as
this variety is crucial for either discovering a satisfactory
dimensionality reduction solution or enhancing the robustness of
the results.

Ultimately, this study suggests that employing dimensionality
reduction techniques prior to the application of machine learning
methods can lead to improved model performance and
interpretability. It also highlights the critical importance of data
quality and the need for rigorous data-cleaning processes to enhance
the validity of predictive analytics in adolescent health research.
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