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Decision Tree Regression with Residual
Outlier Detection
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Abstract: This paper introduces a framework for identifying outliers in predictionsmade by regression tree models. Existing robust regression
approaches tend to focus on the construction stage, which builds regression models that are less sensitive to outliers. In contrast, our approach
focuses on identifying outliers during the prediction stage. The process of our proposed approach begins with building a regression tree using a
training dataset. Predictions significantly deviating from the mean within each terminal node are automatically labeled as outliers. We show
how the labeled data can be explored to better understand the characteristics of the outliers.We also identify the situations under which the data
exploration may not work well. Further, we make use of the outlier labels and training data to construct an anomaly detector. Our results show
that the proposed method can effectively detect outliers that may exist within datasets. Such outliers, when removed, result in improved data
quality. Insights into its effectiveness and potential caveats are also discussed.
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1. Introduction

Outlier detection involves identifying data points or values that
depart significantly from normal observations. It is useful for
identifying hidden anomalies and enhancing data integrity.
Traditionally, outlier detection has found applications in areas
where identifying rare and unusual cases is important, such as in
defect classification [1]. Recently, outlier detection has also been
used in modern fields such as sensor data analysis [2], medical
image analysis [3], AI of Things [3], and Particle Physics [4]. In
terms of learning methods, many studies have also started using
deep learning given its promise in better detection performance.
All these new developments reflect a growing interest in anomaly
detection across diverse fields.

Despite significant advancement in deep learning and its potential
in many domains, classical machine learning algorithms like decision
trees remain highly relevant. There are two important reasons: (1)
machine learning and deep learning are not mutually exclusive, and
they can complement one another to complete a learning task more
comprehensively; (2) deep learning is not a universal solution,
particularly in anomaly detection. A recent benchmarking study
using 104 datasets found that tree-based approaches could detect
singleton anomaly while deep learning methods fail [5]. In addition,
decision trees are more interpretable, which is valuable for
explaining the underlying conditions leading to anomalies [6].
Further, tree-based approaches tend to work well in high-
dimensional spaces. For example, a recent study reported superior
performance of tree-based algorithms for anomaly detection in the
presence of irrelevant features [7].

This paper extends an earlier work [8] on the use of decision tree
for regression cum anomaly detection. As far as we know, decision
trees are normally used for either regression or classification (e.g., to
detect anomalies) tasks and seldom or never carry out the two tasks
simultaneously for the same dataset. Indeed, performing regression
with anomaly detection offers a unique advantage because estimated
target values can be further qualified as normal or abnormal. If an
estimation is abnormal, then further decision can be taken to
improve the overall outcome of an application.

Regression trees are powerful tools for estimating numeric
targets, offering fast predictions, ability to handle rough regression
surfaces related to discrete data, and providing useful insights into
the data using decision rules. However, outliers may exist within
the terminal (leaf) nodes of regression tree models due to the need
to maintain a minimum leaf node size. As a result, a leaf node may
wind up including undesirable instances within its sub-partition
space. We name such anomalies as Terminal-node Anomalies.

1.1. Terminal-node anomalies

Figure 1 shows a regression stump, where the vertical dotted
line splits the data into nodes T1 and T2 using the input x. Here, a
circled outlier (o2) has been included in node T2 to fulfill a minimum
leaf node size requirement of four instances. Similarly, node T1 has a
dotted-circled outlier (o1) that occurs locallywithin its subspace. It is
commonly recognized that o2 is an influential outlier because of its
negative effect in changing the gradient of a simple linear regression
line; while o1 is less detrimental as compared to o2, it is still undesir-
able due to its negative effect on the model quality [9]. Since o1 and
o2 are within terminal nodes of the regression tree, they are consid-
ered as Terminal-node Anomalies.

Generally, the impact of outliers on regression models has been
a long-standing problem, even in modern contexts [10]. In general,
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influential global outliers like o2 can distort the model, while local
outliers like o1 increases the prediction error [11].

In regression tree methods, outliers can impact the decision tree
structure due to the use of the noise-sensitive squared error loss
function. For example, the variance of Node T2 (c.f., Figure 1)
becomes unusually large due to o2; this can affect split point selection
and the final regression tree structure. To mitigate this issue, robust
loss functions such as the Huber loss function [12] can be considered.
This function employs L1 and L2 norms for large and small residuals,
respectively, thereby reducing the impact of extreme outliers. Sim-
ilarly, Tukey’s bisquare loss function [13] reduces the effect of clear-
cut outliers by setting them to a constant while assigning proportional
penalties to the remaining residuals.

The robust-loss-function approach is beneficial for creating
regression trees that are less sensitive to outliers. However, it
primarily focuses on the tree induction process and does not
consider another key issue that occurs during the prediction stage.
Firstly, the expected value of a node can be skewed by terminal-
node anomalies. For example, Node T1 will have a lower
expected value due to anomaly o1, while Node T2 will have a higher
expected value due to anomaly o2. This results in underestimations
for normal data points in Node T1 and overestimations for normal
data points in Node T2, as illustrated in Figure 1. This limitation
stems from the piecewise constant predictions made within each
node. Hence, this paper proposes to detect and treat these anomalies
during the prediction stage. Consequently, when our proposed
method encounters new instances such as o1 or o2, it will recognize
them as outliers, indicating that their predicted target values should
be interpreted with caution. For example, the predictions that are pre-
dicted to be outliers can be used for noise filtering applications.

1.2. Illustration of the proposed method

The proposed three-stage framework is illustrated as an
example in Figure 2. In Stage 1, a regular regression stump with
two leaf nodes T1 and T2 is constructed. In Stage 1a, outliers that
depart from their expected means within their respective leaf
nodes are identified. Specifically, data points that are beyond their
critical values (Z�) are identified and labeled as outliers (i.e., posi-
tives) automatically. At this point, the results obtained from Stage
1a may be used to explore the characteristics of the outliers. We will
conduct such explorations in Section 4.4.

In Stage 2, the same training input records, in conjunction with
their corresponding newly identified outlier labels, are used to build
an anomaly detector. The classification output of this anomaly
detector can be used to certify the quality of individual predictions
made by the regression tree during the actual predictions of
unseen data (i.e., Stage 3).

In Stage 3, the trained regression tree and the anomaly detector
are deployed for estimation and anomaly detection, respectively. The
predicted outliers can be true positives (TPs) or false positives (FPs).
Similarly, the predicted normal instances can be true negatives (TNs)
or false negatives (FNs) [14].

A good anomaly detector should maximize the number of TPs
and TNs and minimize the number of FPs and FNs. Naturally, two
key performance measures here would be the TP rate (i.e.,
sensitivity) and TN rate (i.e., specificity) [15]. These performance
measures can be used to tune the anomaly detector in Stage 2.

In Stage 3, the predicted outliers can then be further investigated
or treated. For example, Figure 2 Stage 3 shows a simple treatment to
remove cases that are predicted as outliers. A good detector should
minimize the possible negative effects, which include wrongly
removing FPs and incorrectly keeping FNs. In Section 4, we will
show how this treatment leads to reduction of prediction errors,
which can be useful in situations where the influence of noise or
outliers is to be minimized.

With the proposed framework, this paper presents a decision
tree approach to tackle the problem of simultaneous regression
and outlier detection. In addition, the paper tackles two common
issues encountered in anomaly detection.

Figure 1
A regression stump with two nodes and two outliers

y (target)

node T2

node T1

x (input)

Figure 2
An illustration of the proposed 3-Stage framework

Stage 1: Build Regression Tree

Stage 1a & 2: Auto-label the outliers and then train an 
anomaly detector

Stage 3: Make predictions on unseen data and filter out 
cases that are predicted as outliers
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1) Verification without Ground Truth: Unlike many studies that
rely on anomaly labels or scores for objective performance
evaluation, our approach allows the use of data with no ground
truth for anomalies. We introduce a novel verification method
based on the reduction of mean absolute error (MAE) to
objectively validate whether detected cases are outliers.

2) Interpreting Outliers: We demonstrate how our proposed
method interprets the meaning of an outlier and extracts
insights from the decision tree.

The rest of this paper is organized as follows. Section 2 discusses the
main approach of related work and how our proposed method differs
from them. Section 3 presents the data used and the experimental setup.
Section 4 analyzes the results and discusses the practical utility of our
approach. Section 5 offers some reflections and concludes this paper.

2. Related Works

In the literature, outliers are usually defined as data points that
deviate significantly from the overall data pattern, often measured
using distance functions like Euclidean distance. However, this
global approach may overlook outliers that are local anomalies.

One approach to detect local outliers is to define local regions
within a dataspace, and any data points deviating from its local
regions can be flagged as outliers. For example, the Local Outlier
Factor (LOF) method detects data points with lower density than their
neighbors as outliers [16]. This method is useful for outlier detections
in datasets with varying density regions that may not be spherical.
However, it may fail when there are overlapping regions or clusters.

Another approach is the cluster-based outlier detection method,
which identifies outliers based on points that deviate from parent
clusters [17]. This method is primarily distance-based, and it may
not work well for high-dimensional data spaces due to the curse
of dimensionality.

Other innovative approaches include autoencoders, which are
neural networks trained using normal data [18]. Then in the detection
phase, they detect outliers that cause high reconstruction errors.

Unfortunately, autoencoders operate under the assumption that
normal data are available for training, which is not the case in our
work. In all the four datasets used in this study, they contain no
information of the anomaly labels.

One way to mitigate the issue is by using the Robust Variational
Autoencoders (RVAE), where the robust loss function helps to
attenuate the effects of outliers in the training data, and the
probabilistic latent space helps handle uncertainty in the data.

This lack of ground truth in datasets poses a common problem
for objective performance evaluation. Fortunately, there is a way to
tackle this issue within our proposed framework, and we will provide
the explanation in Section 4.2 (experimental setup). Another key
issue with autoencoders is that they cannot explain why a specific
data point is classified as an outlier, and this can limit their
applications in domains where interpretation of outliers is crucial.

Compared to autoencoders, distance-based methods are more
intuitive and easier to explain. However, they may not be ideal for
detecting Terminal-node Anomalies which are specific to
regression tree models. Since these are outliers forced into leaf
nodes due to the minimum node size requirement, it would be
natural to detect them within the tree itself. In addition, decision
trees are robust in dealing with issues like missing values and
mixed data types. Such issues often require additional data
preprocessing for distance-based methods. Finally, most
unsupervised distance-based methods assume equal weightages
for all features, which is not ideal for high-dimensional problems.

In contrast, decision trees typically use a subset of important
features to describe a data pattern, and insignificant features are
excluded from the tree. We will highlight how this property
results in better performance of our method when explaining the
visualization results in Section 4.4.

As mentioned earlier, outliers may affect regression tree
structure by amplifying the squared error loss function, leading to
biased split points and skewed mean values in terminal nodes
[19]. To mitigate this issue, robust loss function like the Huber
loss function can be used [12]. The Huber loss function is defined as:

L xð Þ ¼ r2

2
if rj j � @; otherwise L xð Þ ¼ @ rj j � @

2

� �
:

Here, r is the residual and ∂ is a user-specified threshold. The Huber
loss function applies squared error (L2 norm) for small residuals and
absolute loss (L1 norm) for large residuals, thereby reducing the
influence of outliers.

Another example is the Tukey’s bisquare loss function [13].
This function caps the loss for large outliers at a constant of c2=6,
when the residuals are greater than the user-defined threshold (c);
i.e., rj j > c. Otherwise, it assigns a penalty based on the magnitude
of each residual, using:

c2

6
1� 1� r2

c2

� �
3

� �
:

The above-mentioned loss functions may be used to better estimate
the split points and improve prediction estimates, resulting in
regression trees that are less affected by outliers [20].

However, it is important to note that these approaches primarily
focus on the tree induction process only; they do not handle the
presence of outliers during the prediction stage. When making
predictions, a regression tree may come across a new data
instance that does not fit into any terminal nodes created during
the training phase. In this case, the regression tree proceeds to
make a prediction using the nearest terminal node, without
knowing that this data instance is indeed an anomaly. This lack of
knowledge about anomalies will lead to erroneous predictions and
undermines the model’s prediction performance.

To address this issue, the proposed approach automatically detects
anomalies during the prediction stage. This is achieved by first creating
outlier labels automatically, which are required for training an anomaly
detector. Once trained, this anomaly detector operates in tandem
with the regression tree, determining whether each prediction
should be classified as an outlier. This integrated framework enables
simultaneous regression cum anomaly detection capabilities.

3. Proposed Method

This section presents the conceptual framework, which consists
of three stages depicted in Figure 3. In the following descriptions of
these three stages, we denote XTrain; YTrainf g be a set of training
inputs and target, respectively.

1) Stage 1:Use the XTrain; YTrainf g dataset to construct a regression
tree T that consists ofm terminal (leaf) nodes. Each terminal node
of T is denoted as Tj, where j ¼ 1; 2; . . . ; m. At Stage 1a, each
training instance i is labeled with a binary outlier status of
oi ¼ yes; nof g. This is achieved by comparing the true target

values YTrain and the training results dYTrain. Note that each
training instance i located within a leaf node Tj will have the same
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prediction value cyTj
¼ 1

Tjj j
P Tjj j

i¼1 yi. For each instance i, if its true

target values yi is significantly different fromcyTj
, it will be declared

an outlier. Specifically, we compute jzij ¼ yi � cyTj

��� ���=σTj
), where

σTj
is the standard deviation of yi in node Tj. We then label oi

using the rule: oi ¼ yes if zij j � Z�; otherwise oi ¼ no: In this
rule, Z� is the critical value defined by some level of significance.
We will discuss how this value is determined in Section 4.2.

2) Stage 2: Using the XTrain; OTrainf g dataset, an anomaly detector
denoted as A is constructed. Here, OTrain is the binary outlier label
automatically generated by Stage 1a. Although not illustrated in
Figure 3, it is important to note that Stage 2 requires the target
distribution to be balanced. This is crucial because the proportion
of “yes” in the outlier target is substantially lower, likely below
5%, requiring up-sampling of these minority cases. For inductive
learning methods like a regression tree, replicating the minority cases
helps the learner to effectively recognize the classification pattern. A
simple approach adopted here is to replicate the minority cases until
there is an approximately equal number of instances between “yes”
and “no”.

3) Stage 3: Send the independent test setXTest to both T and A for the
purpose of estimation and anomaly detection respectively. Any

instances detected as outliers by A can have their corresponding
estimations marked for further scrutiny, investigations, or neces-
sary interventions. Within the scope of this study, we assume that
all the instances identified as outliers will be discarded. This
approach is particularly well-suited for scenarios rich in data
points, such as data stream environments with sensor/IoT net-
works [21]. An example is the use of machine learning to improve
electricity grid stability [22]. Other examples include e-com-
merce website traffic and transactions, social media posts, com-
ments, likes, and shares.

4. Data and Experimental Setup

4.1. Data

Table 1 provides details of four datasets obtained from the UCI
Machine Learning Repository (https://archive.ics.uci.edu). We use
these datasets in our experiments because they are well-suited for
regression tasks, and have different data sizes, ranging from 1503
instances to 10000 instances. Additionally, the number of
predictor attributes ranges from four to 11. The proportions of
training data labeled outliers are all less than 5% of their
respective dataset sizes.

4.2. Experimental setup

Recall thatZ� is the critical value used in Stage 1a, which is used
to decide whether an instance is an outlier. In this study, we use
Z� ¼ 1:96, which corresponds to the 95% confidence level in a
two-tailed test, throughout our experiments.

Although we have used Z� ¼ 1:96 based on statistical rule of
thumb, one could vary this threshold based on practical domain-spe-
cific considerations. For example, if a critical value results in numer-
ous cases being labeled as outliers, then it might be reasonable to
increase Z� so as to reduce the number of outliers. On the other hand,
if a reasonable critical value results in an insignificant number of out-
liers, then it might suggest that the dataset is clean and does not
require outlier detection. Additionally, if we have extremely few out-
liers, the outlier-labeled dataset will become extremely imbalanced,
and this can cause the anomaly detector (or any binary classifier)
to fail.

Another practical approach is to rank the outliers using the Z
scores, and only examine the top N number of cases with the
highest Z scores.

Figure 3
The proposed conceptual framework

Stage 3

Stage 1

Build 

Regression 

Tree

Stage 1a
Label 

Training 

Data with 

Outlier 

Statuses

Stage 2

Build 

Anomaly 

Detector

Trained 

Regression 

Tree (T)

Trained

Anomaly 

Detector (A)

Table 1
Datasets used for regression and outlier detection

Dataset name Description

Smart Grid
Percent outliers: 2.75%

Local stability analysis of a decentralized smart power grid control [23].
10000 instances; 11 predictors;
Target = system stability.

Auction
Percent outliers: 4.15%

Verification of simultaneous multi-round auctions for frequency spectra [24].
2043 instances; 7 predictors;
Target = verification runtime.

Airfoil Noise
Percent outliers: 4.78%

NASA dataset, obtained from a series of aerodynamic and acoustic tests of two- and
three-dimensional airfoil blade sections conducted in an anechoic wind tunnel [25].
1503 instances; 5 predictors;
Target = scaled sound pressure level.

Power Plant
Percent outliers: 3.9%

Data points collected from a Combined Cycle Power Plant over 6 years (2006–2011) [26].
9568 instances; 4 predictor attributes;
Target = net hourly electrical energy output
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All the datasets are randomly partitioned into 70% for training,
forming XTrain; YTrainf g in Figure 3. The remaining 30% are used for
testing, i.e., XTest ; YTestf g. For each dataset, the regression tree T and
the anomaly detector A were constructed using the training data and
then evaluated using the testing data.

We have used the Classification and Regression Tree (CART)
algorithm available in an IBM product [27]. This is a robust and
easily accessible method for academia and industry [28]. Its
ability to perform both regression and classification (of anomalies)
fits our objective well and helps to simplify implementation of the
proposed framework.

The regression tree is set with a minimum allowable terminal
node size of 2% of dataset size. This is a reasonable percentage
because the smallest dataset is the Airfoil Noise, that contains 1502
instances. This ensures that all terminal nodes (Tj) (except one terminal
node of Airfoil Noise model, which contains 21 instances) in the
regression tree fulfills min Tj

�� ��� � � 30. This is akin to using a mini-

mum sample size of 30 for statistical inference. For the anomaly detec-
tor, we apply CART with bagging [29] (with its default setting of 10
component models) to improve the detection performance.

To evaluate the robustness and performance of the models, the
random train:test partitioning scheme is repeated 30 times. Each
time, a unique random-number-generation seed is used. After the
30 iterations, we assess the overall models’ performance.

For the purposes of model evaluation, YTest is used to evaluate T
using the MAE of the estimated predictions i.e.,
MAE ¼ 1

n

P
yTest � dyTest jj , where n is the size of the test dataset.

To evaluate A, we first send XTest ;YTestf g through Stages 1 and
1a to generate OTest . It is important to note that OTest is unseen by A.
We evaluate the classification performance of A by comparing OTest

with dOTest . This performance provides some indications of its ability
to detect outliers. If our purpose is to discard the detected outliers,
then sensitivity and specificity are useful measures. The former sug-
gests the proportion of positives (i.e., outliers) that are detected, and
the latter suggests the proportion of negatives (i.e., normal instances)
that will be sacrificed because they are falsely detected as outliers and
will be wrongly discarded.

As mentioned earlier, all the datasets used in our study do not
contain any outlier information. Without the ground truth, it will be
challenging to perform objective evaluation of results. Fortunately,
the negative effects of outliers can be measured using a proxy, which
is the reduction in regression MAE after the outliers have been
detected and removed. Thus, our results report MAEs in three test
data scenarios. The first scenario is denoted as “MAE 1” (All test

data). This represents the scenario where no outlier detection and
filtering process are in place, and the full set of test data is being
used for evaluation.

The second scenario is denoted as “MAE 2” (Test data with n0

outliers discarded). This is when the anomaly detector has detected
and discarded n0 number of outliers from the test data. This set of
data is used to verify whether there will be a reduction in MAE after
the outliers have been removed.

Since the second scenario uses fewer instances, it is important to
create a control group to ensure that any improvement in results is not
simply due to the use of a smaller sample. Hence, the third scenario,
denoted as “MAE 3” (Test data with random sample of n0 records
discarded), is used to evaluate the model using test data with
instances removed randomly. The number of instances removed is
n0, which is the same as that removed by outlier detection.

Apart fromMAE, we also use other evaluation measures for the
anomaly detector. First, sensitivity is used to measure the proportion
of TP (or outlier) instances detected over the total number of
positives. Likewise, specificity measures the proportion of true
negative (or normal) instances correctly detected, over the total
number of negatives.

4.3. Results

The results of the experiments are presented in Tables 2 and 3.
Each result entry in the tables is represented using mean ± standard
deviation derived from the performance metrics recorded over 30
runs, where each run uses a unique random split in the training
and testing sets (c.f., Section 4.2).

Table 2 shows how well the anomaly detectors can effectively
detect true outliers (i.e., sensitivity) and identify normal instances
(i.e., specificity). These performance measures allow one to
determine whether it is worthwhile to adopt the proposed method
for detecting terminal-node outliers. For example, in a data stream
environment, one may deal with outliers by simply discarding
them. A high sensitivity ensures that a large proportion of true
outliers are discarded. Similarly, a high specificity ensures that a
large proportion of true negatives are retained.

Table 2 shows that the best-performing model is the one created
based on the Auction data, which has testing sensitivity and
specificity of 88.2% and 89.7% respectively. This suggests that
the dataset contains a significant number of detectable outliers. In
particular, the model can detect about 88% of the outliers and
keep close to 90% of the normal instances.

Table 3
MAEs of the regression tree under three scenarios

Test MAE Smart Grid Auction Airfoil Noise Power Plant

MAE1 (all data) 0.028 ± 0.000 1508 ± 105 3.74 ± 0.22 3.61 ± 0.06
MAE2 (remove outliers) 0.026 ± 0.001 1157 ± 189 3.44 ± 0.21 3.45 ± 0.09
MAE3 (remove random data) 0.028 ± 0.001 1489 ± 112 3.73 ± 0.23 3.61 ± 0.07

Table 2
Performance of the anomaly detector

Test performance Smart Grid Auction Airfoil Noise Power Plant

Sensitivity 0.555 ± 0.156 0.882 ± 0.094 0.480 ± 0.141 0.436 ± 0.111
Specificity 0.729 ± 0.087 0.897 ± 0.028 0.744 ± 0.088 0.729 ± 0.076
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The least effective anomaly detection model is the one created
based on the Power Plant data, showing a sensitivity of 0.436. This
indicates that the detector can only identify 43.6% of the outliers
found within terminal nodes. Its specificity is 0.729. If we choose
to discard all the predicted outliers, then 43.6% percent of the true
outliers will be correctly discarded; but at the same time, 27.1%
of the normal cases will be wrongly discarded. In practice, one
needs to evaluate whether it is worthwhile to do so.

There are several possible reasons why a dataset may result in
creating a better anomaly detector compared to another. First, the
outliers should be reasonably separable from the normal instances. In
Section 4.4, we will present some visualizations to illustrate this idea.

However, even if we can see separable outliers in a
visualization, the number of separable outliers must not be too
small (in comparison to the number of normal instances) for
building an accurate anomaly detector. We will discuss this when
examining the visualization results in Section 4.4. Fortunately, by
evaluating sensitivity and specificity, we can make an initial
assessment of the suitability of the proposed method for a given
dataset. Additionally, observing reductions in MAE after outliers are
removed provides confidence that the excluded outliers were indeed
detrimental to the model’s performance.

In terms of MAE, Table 3 shows the MAEs of the regression tree
for each dataset under three scenarios: (i)MAE1 is based on all available
test data; (ii) MAE2 is test data excluding the outliers detected; (iii)
MAE3 is test data excluding instances randomly discarded.

The corresponding MAE1 and MAE3 results show that the
MAEs for these two categories are significantly higher than
MAE2 produced by the proposed method. Overall, Table 3 shows
that all the models created using our proposed approach can result
in statistically significant reductions of MAE in the predictions.
However, it is important to assess whether these error reductions hold
practical significance.

For example, the Power Plant regression tree can reduce the
averageMAE1 of 3.61 toMAE2 of 3.45 after all the detected outliers
are being discarded. One important consideration here is to assess
whether this amount of MAE reduction is worth discarding 27.1%
of normal cases (i.e., 1 – Specificity) in the Power Plant dataset.

Another example is the model performance for the Smart Grid,
where the decrease in MAE from 0.028 to 0.026, though statistically
significant, may require further evaluation to determine its practical
importance.

4.4. Further comparisons and applications

We will use the outlier labels obtained from Stage 1a for outlier
visualization. Additionally, we compare the results with two other
methods.

Firstly, we compare the visualizations with a cluster-based
anomaly detection method used in an IBM product [30]. This
method detects anomalies based on deviations from cluster norms.
It uses log-likelihood distance function, and this is suitable for our
datasets containing mixed data types. The number of clusters is
set to be the same as number of terminal nodes in the
corresponding regression tree being compared.

A similar comparison of outlier visualization will also be
conducted with the RVAE described in Section 2.

Apart from outlier visualization, we will also demonstrate how
the decision rules can be used to better identify the conditions under
which outliers occur. Finally, we will show how the method can be
used for outlier filtering to improve data quality.

Figure 4(a) shows a scatterplot of the atmospheric temperature
(AT) versus the electricity consumption target in the Power Plant

dataset. As temperature AT drops, more electricity is consumed,
likely due to more intensive use of heating systems. The plot
shows all the extreme outliers that are three standard deviations
away from the means of their respective terminal nodes. These
outliers are mostly located at the outer boundaries of the common
data points. This suggests the validity of the outlier obtained from
Stage 1a and they can facilitate data exploration to better
understand outlier characteristics.

Figure 4(b) shows a scatterplot like that of Figure 4(a), but this
time with outliers detected by the cluster-based outlier detector.
Visually, we can observe that the outliers detected are not as
meaningful as compared to the proposed method in Figure 4(a). In
particular, the cluster-based method tends to detect only the
outliers that are substantially below the normal pattern. Outliers
that are above the normal pattern are not detected. In contrast, the

Figure 4
(a) Outliers in the Power Plant dataset (proposed method). (b)
Outliers in the Power Plant dataset (cluster-based anomaly
detection). (c) Outliers in the Power Plant dataset (Robust

Variational Autoencoders)
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proposed method offers a more balanced detections of outliers above
and below the normal pattern.

In Figure 4(c), the outliers detected by the robust variation
encoder tend to cluster around the two extreme ends of the normal
pattern. This may be due to the lack of normal instances available
during autoencoder training, resulting in ineffective discrimination
of reconstruction loss when outliers are present.

Though the visualization is not shown here, we wish to report
that Local Outlier Factor has the worst performance, with most
“outliers” identified within the normal pattern. This could in part
be due to the presence of overlapping regions in the data, which
violates its density assumption.

Figure 5(a) gives another example of how outliers in the Smart
Grid dataset can be visualized using a scatterplot of input feature
Tau1 (i.e., reaction time) variable versus the target variable Stab
(i.e., stability). Like Figure 4(a), the outliers are mainly located
around the outer edge of the normal data points.

Figure 5(b) shows the corresponding results generated using the
cluster-based outlier detector, which is quite poor. This poor result is
due to the use of all 12 equally weighted features in the dataset,
resulting in less effective distance computations because not all
features are useful. In contrast, the outliers in Figure 5(a) were
found based on only a small subset of the features used in the
regression tree. If we use this same subset of features (as the
proposed method) for cluster-based outlier detection, the results
can be improved significantly, as shown in Figure 5(c). This
implies that additional feature selection must be performed before
applying the cluster-based outlier detector.

In Figure 5(d), the quality of outliers detected by the robust
variation encoder is between that of cluster-based outlier detector
with (c.f., Figure 5(b)) and without (c.f., Figure 5(c)) feature
selection. The results of autoencoders and LOF are worst and not
shown here for comparison.

Figure 6 shows a scatter plot depicted using the Frequency (Hz)
and Suction (meter) variables of the Airfoil Noise dataset. The outliers
are points that exhibit higher or lower than expected sound pressure.
Here, a simple scatter plot is not as effective for identifying the outliers,
compared to Figures 4 and 5. This is due to the relatively discrete data
properties, and the lack of clear boundary between normal instances
and anomalies. The visualization results obtained from other
anomaly detection methods are similar, and the corresponding
figures have been omitted for brevity.

However, decision rules of the anomaly detector (constructed in
Stage 2) may help identify the conditions under which outliers occur.
For example, one of the decision rules states that IF
FREQUENCY> 1425 Hz and SUCTION> 0.041 m, THEN 93%
of the data points in this subregion are outliers. The green
boundary in Figure 6 shows the data region defined by this rule.
The mean sound pressure in this subregion is 111 dB, which is
significantly lower than the sound pressure outside this region of
125 dB, suggesting an area that might be worth investigating.

Another situation where outlier visualization may not work is
when the features contain very few discrete values. Using two of
the important discrete-valued features of the Auction dataset,
namely price (i.e., price currently being verified) and Product (i.e.,
Product currently being verified), we can see that most outliers
seem to occur when the price is very low. However, we cannot tell
what the percentage is in the low-price region, as shown in Figure 7.

Although Figure 7 is hard to visualize, we can use the anomaly
detector’s decision structure to understand the conditions under
which anomalies occur. Figure 8 shows a tree map generated from

Figure 5
(a) Outliers in the Smart Grid dataset (Proposed Method). (b)
Outliers in the Smart Grid dataset (Cluster-based anomaly

detection (all features)). (c) Outliers in the Smart Grid dataset
(Cluster-based anomaly detection (selected features)). (d)
Outliers in the Smart Grid dataset (Robust Variational

Autoencoders)

(a)

(b)

(c)

(d)
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the CART decision tree. It suggests that no anomalies are expected
when prices are within a moderate range between 60 to 80, and when
bidder’s capacity is at least one. For higher prices, anomalies are
likely to occur when the product is 4 and below, or when the
bidder’s capacity is less than one. Thus, this is more informative
as compared to Figure 7.

Figure 8 is also aligned with the test results (c.f., Table 2) based
on the Auction dataset. Recall that there is a significant MAE
reduction and high sensitivity and specificity in the models
created from this dataset. This suggests that outlier filtering can

lead to significant reduction of errors. To demonstrate this, we
sort the data points based on their predicted target values in
ascending order. We then plot the original target values, as shown
in Figure 9.

By filtering out the outliers predicted by the anomaly detector,
we observe that the data points become significantly cleaner, as
shown in Figure 10.

5. Conclusion

Finally, we discuss several key insights derived from this study.
Firstly, the notion of Terminal-node Anomalies is a subtype of
residual outliers in regression. This type of anomalies is different
from the common definition of outliers in the literature. This
explains why most of the common anomaly detection methods do
not perform well, since they were not originally designed for the
same purpose.

Secondly, we have shown how residual anomalies can be used
to construct an anomaly detector, which in turn helps qualify the
validity of an estimation. As far as we know, we are not aware of
a similar approach reported in the existing literature.

Thirdly, most distance-based methods assign equal weight to all
features, making their use problematic in high-dimensional spaces.
In contrast, the proposed approach uses only a subset of features
identified by the regression tree (see Figure 5), resulting in better
performance.

Fourthly, automatically labeled outliers can facilitate outlier
visualization in certain datasets. However, this approach may be

Figure 6
Outliers in the Airfoil Self-noise dataset (Proposed Method)

Figure 7
Outliers in the Auction dataset (Proposed Method)
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Outliers removed in the Auction dataset
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less effective in complex data spaces or with features having limited
discrete values. In such cases, the map representation derived from
the decision rules can offer deeper insights into the conditions that
give rise to outliers.

Note that the proposed method is not without limitations.
Firstly, the method requires sufficiently large terminal nodes,
typically with a size of 30 instances or more. For small datasets
(e.g., with 100 instances), a minimum leaf node size of 30 is
impractical. In practice, we advise exercising caution when
working with datasets containing fewer than 1,000 instances.

Another limitation is the need to artificially increase the number
of outliers in order to use CART as an anomaly detector, as CART
requires sufficient instances for effective tree induction [28].

Finally, we offer some possible research directions. Since our
approach fundamentally differs from the existing methods that use
robust loss functions, a direct comparison is not provided in this
paper. However, we believe integrating the proposed method with
a robust loss function could further enhance performance. This is
because the resulting leaf node estimates will become more
resistant against outliers, thereby making anomalies even more
detectable during the prediction stage.
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