
Received: 12 July 2024 | Revised: 10 September 2024 | Accepted: 26 October 2024 | Published online: 31 October 2024

RESEARCH ARTICLE/REVIEW

Automated Defect Detection Using Image
Recognition in Manufacturing

Sercan Dikici1 and Rachel John Robinson1,*

1Department Computer Science, IU International University of Applied Science, Germany

Abstract: This abstract examines the process of creating a binary classification project on defect detection in manufacturing, highlighting
significant learnings and prospective areas that might be tackled differently if the project was to be redone. Obtaining data from Internet
sources is the first critical stage in the procedure. This stage involves obtaining essential datasets from reputable websites. Acquiring
high-quality and varied data is critical to the project’s success since it serves as the foundation for further analysis and modeling. After
acquiring the data, the investigation and comprehension of the dataset begin. This process entails extensive study and analysis to get
insights into the data’s structure, properties, and distribution. Visualization tools are used to comprehend the insights of the data. After
understanding the data, the following step is to construct an efficient input pipeline. This entails preparing and processing the data in
order to provide a streamlined and efficient pipeline for the model. The model is constructed using convolutional neural networks
(CNNs) in TensorFlow using Python after the input data have been set up. CNNs are a good choice for this project since they do jobs
involving images very effectively. To improve the model’s performance and avoid overfitting, activation functions, optimization
methods, and regularization approaches are carefully selected. The Early Stopping strategy is used with the patience parameter to
optimize the training process. When using Early Stopping, the training process is stopped if the performance on the validation set does
not increase after a predetermined number of epochs. The model architecture is effectively developed, trained, and optimized by utilizing
TensorFlow and Python, enabling effective defect identification in the manufacturing process.

Keywords: convolutional neural networks, image recognition, Early Stopping strategy, defect identification

1. Introduction

Reducing processing mistakes in the small production process is
critical for increasing profitability in the manufacturing business. To
eliminate processing mistakes, a quality assurance budget must be
established, manual inspection work must be implemented, and the
production process must be reviewed. Many firms carry out the
inspection process manually; however, there are issues such as
inconsistent accuracy, reliance on inspection staff, and increasing
labor expenses.

There are several types of defects that can occur in casting
processes, and the most common defects can be identified are as
follows:

• Casting Shape Defects
• Blowholes, Pinholes, Open Holes
• Metallurgical defects
• Swells
• Drops
• Shrinkage defects
• Pouring metal defects [1]

The application domain of visual inspection has been significantly
and directly impacted by automated surface-anomaly identification using

machine learning (ML), which has emerged as an intriguing and
promising topic of research [1–3]. In this project, we will test if the
problem of “manual inspection” can be removed by automating the
inspection process in the casting product production process using
ML. By using ML algorithms, we can train a model utilizing a
dataset of tagged photos of both faulty and non-defective castings.
The model will learn the distinct patterns associated with each sort of
defect, allowing it to reliably categorize fresh photos.

The dataset comprises a substantial 10,000 collection of grayscale
images. These images, measuring 300 × 300 pixels, have been
augmented to diversify the dataset and improve the model’s
performance. The dataset is split into two folders for training and
testing a classification model. The “train” folder contains a significant
portion of defect impeller images, while the “test” folder includes a
smaller percentage of defect and non-defect impeller images.

When seeking the former works, it has made significant strides
in automating surface-anomaly detection usingML, but they possess
several limitations. Major weakness is the reliance on insufficiently
varied and often imbalanced datasets, which can result in overfitting
and a lack of generalization whenmodels are exposed to novel defect
types or changes in environmental conditions. Also, few works may
inadequately address the issue of data augmentation specifics and
optimization techniques to enhance model robustness. Extending
it, the integration of practical deployment aspects, such as
real-time processing capabilities and user-friendly interfaces, that
would facilitate seamless adoption in live manufacturing
environments has not been thoroughly investigated in prior

*Corresponding author: Rachel John Robinson, Department Computer Science,
IU International University of Applied Science, Germany. Email: rachel.john-robi
nson@iu.org

Journal of Data Science and Intelligent Systems
2024, Vol. 00(00) 1–9

DOI: 10.47852/bonviewJDSIS42023833

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

mailto:rachel.john-robinson@iu.org
mailto:rachel.john-robinson@iu.org
https://doi.org/10.47852/bonviewJDSIS42023833
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

research. The noted gaps prompt further inquiry to develop more
comprehensive, resilient, and deployable solutions in the defect
detection domain.

The concept of this work is to develop an accurate and efficient
system for detection in manufacturing using supervised learning
methods and image recognition techniques. The main goal is to
improve productivity, reduce costs, and enhance product quality
in the casting industry through automated defect detection.

The structure of the paper starts with studying the theoretical
base coupled with the underlying methodology for this research in
turn getting into the test and results to frame conclusions.

2. Literature Review

Prior studies have shown that automated flaw identification in
manufacturing processes has the potential to improve product quality
and save costs. According to research by [4], the ML techniques can
perform better than traditional machine-vision algorithms that use
support vector machines and hand-engineered features to classify
surface defects. They proved this by using a convolutional neural
network (CNN) with five layers to classify images of various steel
defect kinds. They got outstanding results; nevertheless, their
work was limited since they did not employ ReLU as an
activation function or batch normalization.

Similar deep learning method is used by [5, 6], and their study
achieved a high accuracy rate of 92% in identifying rail surface defects.
They used ReLU and Tanh as activation function and compared and
presented the performance results. One of their important findings was
although network training takes longer, the big DCNN model
outperforms the small and medium DCNN models for classification.

Ref. [7] presented a more efficient network for explicitly
executing defect segmentation. In order to segregate the flaws,
they used a fully convolutional network with 10 layers and both
ReLU and batch normalization. They achieved very good results
(close to 99%) in both anomaly segmentation and classification.
The suggested network has a low parameter count, is stable over a
wide range of surface textures, and gives visual localization and
categorization explanation.

In order to find flaws in metal casting products, [7] used
computer vision techniques and ML algorithms. They used a
segmentation network that locates the surface fault pixel-by-pixel

and image processing methods to extract features. Their research
has a high accuracy rate for a particular goal (crack detection) and
on a particular kind of surface, although the network’s
architecture was not built just for this domain.

In comparison to these related methods, the approach used in this
project follows a similar architecture proposed by [7]. We plan to
employ a binary classification network that locates the surface defect in
pixels and classifies the image as defect or non-defect.

The technical underpinning of the problem involves several key
points. By leveraging these technologies and techniques, we were
able to develop an effective CNN model for automated defect
detection in manufacturing. Within this section, the paper is going
to discuss some of the technical concepts such as a) choosing the
ML model, training, and evaluation, b) software and imported
libraries, c) data collection and preparation.

2.1. Choosing the ML model, training, and
evaluation

ML features as in Figure 1 have lately been used on a range of
computer vision and classification issues, with success in several
domains [6, 8]. The primary benefit of employing ML is that once
an algorithm knows what to do with data, it can do it automatically.
There are a variety of ML algorithms, and the type of method used
is determined by the type of problem to be solved, the amount of
variables, the appropriate model for it, and so on. Here’s a
representation of some of the most often used algorithms inML [6, 8].

Supervised learning is distinguished by the use of labeled
datasets to train algorithms that properly categorize data or predict
outcomes (What Is Supervised Learning?) Deep learning is a
subset of ML, which uses numerous layers of neural networks to
process vast amounts of data and perform computations on it.
CNN is a supervised form of deep learning that is most frequently
employed in computer vision and image recognition [9].
Derivatives play a crucial role in optimizing Neural Networks,
allowing to fine-tune the model’s performance.

There are 3 layers used in neural networks, and these are the
input layer, the hidden layer(s), and the output layer, and apart
from the input layer, activation functions need to be employed
while creating these layers to perform calculations. The input
layer only stores the incoming data, and there are no calculations

Figure 1
Machine learning algorithms

Source: Adapted from [9]

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

02

made here; therefore, there is also no activation function used. There
are some activation functions that are commonly used, and they are
responsible for introducing non-linearity into the inherently linear
operations of neural networks [2, 10]. When building a binary
classification model under supervised learning, the sigmoid function
needs to be utilized at the output layer, where the output is
interpreted as a class label [2]. In the hidden layers of the model,
we utilized the widely adopted activation function known as
Rectified Linear Unit (ReLU), depicted in Figure 2. ReLU is a
commonly employed activation function in Neural Networks for
hidden layers and works well with supervised and unsupervised
learning models, enabling effective modeling of complex
relationships between variables. It works especially well when the
precise variables and their connections are not well stated. ReLU
aids in identifying and modeling complex patterns and relationships
within the data by introducing non-linearity and allowing the
network to learn from the data [3]. In essence, it maintains positive
input values while setting negative input values to zero.

Following this information above, we now can suggest that CNN
would be the best method for finding solution to the business case
problem. To progress and achieve better result in training the
model, the dataset was divided into training, validation, and testing
sets. We made model parameter improvements as the training
process progressed.

2.2. Software and imported libraries

We made use of a variety of software tools, coding languages,
and libraries specific to the issue. This might have included a source-
code editor called Visual Studio Code and well-known programming
language, Python.

Popular libraries like pandas, NumPy, and Matplotlib were used
for data processing and visualization. NumPy allowed for efficient
numerical computations, while Pandas offered efficient data
analysis and manipulation capabilities. Data visualization and the

creation of instructive graphs were accomplished using Matplotlib.
We used Keras pre-processing’s Image Data Generator to manage
the images in the dataset. The library offered features for
manipulating, loading, and saving images. This made it possible to
prepare and pre-process the photos for additional analysis.
TensorFlow in combination with Keras is used as library, a high-
level neural networks API, to model the CNN. Callbacks like
Model Checkpoint and Early Stopping were added to save the best
model weights during training and prevent overfitting. I used the
sklearn library’s confusion matrix and Confusion Matrix Display
methods to assess the performance of the model. We were able to
construct a confusion matrix and illustrate the categorization results
as a consequence of this. We also used the classification report
function to obtain classification metrics such as precision, recall,
and F1-score. These technological components supplied the
essential tools and procedures for pre-processing the data, building
the neural network, and properly evaluating its performance.

2.3. Data collection and preparation

Kaggle is a prominent site for sharing and researching datasets,
providing with a dataset linked to the issue domain, especially
manufacturing faults or product quality. Industry professionals,
researchers, or data lovers may have contributed to the dataset. The
dataset is made up of top-view photos of submersible pump
impellers; the source can be reached using this link by [8, 11]. The
collection contains 7,348 photos, all of which are grayscale and
300x300 pixels in size. These photographs have previously been
augmented to increase the variety of the dataset and improve the
model’s performance. Additionally, the dataset was divided into two
folders for training and testing a classification model. There are
3,758 photographs of “defect” impellers and 2,875 images of “non-
defect” impellers in the “train” folder. Similarly, 453 photographs of
defect and 262 images of okay status are included in the “test” folder.

3. Research Method

We constructed a MLmodel for the solution to the problem and
an ML model usually follows this workflow below [12].

• Examine and understand data: This step involves exploring and
analyzing the dataset to gain insights into its structure, features,
and distribution.

• Build an input pipeline: In this step, the data are prepared and
processed to create an efficient input pipeline for the model.
This includes tasks such as data pre-processing, feature
extraction, data augmentation, and data splitting into training,
validation, and testing sets.

• Build the model: This step involves designing and constructing the
model architecture. Depending on the problem and data
characteristics, suitable ML or deep learning models are chosen.

• Train the model: In this step, the model is trained on the training
data using an optimization algorithm and a defined loss function.
The model learns to adjust its parameters by iteratively making
predictions.

• Test the model: After training, the model is evaluated on the testing
data to assess its performance and generalization ability.

• Improve the model and repeat the process: Based on the evaluation
results, the model can be further refined and improved. The steps 2
to 5 are repeated until satisfactory results are achieved.

Building and training the model is one of the most important
steps, and these are the places where we implement the solution to

Figure 2
ReLU activation function

Source: Adapted from [3]

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

03

the problem. The process of dividing a set of elements into two
groups based on a classification rule is known as binary
classification [13]. Therefore, the problem of whether to classify
the surface of the product as a defect or a non-defect is a binary
classification problem. The method we use in steps 3 and 4 is a
CNN which outperforms other neural networks when given inputs
such as images, voice, or audio. CNNs are made up of several
layers, including pooling, convolutional, flatten, and fully linked
layers. These layers are coupled to one another and have
activation mechanisms including sigmoid and ReLU. The
proposed network architecture of CNN for the models’ training
can be visualized as in Figure 3.

Convolutional Layer (Conv2D): The central component of a
CNN is the convolutional layer, which is also where the majority
of computation takes place. It needs input data, a filter, and a
feature map, among other things (What Are CNN?). ReLU
modification is applied to the feature map following each
convolution operation by a CNN, adding non-linearity to the
model. The model takes grayscale images of size 300 × 300
pixels as input and extracts features through convolutional layers.

Pooling Layer (MaxPooling2D): The convolved features spatial
size is decreased by the pooling layer. By lowering the dimensions,
this will lower the amount of CPU power needed to process the data
[14]. We proposed the Max Pooling layer with a pool size of 2 × 2
and a stride of 2. It performs downsampling, reducing the spatial
dimensions of the feature maps.

Flatten: In essence, flattening is the conversion of a matrix
obtained by convolutional and pooling methods into a
one-dimensional array. This is significant because a one-dimensional
array is the requirement for the input of fully connected layers [10, 15].

Fully Connected Layer (Dense): Based on the features that were
gathered by the preceding layers’ various filters, this layer conducts
the classification operation (What Are CNN?). As the visualization
in Figure 4, each dense layer has specific number of neurons which
are connected to neurons in the next layer. We proposed 2 layers of
fully connected layer (hidden layer) with a size of 128 nodes each.
Both of them apply a ReLU activation function, introducing non-
linearity in Figure 5.

Dropout: In order to avoid overfitting, the Dropout layer
randomly sets input units to 0 with a frequency of rate at each
step during training [16]. To prevent overfitting, a Dropout layer

is added with a rate of 0.3. It implies that every epoch, 30% of
the neurons in this layer will be dropped at random.

Finally, a single node representing the binary classification is
used to generate the output layer. It makes use of a sigmoid
activation function, which generates a number between 0 and 1
that represents the likelihood that the input image belongs to the
positive class.

Figure 3
CNN architecture of the model

Source: Own representation using visualkeras [13]

Figure 4
Flatten visualization

Source: Adapted from [10, 15]

Figure 5
Fully connected layer

Source: Adapted from [16]

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

04

4. Implementation and Testing

The implementation involves the use of a CNN model to
classify images into defect and non-defect categories. Figure 6
below shows the model’s framework in general and method of
building.

After gathering the required dataset from the sources, the first
step is importing the essential libraries and dependencies for data
analysis, picture preparation, and model construction in the
implementation. The libraries imported are:

• Pandas, NumPy, Matplotlib, OS and image (from PIL) for data
analysis and visualization

• Image Data Generator from Keras is for pre-processing.
• Tensor flow and Keras along with Model Checkpoint and Early
Stopping for building and training the model.

• Confusion matrix, Confusion Matrix Display, and classification
report from sklearn for model evaluation [17].

Importing the dataset from the local directory is the next step.
Images from both defective and non-defective objects are imported
from the dataset. A few illustrations of defective and non-defective
goods are included to help the viewer understand the images. The
Figure 7 shows sample images from both categories.

The next step after importing the dataset from the local directory
is showing the quantity of data instances in each class in order to gain
insight into the dataset. This analysis helps in understanding the class
distribution and potential data imbalances. To show the results, we
used a pandas data-frame and counted the images in each directory
with the Python’s len() function, which gets the length of an array.
The quantity of images in each directory is shown as below.

The step prior creating and developing the CNN model is the
image pre-processing. This step in the example includes multiple
sub-steps such as resizing images to a consistent size, converting
them into grayscale images, rescaling pixel values to a range of
0 to 1 by dividing each pixel value by 255 and applying
validation split. All of these steps can be done via Python code in
seconds for whole data of over 7000 images, it is not necessary to
perform a single step manually. It is common to train the model

with the train data and evaluate the performance during the
training with validation dataset. The training and validation
datasets are typically divided 80:20 [18, 19]. Therefore, 20% of
the data are reserved for validation. This is one of the most
important steps whichmay affect the results of training as in Figure 8.

The TensorFlow-Keras framework is used to implement the
CNN model. A sequential model, as its name indicates, enables
layer-by-layer, step-by-step model construction. The model
architecture is made up of a number of layers, including
convolutional, pooling, flatten, and dense layers. The purpose of

Figure 6
CNN model framework

Source: Own representation

Figure 7
Defective and non-defective products

Source: Own representation using Matplotlib

Figure 8
The quantity of images

Source: Own representation using pandas

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

05

each layer is explained in section 4. The model code contains
information on the parameters, such as the number of filters,
kernel size, activation functions (ReLU), and others. The
model.summary() function at the end provides detailed
information about the layers, their output shapes, and the number
of trainable parameters in the model.

After defining the steps of the model, the compile technique is
used to create the model, which prepares it for training. The
optimizer is set to “adam”, which is a popular optimization
algorithm for neural networks. Given that the problem is one of
binary classification, the loss function is designated as “binary
crossentropy” [15, 20]. The “accuracy” statistic is defined as well to
assess how well the model performed during training. The weights
of the model are saved during training using the Model Checkpoint
callback. As a result, we are able to get the top-performing model at
the conclusion of training. If the monitored metric (validation loss in
the model) does not improve for a predetermined amount of epochs,
the Early Stopping callback is built to end the training process early.
It saves computing resources and aids in avoiding overfitting. The
“patience” parameter is set to 3, which means that training will end
if the validation loss does not improve for three successive epochs.

The model is trained using the fit approach. Both the validation
data (validation scaled) and the training data (train scaled) are offered.
The callbacks argument is used to specify the callbacks to be applied
during training, including the Model Checkpoint and Early Stopping
callbacks defined earlier. The model_fit variable will hold the training
history, which contains details about the loss and accuracy values for
each epoch, once the model.fit function has been run.

Model fit function is:

The loss and accuracy curves (Figure 9) are presented to evaluate
how well the trained model performed. These curves show how the
model’s performance develops across the training epochs and may
be used to spot problems like overfitting or underfitting.

We can evaluate the model’s generalizability and categorize
fresh photos with accuracy by testing it with unseen data. The

efficacy and dependability of the model are validated in this stage
using examples from the actual world.

The trained model is tested against the test dataset in the
provided code below to measure its performance. The test loss
and test accuracy are computed using the model.evaluate() method
using the pre-processed test photos, and their related labels are
included in the test scaled dataset. The outcome of this piece of
code shows the loss and accuracy values. Here the loss is 0.0131
(≈ 1%) and the accuracy level is 0.9944 (≈ 99%).

Moving forward, the trained model is used to make predictions
on the test dataset, and in order to gain insight into these predictions,
I have created a confusionmatrix (Figure 10). Confusionmatrix table
is used to describe how well a classification system performs
[21–23]. We can learn more about the model’s performance in
accurately categorizing the test pictures by examining the
confusion matrix, and we can also spot any misclassifications
between the “OK” and “Defect” classes. Moreover, for assessing
recall, precision, specificity, and accuracy, it is quite helpful. The
visualization of confusion matrix shows that 4 images are
misclassified by the model and 711 (449+262) test images are
classified correctly. When we test this model on train dataset, we
can find that we have even better predictions, all the data cases
are predicted better by the model because the model is trained
using these data points. In this case, we have only 15
misclassified points over 5307 images in total. The confusion
matrix for calculated for test dataset and training dataset is
computed and visualized as below.

In the confusion matrixes above, TP: True Positives, TN: True
Negatives, FP: False Positives, and FN: False Negatives can be
identified as follows:

• TP: The cell where Actual OK and Predicted OK matches, 450
observations for test.

• TN: The cell where Actual Defect and Predicted Defect matches,
261 observations, for test.

Figure 9
The loss and accuracy curves

Source: Own representation using Matplotlib

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

06

• FP: The cell where Actual OK and Predicted Defect matches, 1
observation for test.

• FN: The cell where Actual Defect and Predicted OK matches, 3
observations for test. [11, 24]

Using confusion matrix, we can calculate accuracy, precision, and
recall applying the results we received from the matrix to the
formulas below.

The classification report displays a representation of the major
classification metrics on a per-class basis. This provides a more in-
depth understanding of the classifier’s behavior rather than global
accuracy [22, 25]. The report for the case is shown below, where
(a) precision is a measure of a classifier’s exactness, (b) recall is
the classifier’s completeness, (c) the F1 score is a weighted
harmonic mean of precision, the best score is 1.0 and the worst is
0.0, and (d) support is the number occurrences of the classes in
the dataset. Generally, it provides with the overall accuracy of the
model or the percentage of all samples that the classifier
successfully identified.

In the last stage, the trained model is tested against 8
random pictures as samples from test dataset that it did not
see throughout the training process. The purpose is to
compute the probability along with the prediction label that
each image belongs to their class. This testing phase enables
to assess how well the model works on data on which it has
not been explicitly trained, imitating real-world settings. By
evaluating the probabilities, we can determine the model’s
effectiveness, its reliability, and applicability in practical
manufacturing environments. The visualization of this stage
is given in Figure 11 below.

As the results demonstrate high accuracy (99.44%) and low
loss (1.31%) on a specialized test dataset, demonstrating that the
model performs well in categorizing defects, potential
disadvantages need to be considered. The low degree of
misclassification indicates room for improvement, likely
linked to data imbalance or specific defect types that the
model finds challenging. Relative analysis against other state-
of-the-art models like Vision Transformers or advanced
ensembles used for similar purposes in literature could
provide a clearer understanding of the model’s relative
performance, pros, and cons. In addition, the impressive
results seen on the test set might indicate overfitting, as
evidenced by slightly elevated metrics when applied back to
the training set. These refer back to the need for enhanced
generalization strategies. Data augmentation, more large
model datasets featuring different defect types and
environmental conditions, and techniques such as transfer
learning could be used to train models on more generic and
expansive datasets. It might be vital to assess the model’s
robustness across numerous manufacturing settings. Future
research might explore implementing explainable AI
mechanisms to gain further transparency into the model’s
predictions, hence boosting practitioners’ trust in defect
detection robustness. Discovering these areas holds strong
potential for not only refining the existing model but also
extending its applicability and reliability in various real-world
manufacturing environments.

Figure 10
Confusion Matrix

Source: Own representation using Matplotlib

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

07

5. Conclusions and Recommendations

In conclusion, this research paper described a method for
classifying surface defects using CNNs that can extract supervised
features directly from the pixel representation of the steel defect
photos and classify them as defect or non-defect. TensorFlow-
Keras is used to implement the CNN model, which consists of
convolutional, pooling, flattening, and dense layers. In order to
collect and extract pertinent features from the input photos, the
model architecture is created. The model is trained on the specific
dataset and tested on other images which the model did not see
during training. The model achieved very good performance, 99%
accuracy, on classifying objects and detecting surface anomaly on
this particular product; however, learning on new products is also
possible with small modifications.

It is crucial to remember that the method we have suggested is
specialized to a particular kind of activity and can have some
application restrictions. For instance, complex 3D-manufactured
items may need further analysis. Particularly, the tasks that can be
expressed as binary classification problems with pixel-wise
interpretation are best suited for the architecture we have created.
This project can also be furthered by applying the flaw detection
approach in a real work workplace. By creating a user-friendly
interface, manufacturing staff may quickly upload photos for
examination and get real-time feedback on the existence of flaw.
For instance, Cognex is a major provider of machine-vision
systems, particularly those built on CNN models. Cognex has an
example-based system that rapidly and accurately identifies
complicated abnormalities without the requirement for visual
knowledge [19, 26, 27]. Overall, there is tremendous potential to
enhance quality control procedures with the introduction of an
automated defect detection system using picture recognition in
manufacturing. Manufacturers can improve their capacity to
recognize and categorize errors properly by utilizing CNN models
and picture pre-processing techniques. This can then result in
greater production, less waste, and higher levels of client satisfaction.

Despite there being wide research on deep learning
methodologies for defect detection, this study’s novel findings

include achieving exceptionally high accuracy within the specific
context of defect detection and processing a real-time, end-user-
friendly deployment interface for practical manufacturing
scenarios, adopting both high-performance and real-world
applicability. In addition, while a comprehensive comparative
analysis with different models would enrich the future research,
the results provide a promising baseline. The work for the future
can indeed involve more broad experiments and benchmarks to
further validate and compare the present approach.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
this work.

Data Availability Statement

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

Author Contribution Statement

Sercan Dikici: Conceptualization, Methodology, Software,
Investigation, Resources, Data curation, Project administration.
Rachel John Robinson: Conceptualization, Methodology,
Validation, Formal analysis, Writing – Original draft, Writing –

Review & editing, Visualization, Supervision, Project administration.

References

[1] Ahsan, M. M., Luna, S. A., & Siddique, Z. (2022). Machine-
learning-based disease diagnosis: A comprehensive review.
Healthcare, 10(3), 541.

Figure 11
The predicted labels and probabilities

Source: Own representation using Matplotlib library

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

08

[2] Harjoseputro, Y. (2020). A classification Javanese letters
model using a convolutional neural network with KERAS
framework. International Journal of Advanced Computer
Science and Applications, 11(10). https://doi.org/10.14569/
IJACSA.2020.0111014

[3] Ieracitano, C., Mammone, N., Hussain, A., & Morabito, F. C.
(2020). A novel multi-modal machine learning based approach
for automatic classification of EEG recordings in dementia.
Neural Networks, 123, 176–190.

[4] Brennan, M. C., Keist, J. S., & Palmer, T. A. (2021). Defects in
metal additive manufacturing processes. Journal of Materials
Engineering and Performance, 30, 4808–4818. https://
doi.org/10.1007/s11665-021-05919-6

[5] Chen, L., Li, S., Bai, Q., Yang, J., Jiang, S., &Miao, Y. (2021).
Review of image classification algorithms based on
convolutional neural networks. Remote Sensing, 13(22), 4712.

[6] Gavrikov, P. (2023).Visualkeras for Keras/TensorFlow [Python].
Retrieved from: https://github.com/paulgavrikov/visualk-eras

[7] Faghih-Roohi, S., Hajizadeh, S., Núñez, A., Babuska, R., & De
Schutter, B. (2016). Deep convolutional neural networks for
detection of rail surface defects. In 2016 International Joint
Conference on Neural Networks, 2584–2589. https://doi.org/
10.1109/IJCNN.2016.7727522

[8] Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised
machine learning: A brief primer. Behavior Therapy, 51(5),
675–687.

[9] Gosala, B., Chowdhuri, S. R., Singh, J., Gupta, M., & Mishra,
A. (2021). Automatic classification of UML class diagrams
using deep learning technique: Convolutional neural
network. Applied Sciences, 11(9), 4267. https://doi.org/10.
3390/app11094267

[10] Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola,
P., : : : , & Krishnan, D. (2020). Supervised contrastive
learning. Advances in Neural Information Processing
Systems, 33, 18661–18673.

[11] Pant, A. (2019). Workflow of a machine learning project.
Medium. Retrieved from: https://towardsdatascience.com/wo
rkflow-of-a-machine-learning-project-ec1dba419b94

[12] Kattenborn, T., Leitloff, J., Schiefer, F.,&Hinz, S. (2021). Review
on convolutional neural networks (CNN) in vegetation remote
sensing. ISPRS Journal of Photogrammetry and Remote
Sensing, 173, 24–49.

[13] Kersten, J., Bongard, J., & Klan, F. (2022). Gaussian processes
for one-class and binary classification of crisis-related tweets.
In ISCRAM, 664–673.

[14] Ketkar, N., Moolayil, J., Ketkar, N., & Moolayil, J. (2021).
Convolutional neural networks. Deep Learning with Python:
Learn Best Practices of Deep Learning Models with
PyTorch, 197–242.

[15] Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., & Fricout,
G. (2012). Steel defect classification with max-pooling
convolutional neural networks. In The 2012 International

Joint Conference on Neural Networks, 1–6. https://doi.org/
10.1109/IJCNN.2012.6252468

[16] Kulkarni, A., Chong, D., &Batarseh, F. A. (2020). Foundations
of data imbalance and solutions for a data democracy. In
Batarseh, F. A. and Yang, R. X. (Eds.), Data Democracy
(pp. 83–106). Academic Press. https://doi.org/10.1016/B978-
0-12-818366-3.00005-8

[17] Louhenkilpi, S. (2024). Continuous casting of steel. In
Seetharaman, S. (Ed.), Treatise on Process Metallurgy
(pp. 343–383). Elsevier.

[18] Mahesh, B. (2020). Machine learning algorithms – A review.
International Journal of Science and Research, 9(1), 381–386.

[19] Petry, J. (2020). Deep learning expands into assembly,
packaging, kitting onspection. Quality, 8(10), 8VS–10VS.

[20] Völz, B., Behrendt, K., Mielenz, H., Gilitschenski, I., Siegwart,
R., & Nieto, J. (2016). A data-driven approach for pedestrian
intention estimation. In 2016 IEEE 19th International
Conference on Intelligent Transportation Systems,
2607–2612. https://doi.org/10.1109/ITSC.2016.7795975

[21] Mery, D. (2020). Aluminum casting inspection using deep
learning: A method based on convolutional neural networks.
Journal of Nondestructive Evaluation, 39(1), 12.

[22] Patil, A., & Rane, M. (2021). Convolutional neural networks:
An overview and its applications in pattern recognition. In
Information and Communication Technology for Intelligent
Systems: Proceedings of ICTIS 2020, 1, 21–30.

[23] Tabernik, D., Šela, S., Skvarč, J., & Skočaj, D. (2020).
Segmentation-based deep-learning approach for surface-
defect detection. Journal of Intelligent Manufacturing, 31(3),
759–776. https://doi.org/10.1007/s10845-019-01476-x

[24] Nayak, D. R., Das, D., Dash, R., Majhi, S., &Majhi, B. (2020).
Deep extreme learning machine with leaky rectified linear unit
for multiclass classification of pathological brain images.
Multimedia Tools and Applications, 79, 15381–15396.

[25] Racki, D., Tomazevic, D., & Skocaj, D. (2018). A compact
convolutional neural network for textured surface anomaly
detection. In 2018 IEEE Winter Conference on Applications of
Computer Vision, 1331–1339. https://doi.org/10.1109/WACV.
2018.00150

[26] Wang, Z. J., Turko, R., Shaikh, O., Park, H., Das, N., Hohman,
F., : : : , & Chau, D. H. P. (2020). CNN explainer: Learning
convolutional neural networks with interactive visualization.
IEEE Transactions on Visualization and Computer Graphics,
27(2), 1396–1406.

[27] Yathish, V. (2022). Loss functions and their use in neural
networks. Towards Data Science. Retrieved from: https://to
wardsdatascience.com/loss-functions-and-their-use-in-neural-
networks-a470e703f1e9

How to Cite: Dikici, S., & Robinson, R. J. (2024). Automated Defect Detection
Using Image Recognition in Manufacturing. Journal of Data Science and
Intelligent Systems. https://doi.org/10.47852/bonviewJDSIS42023833

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

09

https://doi.org/10.14569/IJACSA.2020.0111014
https://doi.org/10.14569/IJACSA.2020.0111014
https://doi.org/10.1007/s11665-021-05919-6
https://doi.org/10.1007/s11665-021-05919-6
https://github.com/paulgavrikov/visualk-eras
https://doi.org/10.1109/IJCNN.2016.7727522
https://doi.org/10.1109/IJCNN.2016.7727522
https://doi.org/10.3390/app11094267
https://doi.org/10.3390/app11094267
https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94
https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94
https://doi.org/10.1109/IJCNN.2012.6252468
https://doi.org/10.1109/IJCNN.2012.6252468
https://doi.org/10.1016/B978-0-12-818366-3.00005-8
https://doi.org/10.1016/B978-0-12-818366-3.00005-8
https://doi.org/10.1109/ITSC.2016.7795975
https://doi.org/10.1007/s10845-019-01476-x
https://doi.org/10.1109/WACV.2018.00150
https://doi.org/10.1109/WACV.2018.00150
https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9
https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9
https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9
https://doi.org/10.47852/bonviewJDSIS42023833

	Automated Defect Detection Using Image Recognition in Manufacturing
	1. Introduction
	2. Literature Review
	2.1 Choosing the ML model, training, and evaluation
	2.2 Software and imported libraries
	2.3 Data collection and preparation

	3. Research Method
	4. Implementation and Testing
	5. Conclusions and Recommendations
	Ethical Statement
	Conflicts of Interest
	Data Availability Statement
	Author Contribution Statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

