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Abstract: Phonocardiograms (PCG) provide a non-invasive approach to analyzing heart sounds, making them vital for the early detection of
cardiac issues. However, identifying themost effective machine learningmodels and feature extraction techniques for classifying PCG signals
remains a challenge. This study aims to determine the most efficient and accurate combinations of machine learning models and feature
engineering techniques for classifying PCG signals, with the overarching goal of enhancing diagnostic capabilities in heart health. Seven
machine learning algorithms—Logistic Regression, Decision Tree, Random Forest, Naive Bayes, AdaBoost, XGBoost, and Support
Vector Machine (SVM)—were evaluated. Feature extraction methods such as Mel-frequency cepstral coefficients (MFCC), Linear
Predictive Coding (LPC), and Short-Time Fourier Transform (STFT) were applied. Model performance was assessed using metrics
including accuracy, precision, recall, and F1-score. The study found that advanced models like XGBoost and Random Forest,
particularly when combined with STFT and MFCC features, consistently outperformed others. These models demonstrated superior
accuracy and F1-scores, although they also introduced higher computational complexity. The results suggest that sophisticated model-
feature combinations, particularly involving XGBoost and Random Forest with STFT and MFCC, hold promise for improving cardiac
diagnostics.
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1. Introduction

Cardiovascular diseases (CVDs) remain one of the leading
global health challenges, with millions of lives lost annually, as
reported by the World Health Organization (WHO) [1, 2].
Early and accurate diagnosis is critical in reducing the mortality
and morbidity associated with CVDs. Among various diagnostic
techniques, electrocardiography (ECG) is a widely recognized
non-invasive method that provides a viable alternative to
more invasive procedures such as coronary angiography. In recent
years, Phonocardiograms (PCG) have gained attention for their
ability to visually represent heart sounds captured through
auscultation, thereby extending the diagnostic capabilities
beyond the limitations of human hearing [3, 4]. PCG signals,
obtained using a sensitive microphone or phonocardiographic
transducer placed on the chest, capture the timing, intensity, and
frequency of heart sounds, providing valuable insights into cardiac
function and potential abnormalities such as murmurs or valve
disorders.

Research Context: The clinical relevance of PCG lies in its
non-invasive nature and its utility in the early detection of various
cardiac conditions, including valvular heart diseases, septal
defects, and heart failure. Its versatility allows for use in a variety
of clinical settings, from advanced inpatient cardiac units to
outpatient clinics, making it accessible even in resource-limited
environments and telemedicine [3]. However, the interpretation of
PCG signals traditionally requires clinical expertise, which may
limit its widespread adoption. This challenge presents an
opportunity for innovation through the integration of Machine
Learning (ML) techniques [5–10]. By leveraging ML’s
computational power, vast amounts of acoustic data can be
processed into actionable insights, enabling the early detection of
cardiac abnormalities that might otherwise be missed. As
healthcare increasingly moves towards precision medicine,
enhancing the diagnostic capabilities of PCG with ML becomes
increasingly important.

Before ML models can be applied to PCG data, signal
segmentation and feature extraction are essential steps. Feature
extraction, in particular, is crucial as it transforms raw PCG
signals into analytically meaningful components [2, 11–14].
Various studies have employed different feature extraction
techniques for analyzing PCG data [15–18]. For instance, Debbal
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and Hamza as well as Aziz et al. [19, 20] emphasized the importance
of time-frequency analysis and wavelet transforms, which provide
insights into both time and frequency domains. Mel-frequency
cepstral coefficients (MFCCs), widely used to capture the spectral
characteristics of sounds, have proven effective in differentiating
between normal and abnormal cardiac sounds [18]. Techniques
like discrete wavelet transform (DWT) and Shannon entropy have
also been employed to uncover hidden patterns in PCG data,
particularly in the detection of critical conditions like myocardial
infarction (MI) [16].

Scope & Significance: This study takes a comprehensive
approach by exploring various feature extraction techniques to
capture the diverse characteristics of heart sounds. The primary
objective is to identify the most efficient and accurate
combinations of machine learning models and feature extraction
methods for classifying PCG signals, with the ultimate goal of
improving heart health diagnostics. By disseminating the results to
the medical community and healthcare professionals, this study
aims to accelerate the adoption of ML-enhanced PCG analysis in
clinical practice. The findings could have a significant impact on
the implementation of non-invasive diagnostic tools in hospitals
and clinics, particularly in resource-limited settings where
advanced diagnostic instruments may not be readily available.

The remainder of this manuscript is structured as follows:
Section 2 reviews the related works, Section 3 presents the
research methodology employed in this study, Section 4 analyzes
and discusses the results, and Section 5 concludes the study.

2. Literature Review

The PCG serves as a crucial tool for capturing the intricate valve
signals of the heart, providing insight into its inner workings akin to a
conductor orchestrating life’s symphony. However, decoding these
complex vibrations has historically posed a challenge. Recent strides
in advanced ML techniques have emerged as a groundbreaking
solution, revolutionizing the classification of PCG signals. This
literature review explores the landscape of PCG classification
utilizing ML methodologies, addressing methodological
approaches, overcoming challenges, and envisioning a promising
future for cardiovascular health.

Signal Processing methods, like time-frequency analysis and
wavelet transform, are vital for extracting valuable information
from PCG data [21]. PCG signals are segmented before input into
ML models. MFCCs capture sound spectrum characteristics,
aiding in distinguishing regular and abnormal cardiac [22].
Spectral features analyze energy distribution across frequencies,
while time-domain analysis provides insights into cardiac events.

Recent advancements in signal processing and analysis have
unlocked the hidden beats of the human heart through PCG
signals, fostering profound interest in the medical community [2,
23]. In a study by Hernández-Ibarra et al. [11], spectral and sparse
methods were compared for identifying anomalies in PCG signals,
crucial for cardiovascular disease detection. They employed a
Random Forest classifier, incorporating features like MFCCs,
LPC, and MP, which showed improved diagnostic accuracy over
individual techniques, particularly with suboptimal recordings.
Findings underscored the necessity of data balancing techniques
like SMOTE for precise categorization in imbalanced datasets.

Movahedi et al. [6] introduced a novel method using hidden
Markov models to efficiently segment ECG and PCG signals,
enabling precise quantitative analysis and diagnosis by accurately
separating cardiac signals from PCG data. Khan et al. [24]

researched classification algorithms for detecting cardiac
abnormalities, emphasizing variables in frequency and time
domains and their interactions. The study meticulously examines
sound aspects, including regular heart rhythm and murmurs’ rapid
fluctuations. In 2022, Yang et al. [13] introduced a novel feature
extraction method from PCG data using fuzzy logic, selectively
identifying valuable notes while filtering out noise. Four machine
learning algorithms were compared to evaluate the features,
enhancing cardiac problem diagnosis.

Various machine learning and deep learning algorithms have been
explored for classifying PCG signals, demonstrating their efficacy in
identifying PCG signals despite intricate patterns [5, 7, 17, 25–27].

The emergence of CNNs and other deep learning techniques has
revolutionized PCG classification, as they possess exceptional ability in
detecting subtle patterns, akin to virtuosos [14, 28]. In a study by
Mukherjee et al. [7], a novel U-Net deep learning framework is
introduced to mitigate noise interference in PCG signals, enabling
the elimination of common real-world noises such as sneezing and
coughing. These advancements enable a more comprehensive
understanding of the cardiac symphony, improving both human and
computer decision-making and diagnoses in cardiac health
assessment. Li et al. [25], on the other hand, employed CNNs for
automatic classification, showcasing remarkable performance in
detecting hierarchical characteristics in PCG signals. Hassanuzzaman
et al. [26] utilized deep learning algorithms to detect and diagnose
congenital heart disease (CHD) by analyzing faint heart sounds in
youngsters. They developed a remarkable one-dimensional
convolutional neural network (1D-CNN) trained on
phonocardiogram recordings from pediatric patients. This approach
shows promise for early identification and management of
congenital heart abnormalities in children. Altaf et al. [5] provide a
thorough analysis of ML and DL applications in PCG classification,
offering valuable insights into cardiovascular diagnosis. They
highlight the potential of these technologies to revolutionize the field
by providing datasets, algorithms, and feature extraction strategies.

This paper addresses a critical gap in existing literature,
representing one of its most significant contributions. Until now,
there has been a notable absence of comprehensive analyses
comparing the performance of multiple ML models trained on
various PCG signal features selection techniques. By offering
detailed insights into the most effective model-feature
combinations, this study not only fills a crucial void in current
knowledge but also provides valuable guidance for future research
and practical applications in the field of biological signal processing.

3. Research Methodology

This section outlines a systematic approach using sophisticated
machine learning techniques to analyze and categorize PCG data,
focusing on the Physionet Challenge 2016 dataset [29]. It involves
stages like data preparation, feature extraction, model selection
and training, and validation. Precision is ensured through
procedures like normalization, denoising and feature extraction,
leading to model assessment via cross-validation.

3.1. Dataset description

This work relies on the PhysioNet Challenge 2016 dataset [29],
which contains extensive heart sound recordings. The dataset
includes PCG signals from various ages, health conditions and
environments, recorded in clinical and home settings using
different equipment. The diversity of heart sounds makes
distinguishing between normal and abnormal sounds challenging,
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reflecting real clinical scenarios. The dataset includes annotations
and metadata with contextual information on recording conditions,
participants’ health, and specialist evaluations. Making it ideal for
training robust machine learning models for PCG signal
interpretation.

The database comprises 4,430 recordings from 1,072 subjects,
resulting in a total of 233,512 heart sound samples, collected from
both healthy individuals and patients with various conditions,
including heart valve disease and coronary artery disease. These
recordings were gathered using diverse equipment in both clinical
settings and nonclinical environments, such as in-home visits. The
duration of each recording ranged from a few seconds to several
minutes. Additional data provided includes subject demographics
(age and gender), details of the recordings (number per patient,
body location, and duration), synchronously recorded signals
(such as ECG), sampling frequency, and the type of sensor used.
Participants were asked to classify the recordings as normal,
abnormal, or not possible to evaluate due to noise or uncertainty.

3.2. Data preparation and preprocessing

The audio recordings from the dataset are imported in
waveform format and converted into a numerical representation
for analysis. Standardizing the data ensures uniformity, and
normalization reduces the impact of variations in recording
equipment or conditions. Annotations from the PhysioNet dataset
categorize the recordings as “normal” or “abnormal.” To maintain
uniformity for effective pattern recognition and feature extraction,
the PCG signals are segmented into equal lengths. Precise data
preparation is essential for accurate analysis and classification of
PCG signals. Using the PhysioNet Challenge 2016 dataset
enhances the work’s applicability in real-life clinical
environments, adding authenticity and complexity.

3.3. Feature extraction

Feature extraction is a crucial aspect of this inquiry, since it is
employed to convert unprocessed PCG signals into components that
are analytically valuable. This study adopts a comprehensive
approach by gathering all the different characteristics of heart
sounds through seven different feature extraction techniques.
These feature extraction techniques are MFCCs, LPC, STFT,
Chroma features, Spectral contrast, Tonnetz and Pitch features.
The integration of all the methodologies synergistically enhances
data analysis by providing a comprehensive perspective.

3.4. ML models training and validation

The core of this study involves selecting and training seven
machine learning models to classify PCG signals, with each stage
meticulously addressing key aspects of themachine learning process.

Each model undergoes a rigorous training procedure designed
to differentiate between normal and abnormal PCG signals. The
models are trained independently on the dataset, optimizing their
internal parameters—such as neural network weights or decision
tree split criteria—to minimize prediction errors. To ensure robust
model performance, efforts are made to expose each model to a
balanced distribution of normal and abnormal signals. Model
performance is continuously monitored using metrics like training
loss and accuracy, with adjustments made as needed to address
issues like overfitting, such as modifying the training data or
altering the learning rate.

A 5-fold cross-validation approach is employed to
comprehensively evaluate each model. The training dataset is
divided into five equal parts, and in each iteration, a different
subset is used for validation while the remaining portions are used
for training. This process is repeated five times, ensuring that the
model’s efficacy is assessed across different subsets of the dataset.

Hyperparameter tuning is the final step in the training and
validation process. Specific model parameters are fine-tuned using
methods like grid search, systematically exploring different
parameter combinations. Each model is evaluated with various
parameter values to identify the most effective combination that
maximizes accuracy and generalizability. This rigorous and
iterative process of training, validation, and hyperparameter tuning
is crucial for ensuring the accuracy and reliability of the study’s
findings. Important hyperparameters of each ML model have been
presented in Table 1.

Logistic Regression (LR) Logistic Regression is chosen for its
simplicity, speed, and interpretability, making it a fundamental
model for binary classification [30, 31]. A high max_iter
parameter ensures sufficient iterations for complex datasets, while
the random_state parameter ensures reproducibility, aiding in the
assessment of more sophisticated models’ effectiveness.

Table 1
Hyperparameters for ML models

Model Hyperparameters Setting

LR C 1.0
solver lbfgs
max_iter 100
penalty 12

KNN n_neighbors 5
Weights uniform
Algorithm Auto
p 2

DT criterion Gini
max_depth None
min_samples_split 2
random_state none

RF n_estimators 100
criterion Gini
max_depth None
min_sample_split 2
min_sample_leaf 1
Bootstrap True
random_state None

NB var_smoothing 1e-9
AdaBoost n_estimators 50

learning_rate 1.0
random_state 175
base_estimator

XGBoost n_estimators 100
learning_rate 0.1
subsample 1.0
colsample_bytree 1.0
gamma 0
reg_alpha 0
reg_lambda 1
random_state 175
n_jobs 1
max_depth 6
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K-Nearest Neighbors (KNN) K-Nearest Neighbors is a non-
parametric model, ideal for feature-based classification when
parametric models cannot establish linear relationships [32–34].
The n_neighbors parameter balances variance and bias, fine-
tuning the model to avoid overfitting or underfitting.

Decision Tree (DT) Decision Tree models excel in visually
representing complex decision-making processes and are well-
suited for handling intricate data patterns and non-linear
correlations [35, 36]. The random_state parameter ensures
consistent decision tree generation, providing stable results
throughout the study.

Random Forest (RF) Random Forest, an ensemble of decision
trees, reduces overfitting and enhances interpretability compared to
individual decision trees [37, 38]. The model’s randomness in
training enhances accuracy and resilience, while the n_jobs
parameter optimizes CPU resource usage for large datasets.

Gaussian Naive Bayes (NB) Gaussian Naive Bayes is a
probabilistic approach particularly effective in high-dimensional
feature spaces like audio signal processing [39, 40]. Although it
assumes feature independence—which may not always hold in
real-world data—it remains a fast and effective model for the task
at hand.

AdaBoost AdaBoost improves the performance of weak
classifiers by iteratively adjusting the weights of misclassified
instances [17, 41]. The random_state parameter ensures consistency
in the sequential processes, leading to steady model performance.

XGBoost XGBoost is known for its exceptional performance,
scalability, and efficiency, particularly in handling large datasets
with numerous features [42, 43]. The use_label_encoder
parameter enhances the handling of categorical data, while the
eval_metric parameter is used to assess training effectiveness.
This model excels in dealing with sparse data, performing rapid
gradient boosting, and executing regularized boosting.

Each model was carefully selected and configured to address
the specific challenges posed by the PCG dataset. The subsequent
training and validation stages leveraged the strengths of each
model, laying a solid foundation for the study’s findings.

3.5. ML models evaluation

To rigorously evaluate the effectiveness of each machine
learning model with various feature types, we employed several
key performance metrics. Class 0 and Class 1 used in the tables
indicate normal and abnormal PCG signals respectively.

Accuracy Metrics

1) Cross-Validation Accuracy: This represents the average
accuracy across multiple training and testing iterations,
ensuring a more robust evaluation of the model’s performance.

2) Test Set Accuracy: This is the percentage of correctly classified
instances in a dedicated test set, providing a final assessment of
the model’s generalization ability.

3) Validation Set Accuracy: Similar to the test set, this is used to
evaluate the model’s performance on unseen data during the
training process, helping to tune hyperparameters.

Precision and Recall Metrics

1) Test Set Precision (Class 0/1): Precision measures how many of
the instances predicted as class 0 (or 1) are actually class 0 (or 1).
A high precision indicates few false positives.

2) Test Set Recall (Class 0/1): Recall measures how many of the
actual class 0 (or 1) instances were correctly predicted. A high
recall indicates few false negatives.

F1-Score Metrics

1) Test Set F1-Score (Class 0/1): The F1-score is the harmonic
mean of precision and recall, providing a balanced measure of
both. A high F1-score indicates good performance in terms of
both precision and recall.

2) WeightedAvgF1-Score (Test Set):This is the averageF1-score
across all classes, weighted by the number of instances in each
class. It provides an overall evaluation of the model’s
performance, considering the class distribution.

These metrics are essential for evaluating the performance of a
machine learning model, especially in classification tasks. They help
to assess the model’s accuracy, precision, recall, and overall
effectiveness in predicting the correct class for given instances.

4. Results

In this section, we conduct a comprehensive analysis of seven
machine learning models for the identification and classification of
cardiac acoustic signals. Each model was systematically evaluated
using seven distinct feature selection techniques, with their
performance rigorously compared in an exhaustive study.

4.1. ML models with MFCC

Mel-Frequency Cepstral Coefficients (MFCCs) play a pivotal
role in processing auditory information within this investigation
[18, 44, 45]. The PCG signal is first segmented into short frames,
and for each frame, the periodogram estimate of the power
spectrum is calculated. The mel scale, a perceptual scale where
pitches are perceived as equidistant, is then applied to assign
spectral intensities. To derive the MFCCs, the logarithm of the
power values at each mel frequency is taken, followed by a
discrete cosine transform. This method effectively captures the
detailed tonal and textural characteristics necessary for
distinguishing between normal and abnormal cardiac sounds.

We evaluated various machine learning models for the
classification of heart sounds using MFCC features. Among the
models, Random Forest achieved the highest accuracy, exceeding
89% across different evaluation sets, and demonstrated
exceptional performance in identifying normal heart sounds.
Decision Tree and K-Nearest Neighbors (KNN) also produced
strong results, with accuracies exceeding 80%. Interestingly, while
Naive Bayes exhibited a lower overall accuracy, it was
particularly effective in detecting abnormal heart sounds. This
finding suggests that different models may offer specific
advantages depending on the classification task. A summary of
model performance with MFCC features is presented in Table 2.

4.2. ML models with LPC

Linear Predictive Coding (LPC) aims to estimate the coefficients
of a linear filter that closely replicates the original signal when applied
[39, 46, 47]. LPC effectively captures the primary spectral
characteristics, or formants, within cardiac sounds, emphasizing
resonance frequencies that are crucial for identifying heart
problems. K-Nearest Neighbors (KNN) demonstrated the highest
test accuracy (86.15%), highlighting its effectiveness in leveraging
Linear Predictive Coding (LPC) features for heart sound
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classification. Random Forest (RF) and Decision Tree (DT) also
performed well, with strong validation set scores, indicating their
ability to capture the spectral and temporal characteristics of LPC
for accurate classification. Conversely, Naive Bayes (NB) showed
poor performance, achieving only 26.93% accuracy, likely due to a
mismatch between its underlying assumptions and the nature of
LPC data. Table 3 provides a summary of model performance
using LPC features.

4.3. ML models with Chroma

Chroma features, commonly used in music analysis, are
instrumental in identifying harmonic patterns within cardiac sounds.
These features simplify complex spectral shapes into a small number
of bins, each representing one of the twelve semitones. This
reduction process helps minimize background noise, enabling
clearer differentiation of heart sounds and their harmonic
characteristics.

In our analysis, Logistic Regression (LR) and K-Nearest
Neighbors (KNN) achieved moderate test accuracy, approximately
78%, indicating room for improvement in leveraging Chroma
features for heart sound classification. In contrast, Random Forest
(RF) and Decision Tree (DT) performed exceptionally well on
validation sets, demonstrating their capacity to effectively learn
and generalize from Chroma features. This underscores the
potential of Chroma features to capture subtle variations in heart
sound harmonics, which can be valuable in medical diagnosis.

On the other hand, Naive Bayes (NB) performed poorly, with an
accuracy around 50%, suggesting that simpler models may struggle
with the complexity inherent in Chroma features for heart sound
classification. Table 4 provides a summary of model performance
using Chroma features.

4.4. ML models with spectral contrast

Spectral contrast measures the variation within the sound
spectrum by calculating the disparity between its peaks and troughs
[9, 21]. Peaks typically represent harmonic components, while
troughs correspond to noise or less prominent frequencies.
Analyzing spectral contrast provides insights into the textural
fluctuations in heart sounds, making it a valuable tool for detecting
cardiac anomalies.

The evaluation of machine learning models using Spectral
Contrast features yielded two key findings. First, Decision Tree
(DT) and Random Forest (RF) excelled, achieving validation set
accuracies exceeding 96%.

This indicates their strong capability to leverage Spectral
Contrast, which effectively captures the differences between high
and low points in the frequency spectrum, allowing for precise
differentiation between various heart sounds. Second, Logistic
Regression (LR) and K-Nearest Neighbors (KNN) also performed
well, with KNN reaching a test set accuracy of 86.25%. This
suggests that these models hold potential for accurate heart sound
classification using Spectral Contrast features.

Table 2
MFCC feature-based models PCG signal classification

Model

Cross-
Validation
accuracy

(%)

Test set
accuracy

(%)
Validation set
accuracy (%)

Test set
precision
(Class 0)

Test set
precision
(Class 1)

Test set
recall

(Class 0)

Test set
recall

(Class 1)

Test set
F1-score
(Class 0)

Test set
F1-score
(Class 1)

Weighted
Avg F1-score
(Test set) (%)

LR 82.46 83.38 74.07 0.88 0.66 0.91 0.57 0.89 0.61 83
KNN 83.96 84.43 69.54 0.85 0.82 0.97 0.41 0.91 0.55 82
DT 82.99 82.81 97.62 0.89 0.62 0.89 0.62 0.89 0.62 83
RF 89.20 89.97 97.28 0.91 0.84 0.96 0.70 0.94 0.76 90
NB 78.26 81.28 71.23 0.95 0.56 0.80 0.85 0.87 0.68 82
AdaBoost 85.15 86.91 71.12 0.90 0.75 0.94 0.64 0.92 0.69 87
XGBoost 89.94 89.88 97.28 0.92 0.81 0.95 0.73 0.94 0.77 90

Table 3
LPC feature-based models for PCG signal classification

Model

Cross-
Validation
accuracy

(%)

Test set
accuracy

(%)
Validation set
accuracy (%)

Test set
precision
(Class 0)

Test set
precision
(Class 1)

Test set
recall

(Class 0)

Test set
recall

(Class 1)

Test set
F1-score
(Class 0)

Test set
F1-score
(Class 1)

Weighted
Avg F1-score
(Test set) (%)

LR 77.99 78.03 53.23 0.79 0.59 0.97 0.14 0.87 0.22 77
KNN 86.03 86.15 76.44 0.89 0.75 0.94 0.60 0.91 0.66 86
DT 80.59 80.80 96.94 0.89 0.57 0.86 0.63 0.87 0.60 81
RF 86.17 87.68 97.51 0.89 0.82 0.96 0.60 0.92 0.69 87
NB 26.53 26.93 53.11 0.82 0.23 0.07 0.95 0.12 0.37 27
AdaBoost 80.87 81.38 67.16 0.84 0.67 0.94 0.38 0.89 0.48 81
XGBoost 85.95 87.20 97.51 0.90 0.75 0.94 0.66 0.92 0.70 87
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Overall, the results indicate that both complex and simpler
models can effectively utilize Spectral Contrast for heart sound
classification. Table 5 summarizes the performance of the models
with Spectral Contrast features.

4.5. ML models with Tonnetz

Tonnetz features capture the harmonic relationships in an audio
stream by utilizing tonal centroid characteristics [48, 49]. These
features are particularly useful for detecting subtle alterations in
the harmonic structure of cardiac sounds, which may indicate
underlying heart conditions.

In our analysis, the Random Forest (RF) model excelled in
classifying heart sounds using Tonnetz features, achieving a high
accuracy of 95.81%. In contrast, simpler models such as Logistic
Regression (LR) and K-Nearest Neighbors (KNN) encountered
difficulties, suggesting that the complexity of Tonnetz features
may require the more sophisticated capabilities of advanced
models like RF to be effectively leveraged. Table 6 provides a
summary of model performance using Tonnetz features.

4.6. ML models with pitch

Pitch features analyze the fundamental frequency of heart
sounds [50]. Variations in this frequency can signify normal or

abnormal cardiac conditions, making pitch characteristics essential
for accurately recognizing these sounds.

In our evaluation, Logistic Regression (LR) and K-Nearest
Neighbors (KNN) demonstrated limited performance with pitch
features, achieving accuracies of 74% and 78%, respectively. In
contrast, Random Forest (RF) and XGBoost exhibited stronger
performance, indicating their enhanced capability to handle
pitch variations critical for diagnosing heart conditions. This
suggests that more complex models may be better suited for
effectively utilizing pitch information in heart sound analysis.
Table 7 summarizes the performance of the models using pitch
features.

4.7. ML models with STFT

Short-Time Fourier Transform (STFT) analyzes the frequency
and phase characteristics of Phonocardiogram (PCG) signals over
brief, overlapping time intervals [51–53]. This method effectively
captures the dynamic fluctuations in heart sounds, providing a
critical representation for identifying cardiac abnormalities.

When evaluating machine learning models for heart sound
classification, STFT features, which represent sound in both the
time and frequency domains, produced the most robust results.
Both advanced models like XGBoost and Random Forest (RF), as
well as simpler models, demonstrated significant accuracy

Table 4
Chroma feature-based models for PCG signal classification

Model

Cross-
Validation
accuracy

(%)

Test set
accuracy

(%)
Validation set
accuracy (%)

Test set
precision
(Class 0)

Test set
precision
(Class 1)

Test set
recall

(Class 0)

Test set
recall

(Class 1)

Test set
F1-score
(Class 0)

Test set
F1-score
(Class 1)

Weighted
Avg F1-score
(Test set) (%)

LR 76.14 76.50 51.53 0.79 0.31 0.96 0.07 0.86 0.12 70
KNN 77.20 78.13 51.76 0.79 0.44 0.98 0.05 0.88 0.09 71
DT 66.94 66.76 96.38 0.80 0.27 0.76 0.32 0.78 0.30 68
RF 77.64 78.80 95.92 0.79 0.61 0.99 0.05 0.88 0.09 71
NB 50.08 50.72 54.02 0.86 0.27 0.44 0.75 0.58 0.36 54
AdaBoost 75.58 76.70 57.30 0.80 0.38 0.94 0.13 0.86 0.20 72
XGBoost 77.00 77.84 96.39 0.82 0.56 0.95 0.26 0.87 0.35 77

Table 5
Spectral contrast feature-based models for PCG signal classification

Model

Cross-
Validation
accuracy

(%)

Test set
accuracy

(%)
Validation set
accuracy (%)

Test set
precision
(Class 0)

Test set
precision
(Class 1)

Test set
recall

(Class 0)

Test set
recall

(Class 1)

Test set
F1-score
(Class 0)

Test set
F1-score
(Class 1)

Weighted
Avg F1-score
(Test set) (%)

LR 84.68 84.91 67.61 0.89 0.68 0.92 0.58 0.91 0.62 85
KNN 85.59 86.25 69.42 0.88 0.78 0.96 0.50 0.92 0.61 86
DT 79.73 78.99 96.72 0.87 0.51 0.86 0.52 0.87 0.52 79
RF 86.20 86.34 97.06 0.89 0.72 0.94 0.59 0.92 0.65 86
NB 77.05 77.46 65.69 0.93 0.49 0.77 0.81 0.84 0.61 77
AdaBoost 84.42 83.86 67.84 0.88 0.64 0.91 0.61 0.90 0.62 84
XGBoost 87.05 87.11 97.73 0.91 0.72 0.93 0.65 0.92 0.68 87
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improvements when utilizing STFT features. This underscores the
effectiveness of STFT in time-frequency analysis, making it a
powerful tool for heart sound categorization. Table 8 provides a
summary of model performance using STFT features.

The impact of feature selection on model performance in
classifying PCG signals is evident across various feature types.
Complex models such as XGBoost and RF consistently performed
well, while simpler models like Logistic Regression (LR) and
K-Nearest Neighbors (KNN) struggled with certain features. This
highlights the importance of selecting the appropriate features, as
they can significantly enhance model accuracy, particularly in the

intricate domain of biological signal processing, such as heart
sound analysis.

5. Discussion

This section provides a detailed analysis of the performance of
various machine learning models in classifying heart sounds using
different feature sets. By critically evaluating the strengths and
limitations of each model and feature combination, we aim to
identify the most effective strategies for heart sound classification.
The discussion highlights key insights into model behavior,

Table 6
Tonnetz feature-based models for phonocardiogram (PCG) signal classification

Model

Cross-
Validation
accuracy

(%)

Test set
accuracy

(%)
Validation set
accuracy (%)

Test set
precision
(Class 0)

Test set
precision
(Class 1)

Test set
recall

(Class 0)

Test set
recall

(Class 1)

Test set
F1-score
(Class 0)

Test set
F1-score
(Class 1)

Weighted
Avg F1-score
(Test set) (%)

LR 77.07 78.41 49.26 0.78 0.00 1.00 0.00 0.88 0.00 69
KNN 77.01 78.41 50.74 0.79 0.50 1.00 0.01 0.88 0.02 69
DT 69.04 69.15 96.49 0.81 0.29 0.80 0.31 0.80 0.30 69
RF 77.18 78.32 95.81 0.79 0.47 0.99 0.04 0.88 0.07 78
NB 40.81 43.08 50.28 0.83 0.24 0.34 0.75 0.49 0.36 43
AdaBoost 75.56 76.70 57.30 0.80 0.38 0.94 0.13 0.86 0.20 72
XGBoost 78.85 79.66 96.49 0.82 0.56 0.95 0.26 0.88 0.35 80

Table 7
Pitch feature-based models for phonocardiogram (PCG) signal classification

Model

Cross-vali-
dation accu-
racy (%)

Test set
accuracy

(%)
Validation set
accuracy (%)

Test set
precision
(Class 0)

Test set
precision
(Class 1)

Test set
recall

(Class 0)

Test set
recall

(Class 1)

Test set
F1-score
(Class 0)

Test set
F1-score
(Class 1)

Weighted
Avg F1-score
(Test set) (%)

LR 72.53 74.21 56.51 0.79 0.26 0.92 0.11 0.85 0.15 70
KNN 76.70 78.23 51.42 0.79 0.47 0.98 0.06 0.88 0.11 71
DT 69.02 69.25 77.80 0.79 0.24 0.83 0.19 0.81 0.21 68
RF 76.46 77.46 77.69 0.79 0.40 0.96 0.09 0.87 0.14 71
NB 75.05 76.03 49.49 0.79 0.29 0.95 0.08 0.86 0.12 70
AdaBoost 77.11 78.03 50.74 0.79 0.42 0.98 0.05 0.88 0.09 71
XGBoost 76.72 78.41 65.12 0.79 0.50 0.98 0.07 0.88 0.12 71

Table 8
STFT feature-based models for phonocardiogram (PCG) signal classification

Model

Cross-
Validation
accuracy

(%)

Test set
accuracy

(%)
Validation set
accuracy (%)

Test set
precision
(Class 0)

Test set
precision
(Class 1)

Test set
recall

(Class 0)

Test set
recall

(Class 1)

Test set
F1-score
(Class 0)

Test set
F1-score
(Class 1)

Weighted
Avg F1-score
(Test set) (%)

LR 81.35 83.38 91.28 0.90 0.61 0.89 0.65 0.89 0.63 84
KNN 87.08 88.63 72.59 0.90 0.81 0.96 0.62 0.93 0.70 88
DT 83.65 83.38 96.26 0.90 0.61 0.89 0.62 0.89 0.62 83
RF 87.68 88.44 97.28 0.90 0.82 0.96 0.59 0.93 0.69 88
NB 69.44 71.16 63.87 0.92 0.41 0.69 0.79 0.79 0.54 74
AdaBoost 86.32 86.44 72.71 0.90 0.71 0.93 0.64 0.91 0.67 86
XGBoost 90.71 91.31 98.30 0.93 0.84 0.96 0.73 0.95 0.78 91
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feature selection, and their implications for future research and
clinical applications in cardiac diagnostics.

Comparative Analysis of ML Models
This study conducted a comprehensive comparison of machine

learning models for heart sound classification using various feature
sets. Key findings are summarized as follows:

Logistic Regression (LR): LR performed well overall,
particularly with Short-Time Fourier Transform (STFT) features,
which leverage time-frequency analysis. However, it struggled
with more complex features such as Tonnetz and Pitch. This
indicates that LR’s linear nature may limit its ability to capture
the intricate relationships inherent in these feature sets.

K-Nearest Neighbors (KNN): KNN showed strong
performance with STFT and Spectral Contrast features. However,
it exhibited overfitting issues with Chroma and Pitch features,
evidenced by a noticeable drop in accuracy from the validation to
the test set. This suggests that KNN’s generalizability may be
limited when applied to these specific features.

Decision Tree (DT): DT achieved high accuracy on validation
sets using features like Linear PredictiveCoding (LPC), Tonnetz, and
STFT. However, a reduction in accuracy on the test sets suggests
potential overfitting. Despite this, DT effectively captured
fundamental patterns in PCG signals for these specific features.

Random Forest (RF): RF consistently performed well across
various feature types, though it may be prone to overfitting when
dealing with more complex features. RF’s ensemble approach
provided robustness, making it a reliable choice for PCG signal
classification.

Naive Bayes (NB): NB exhibited inconsistent performance
across different feature types. While it excelled in detecting
abnormal signals in certain cases, it struggled with LPC and
Chroma features. This inconsistency likely stems from NB’s
assumption of feature independence, which may not hold true for
the complex structure of PCG data.

AdaBoost and XGBoost: Both models demonstrated superior
performance across all feature sets, with XGBoost particularly
excelling with STFT features due to its strength in time-frequency
analysis. These advanced models effectively combine weaker
learners and iteratively correct errors, resulting in highly accurate
predictions.

Table 9 presents the precision of each machine learning model
when applied to the seven feature types: MFCC, LPC, Chroma,
Spectral Contrast, Tonnetz, Pitch, and STFT. The results
underscore the critical impact of feature selection on model
performance in PCG signal classification.

The analysis revealed that certain models, such as XGBoost and
RF, were highly robust and accurate across multiple feature types.
For instance, RF achieved 89.97% accuracy with MFCCs and
88.44% with STFT, while XGBoost reached 89.88% with MFCCs
and 91.31% with STFT. Conversely, simpler models like NB
showed lower accuracy, particularly with LPC (26.93%) and
Tonnetz (43.08%). This highlights the importance of selecting the
appropriate machine learning models based on the feature sets to
achieve accurate PCG signal classification.

Comparative Analysis of Features
Figure 1 illustrates the comparative analysis of different feature

types in relation to various machine learning models for PCG signal
classification. Several key trends and patterns emerged from this
investigation:

MFCC Features: These features consistently provided strong
classification performance across multiple models, particularly with
ensemble methods like RF (89.97% with MFCCs) and XGBoost
(91.31% with STFT). MFCC features effectively captured
essential audio characteristics, proving reliable across diverse
machine learning models.

LPC Features: While NB struggled with LPC features
(26.93% accuracy), DT (80.80%) and RF (87.68%) excelled. This
suggests that certain models are better equipped to extract relevant
information from LPC features for differentiating cardiac sounds.

Chroma Features: These yielded moderate performance, with
LR achieving 76.50% accuracy and KNN 78.13%. However, when
combined with Spectral Contrast features, DT (78.99%) and RF
(86.34%) delivered outstanding results, leveraging spectral
variations in audio signals effectively.

Tonnetz Features: While most models struggled with these
features, RF (78.32%) and DT (69.15%) maintained relatively
high accuracy, suggesting their potential for extracting tonal
information crucial for heart sound classification.

Pitch Features: Generally, pitch characteristics led to reduced
accuracy across models, except for RF (77.46%) and XGBoost
(78.41%), which performed exceptionally well, indicating their
suitability for handling pitch variations critical in diagnosing heart
conditions.

STFT Features: These were effective across all models,
particularly XGBoost (91.31%), emphasizing their value in time-
frequency representation for heart sound classification.

This study concludes that RF and XGBoost models with
carefully selected features, particularly STFT, holds significant
promise for developing precise and reliable classification systems
in biomedical signal processing. These findings pave the way for

Table 9
Test set accuracies across different features

Model MFCC LPC Chroma Spectral contrast Tonnetz Pitch STFT

LR 83.38 78.03 76.50 84.91 78.41 74.21 83.38
KNN Neighbors 84.43 86.15 78.13 86.25 78.41 78.23 88.63
DT 82.81 80.80 66.76 78.99 69.15 69.25 83.38
RF 89.97 87.68 78.80 86.34 78.32 77.46 88.44
NB 81.28 26.93 50.72 77.46 43.08 76.03 71.16
AdaBoost 86.91 81.38 76.70 83.86 76.70 78.03 86.44
XGBoost 89.88 87.20 77.84 87.11 79.66 78.41 91.31
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future research into advanced machine learning algorithms paired
with tailored feature engineering, which could enhance the
precision and reliability of PCG signal classification systems,
ultimately advancing medical diagnostics and healthcare.

Key insights include the high efficacy of XGBoost and RF
models, especially with features like STFT and MFCC, which
consistently improved model performance. Conversely, simpler
models like NB struggled with complex features. The study
underscores the importance of strategic feature selection, noting
that while STFT and MFCC were universally effective, features
like LPC, Chroma, and Tonnetz were beneficial only for specific
models. These findings highlight the potential of machine learning
to enhance cardiac disease diagnosis and inform the development
of non-invasive diagnostic tools in cardiology, emphasizing the
critical role of feature selection and model choice.

6. Conclusion

This paper presents a comprehensive evaluation of machine
learning models for the classification of PCG signals, utilizing a
variety of feature extraction methods. The findings underscore the
critical role of feature selection in optimizing model performance,
highlighting the importance of strategic feature engineering in
achieving accurate and reliable classification outcomes. Notably,
Random Forest and XGBoost models with carefully selected
features, particularly the Short-Time Fourier Transform, emerged
as a promising approach for developing robust classification
systems in biomedical signal processing.

While this study offers valuable insights, it also acknowledges
certain limitations. The potential variation in model performance
across different datasets necessitates further testing and validation
to ensure generalizability. Additionally, the computational

demands of advanced models, although beneficial, pose
challenges, particularly in resource-constrained environments.
Future research should aim to develop more computationally
efficient techniques that maintain high accuracy without
compromising feasibility.

In building upon the findings of this study, several avenues for
future exploration emerge. Investigating hybrid or ensemble models
could harness the strengths of multiple approaches, leading to more
reliable and accurate classification systems. Moreover, developing
methods for real-time analysis of PCG signals could enhance the
applicability of machine learning models in clinical settings,
enabling timely and precise diagnostics. Expanding the evaluation
of models on larger and more diverse datasets, representing
various patient populations, will improve their robustness and
generalizability. Additionally, further research into sophisticated
feature extraction and selection techniques could significantly
enhance model accuracy and the diagnostic capabilities of heart
sound classification systems.

By addressing these areas, future research has the potential to
advance the field of PCG signal classification, ultimately
improving clinical outcomes and contributing to the development
of non-invasive diagnostic tools in cardiology.
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