
Received: 18 June 2024 | Revised: 12 August 2024 | Accepted: 5 September 2024 | Published online: 12 September 2024

REVIEW

Excellence Practices in Scrum Paradigm in
Software Development

Denis Pashchenko1,*

1SlavaSoft, Spain

Abstract: This article presents a comprehensive approach to improving Scrum methodology in practical software development. This article is
intended for software engineering scientists and expert practitioners who develop their software products in the Scrum paradigm. The proposed
best practices align with contemporary trends in the IT domain, including the complete digitalization and virtualization of production processes,
the shift to fully remote software development, the integration of artificial intelligence technologies, and cost-saving models in team organization.
The changes in software production processes discussed in this article are based on research conducted between 2020 and 2023. This research
encompasses the experiences of leading Russian, European, and international IT companies and highlights the significant shift in IT business
organization towards new standards of Scrum team efficiency. These standards include the data-driven formalization of production models,
automation through AI tools, and visible cost optimization in engineer’s teams, aligning closely with the demands of modern IT businesses.
The article outlines a set of management actions designed to adapt to these evolving trends in the IT domain. These actions range from the
formalization of sprint goals and processes in Scrum to sophisticated management of technical debt and the cost-effective organization of
developer teams. As a main contribution to the article, there are presented most valuable Scrum paradigm excellence elements:
implementing measurable and specific sprint goals in SMART format, cost-saving practices, management of sprint parameters, and usage of
AI tools in software engineering. Presented in article recommendations might help in practical implementation of those process changes,
based on industry practice and reduce any corresponding risks on software development projects.

Keywords: Scrum, software development, technical debt, project management

1. Introduction

The software development (SD) industry is constantly evolving,
and IT businesses must continuously innovate and improve their
processes to stay competitive. Agile methodologies, such as Scrum,
have become a popular approach to SD due to their iterative and
flexible nature. This methodology emphasizes cross-functional
teams, collaboration, and continuous improvement to deliver
software products with high-impacted changes in scope. The studies
demonstrated that from 2017, Scrum is the dominating iterative
methodology in Europe and among leading IT global corporations
like Amazon, Google, Yandex, etc., [1, 2].

To remain competitive, IT businesses must prioritize
continuous improvement of their software production processes,
including Scrum methodology. This means regularly evaluating
and improving SD processes and tools, investing in training and
support for developer’s teams, and adapting production processes
to meet the changing needs of their customers and IT industry.

The constant improvement and excellence of software
production methodology can lead to significant economic benefits
for businesses. For example, a study by McKinsey & Company
found that implementing Agile methodologies, including Scrum,
can reduce time-to-market by up to 40% and improve team’s
productivity by up to 25% [3]. Additionally, businesses that use

Scrum methodology report a 50% reduction in defects, so it’s
leading to improved software quality.

Moreover, this methodology process framework is so “light and
flexible” that improvement of SD processes takes less time and efforts
in comparing with RUP/MSF models. It opens the specific ways to
framework customizing for reaching the unique competitive
advantages. First example of how businesses can adapt this
methodology by customizing the framework to meet the specific
needs of their industry. In the healthcare industry, Scrum
methodology has been adapted to address the unique challenges of
developing software for electronic health records. This includes
developing custom frameworks that incorporate healthcare-specific
regulatory requirements, such as HIPAA compliance [4]. Another
example is customizing the Scrum in Russian Sberbank, who create
their “Sbergile” (acronym – Sberbank + Agile) software project’s
delivery based on this methodology. Furthermore, investing in
continuous improvement of Scrum methodology can lead to
increased employee engagement and job satisfaction. The cohesive
Scrum teams is the best example of collaboration in SD. A report
by Deloitte [5] found that companies that focus on employee
engagement and development see a doubled increase in employee
retention, that’s very important in SD branch despite of the global
lay-offs in 2023–2024 in tech corporations.

Scrum paradigm is amatured andwell-documented paradigm in
SD [6]. Searching the economic rational ways, tools, approaches to
the constant improvement and excellence of Scrum methodology is
an actual scientific task. By adopting and continuously improving the

*Corresponding author: Denis Pashchenko, SlavaSoft, Spain. Email: denpas@
rambler.ru

Journal of Data Science and Intelligent Systems
2024, Vol. 00(00) 1–8

DOI: 10.47852/bonviewJDSIS42023645

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://orcid.org/0000-0001-9089-8173
mailto:denpas@rambler.ru
mailto:denpas@rambler.ru
https://doi.org/10.47852/bonviewJDSIS42023645
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

methodology, IT businesses can reduce costs, improve productivity
and project visibility, and deliver high-quality software products,
ultimately leading to greater economic success. Also, this article is
focused in several principal research questions: (1) how modern SD
companies might improve the usage of Scrum in their production
processes? (2) What’s the cumulative effect of modern trends in IT
domain (like usage of artificial intelligence or remote model of
working) on changes in software production methodology Scrum?

Principal novelty of the article is in the clarification of assessments
and recommended methods for managing various aspects of the
production processes of an IT company in the Scrum paradigm.
Such kind of clarifications are based on strong impact of several
actual trends as fully remote model (FRM) of work of teams, AI
tools usage, IT branch digitalization, and cost-saving models in IT
business. Elements of novelty are including the following:

• Formalization and Measurability: The article’s approach to
formalizing Scrum parameters using data-driven methods and
SMART criteria is a novel contribution. This structured
approach to defining and evaluating sprint goals offers a new
perspective on improving Scrum efficiency and project success.

• Role Optimization in Teams: The suggestions for optimizing team
roles, including the combination of the Scrum Master role with
other leadership roles and internal outsourcing of DevOps
services, present innovative strategies for cost-saving and
efficiency in Scrum teams.

• Technical Debt Management: The article’s structured approach to
managing technical debt, through continuous activity in sprints and
the creation of “technology epics”, provides a new methodology
for maintaining long-term software quality within Scrum projects.

• Remote Work Adaptation: The insights on adapting Scrum
processes to remote and hybrid work models, focusing on
formalized communication and documentation, offer fresh
perspectives on maintaining team effectiveness in a changing
work environment.

• AI Integration in Scrum: The exploration of AI tools’ impact on SD
and Scrum processes, including the potential for enhanced
efficiency and data-driven decision-making.

Following structure of the article:

1) Introduction;
2) Theoretical framework, literature overview, and the goal of the

study
3) Research – Excellence of Scrum Paradigm in SD
4) Conclusion and recommendations.

2. Theoretical Framework, Literature Overview,
and the Goal of the Study

Listed above references are demonstrating the strong interest from
software teams to agile methodologies and advantages of the constant
investments in the excellence of SD processes and tools. The scientific
task of the study is to create the focus on the most experienced in
practice, wide-used, and perspective approaches in Scrum
methodology improvement. The goal of the study is to present the
solid practices of Scrum excellence in software companies,
corresponding with the modern trends in digital world economy.

In the description of the research methodology, the following
set of logical methods should be highlighted:

• identifying the main and secondary within the framework of
component analysis – in considering industry traditions in SD;

• determining cause-and-effect relationships, Parretto’s principle,
and Ocam’s razor – to determine the boundaries of the influence
of industry trends on production processes in the IT industry
and determining the limiting possibilities of modifying
production processes in 2024;

• synthesis of new ideas and recommendations – to create a practical
set of approaches to improving the Scrum paradigm and the
practical implementation of changes in an IT company.

Factors with a significant impact on SD according to recent economic
trends include:
1) COVID-19 Pandemic and Transition to Remote/Hybrid Work

Models: The shift to FRM or hybrid work models, where
employees split their time between home and office, has
become prevalent, especially in leading tech regions. Despite
some companies’ desire to bring engineers back to the office,
remote work has become the industry standard and continues
to evolve. This transition has significantly influenced
communication formalization within and outside companies,
necessitating the use of advanced digital communication tools.

2) Digitalization of Productive Processes in SD: Digital transformation
has been a crucial factor, leading to the integration of digital data
flows that enhance autonomous decision-making and corrective
actions in project management. This transformation includes the
adoption of Agile methodologies, continuous integration and
delivery (CI/CD) automation, and advanced quality assurance
(QA) techniques such as automated testing and system monitoring.

3) Cost-Saving Models in IT Businesses Since 2022: The economic
landscape has driven IT companies to adopt cost-saving models,
optimizing resources while maintaining productivity. This shift
emphasizes efficient project management and the strategic
allocation of financial resources.

4) Surge inDemand for AI-Driven SDSince 2023: The rapid increase
in demand for AI-integrated software solutions has led to
significant advancements in AI-augmented software engineering.
This trend is expected to continue reshaping the industry,
enhancing both the efficiency and quality of SD processes.

As part of a literature review should be considered, that Scrum is one of
the most documented agile paradigm in SD. Unlike Agile manifesto1

Scrum paradigm is well-learned [1], all practices are defined and
documented by researchers and software engineers [6]. The critical
issue here is not in establishing new “best” practices, but in
practical implementation of Scrum culture, processes, and artifacts
into real implementation in teams who declare Agile approach, but
don’t execute well the significant part of framework. Real
implementation of Scrum paradigm (instead of its declaring) takes
resources and needs to be economical reasoned [3]. In current
article, there is a focus on the solid practices of Scrum excellence,
based on the impact of mentioned-above economic industry trends.

The transition to FRM/hybrid work models has been widely
adopted, with more than 70% of teams in research [7] investing in
additional motivation and support for remote work. This shift has
required teams to formalize communication processes, ensuring
effective collaboration despite physical distances. Studies [7–9]
indicate that many teams have successfully adapted to remote
work, maintaining close cooperation through virtual spaces and
modern project management tools.

Digitalization has further revolutionized SD environments
(SDEs) [10], introducing changes such as:

1Manifesto for Agile Software Development. URL: https://agilemanifesto.org

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

02

https://agilemanifesto.org

• Real-Time Feedback and Automation: Every action, from coding
to using SD language semantics, is tracked, allowing for rapid
responses and adjustments.

• Detailed Logging and Analysis: Processes like release building
and testing are accompanied by detailed logs, providing clear
insights into every step and outcome.

• Comprehensive Debugging: Modern debugging tools offer real-
time data on variables and hardware behavior, enhancing
problem-solving capabilities.

• Continuous Integration and Delivery: CI/CD processes provide
constant data flow about all stages of software testing,
integration, and release, supporting informed decision-making.

This continuous flow of digital data supports decisions at various
levels, from personal efficiency assessments to group decisions on
code re-factoring and hardware utilization. Modern QA methods,
including automated testing and verification, have become more
data-driven, with auto-tests running after every master-branch
build, offering digital parameters for process optimization.

For instance, current digitalization trends have significantly
influenced graphical user interfaces, leading to more user-friendly
designs that enhance user experience [11]. Business applications
now feature complex reporting systems and data views, tailored to
different user roles and visualization types.

The SD industry must adopt strategies that leverage these trends to
maintain and enhance global competitiveness. This includes embracing
AI tools, expanding digital and automated processes, and adapting to
remote work models. By doing so, IT companies can remain at the
forefront of a highly competitive and ever-evolving market.

Software engineering teams should embrace the continuous
digitalization of the IT industry to add owns value on the market.
This can be achieved by making operational and tactical decisions in
Scrum team management more data-driven and by ensuring that the
purpose, operational parameters, and technical debt of every sprint in
a project are clear to all stakeholders. The project should be managed
transparently, based on the flow of incoming data. As digital data
usage in software engineering increases, there is a growing need for
cross-functional roles in teams, which can lead to excellence in the
Scrum process of software delivery. This is in line with the rising
demand for software release automation and project operations.

Another valuable and visible trend is the strongmarket demand for
cost-savings in SD. The lay-off in global IT corporations in 2023–2024
and the rising competition on the labor market might be dangerous for
future stable development of IT branch, and in themid-term, it should be
taken into account. Cost-saving is affordable in many ways: from
economical (like salary cut-offs and cycles of lay-offs and hiring) to
technological and organizational. This demand can also be used to
search for approaches to improve software production processes,
including Scrum methodology excellence. Transparent management
of engineer’s teams can have a long-term impact on cost-savings in
SD teams. In the following section, solid practices of Scrum
paradigm excellence and transformation are presented as perspective
ways to improve SD in the IT industry.

Another significant trend shaping the IT industry is the rapid growth
in demand for SD using AI. This trend is closely connected with the
significant increase in the availability of AI tools since the end of
2022. According to [12, 13], the rising demand for AI-augmented SD
was anticipated, and key factors such as the COVID-19 pandemic
and self-isolation accelerated this development. By mid-2023, the
European SD sector had started formalizing the use of AI tools in
software engineering [14]. A significant share (20%) of teams and
organizations has already begun implementing AI tools in real
software production, with around 43% planning to do so in the near

future. Approximately 23% of experts use AI tools regularly in their
work, which has had a strong impact on their tasks in SD projects
since 2023. Additionally, 20% of experts rated the impact of AI tools
on their professional work as average but valuable for specific tasks.

Experts from [14] anticipate a further acceleration in the
implementation of AI tools across all areas of software engineering
by 2027:

• AI tools are expected to appear in all advanced IDEs (code editors,
release building, documentation, etc.,) – 94% of experts;

• AI tools are expected to appear in software project management
systems (like Trello, MS Project, Jira, etc.,) – 73% of experts;

• AI tools are expected to appear in product management tools (UX/
UI, feature analysis, user tests, etc.,) – 60% of experts;

• AI tools are expected to appear in DevOps tools (from CI/CD to
user support software) – 57% of experts.

In 2024,we are likely to seeAI tools becoming integral features ofmany
software engineering technologies (such as Apple’s Xcode IDE or
JetBrains IDEs). The practical implementation of AI tools in
software projects is changing common production development
patterns [15] and should be considered in Scrum paradigm excellence.

3. Research: Excellence of Scrum Paradigm in SD

The complex software production paradigm aims to achieve
project success and stakeholder satisfaction, including both customers
and engineering teams. In Scrum methodology, the success of each
sprint determines the overall success of the software project.
However, evaluating the success of each Scrum sprint is a subjective
parameter that requires formalization. This can be achieved by
implementing standard actions such as defining criteria for achieving
sprint goals, assessing the short-term impact of SD on customer and
user satisfaction, and formalizing and considering sprint parameters.
Moreover, it became more important in FRM of working in software
teams, where common management needs more formal criteria of
software project success.

Defining own goals for each sprint is significant and not enough: it
is necessary to combine sufficiently accurately measured and formulated
substances: business goals of the products being developed, prioritize
validity and non-functional requirements in sequential level backlogs,
logical sequence of stages in the development of software projects. A
good practice for defining sprint goals is to use the SMART format,
where “M” stands for measurability. Measurable goals are often
expressed in numbers, such as “Achieve the maximum completion
time for each transaction in the system for users in any role is less
than 1 second”. This statement is specific, relevant, and measurable,
with a clear deadline for achievement, which is the duration of the
sprint. Typically, a sprint has 1–2 main goals, unless it involves the
development of complex ecosystems in Scrum of Scrum and Scaled
Agile Framework formats.

Evaluating the short-term impact of SD process and
corresponding product on business customer and user satisfaction
can be quite straightforward. Methods such as Product Manager
reviews, user focus groups, and beta tests offer immediate insights
that, even if not perfectly precise, are highly valuable in gauging
user sentiment and business satisfaction. The key principle is to
continuously collect feedback and analyze it in relation to
production issues identified during sprints and discussed in
retrospectives. This ensures that feedback is not only heard but
actively informs the development process.

Consider a scenario where a development team is working on an
e-commerce platform. They receive feedback from a focus group

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

03

indicating that the checkout process is too cumbersome. This
feedback is discussed during a retrospective, and the team
prioritizes improving the checkout process for the next sprint.
After implementing a streamlined checkout, they release an update
and monitor the impact through user reviews and customer
satisfaction surveys. An increase in positive feedback and higher
ratings on the app store would indicate a successful enhancement,
demonstrating the value of integrating user feedback into
development. Another example can be seen in a SaaS company
developing a project management tool. Business customers might
report through surveys that they need better integration with other
tools they use. The product manager brings this up in a new sprint
planning meeting, and the team decides to estimate new
integrations in the next sprints. Post-release, they track customer
satisfaction through the CRM system, noting positive feedback,
which underscores the importance of responding to business
customer needs. Additionally, a mobile game developer might
notice through app store reviews that players are frustrated with
the game’s difficulty level. The team discusses this feedback in
their sprint retrospective and decides to adjust the difficulty
settings in the next update. They then monitor the impact through
subsequent reviews and in-game analytics, seeing improved user
retention and higher ratings, indicating that addressing this
feedback has had a positive effect.

In all these examples, the feedback loop is crucial: collecting
feedback, analyzing it within the context of ongoing development,
and making informed changes. This continuous cycle helps ensure
that the software not only meets but exceeds user and business
customer expectations, leading to higher satisfaction and loyalty.
The digitalization of processes in SD is including the mechanism
of converting of quality estimations (like user reviews or business
customer satisfaction) into numbers – from estimated ROI to
visible increasing of customer satisfaction in official parameters.

Formalizing the parameters of Scrum development sprints is
crucial to improve the success of software projects. The key reasons

for implementing Scrum must be considered when formalizing
these parameters. While comical reasons, such as “fashionable,
stylish, youthful”, should be disregarded, the most typical reasons
in world-wide practice include the need to speed up and formalize
development, adapt to rapidly changing requirements and business
realities, and bring business customers. Formalizing sprint
parameters in each case is specific and closely related to the
parameters that determine these reasons, including task delivery
speed, relevance of created functionality, cross-functionality of
employees, and risk management of timely changes in products,
including response to force majeure situations. This article proposes
grouping formalized sprint parameters and recommends their use by
whole groups based on the business needs of the software company
and the reasons for implementing Scrum (Table 1). The flexibility
to adapt these recommendations to each team’s unique situation is
in line with Agile values.

Let’s consider an example from the author’s practice in 2018 in
software Russian-Chinese company, illustrating the use of
formalized sprint parameters in SD and their impact on business
parameters in the development of software products. One of the
rarest, but potentially effective parameters of a sprint is the
maximum deviations of the actual burned story points from the
ideal “burn-down chart”. Of course, we should immediately agree:
full adherence to the “ideal” trajectory is a harmful utopia, but
refusal to follow it is a low level of managerial maturity of the
development team. It is important to take into account and
analyze the causes of maximum deviations at the key moments of
the sprint. Such deviations were counted for 7 sprints at two key
moments: at the end of each sprint and in the middle of its
calendar period. Deviations were calculated as a percentage
(ranging from 2 to 43%) and allowed to make invaluable
conclusions about both the speed of development and the
potential of teams. In this example, a very clear pattern was
observed – the more deviations from the ideal burn-down chart in
the sprint, the less successful the sprint in terms of achieving its

Table 1
Examples of groups of sprint’s parameters in Scrum

№ Business need Sprint parameters in group

1 Speed up the software development 1) Deviations of the actual burned of story points \ stories from the “ideal trajectory”
on the “burn-down chart” at the key moments of the sprint;

2) The emerging vector of acceleration of the work of each team (with the stability
of its composition) in burned points or released stories;

3) The emerging rising vector of the team’s capacity at the planning stage
(with the stability of its composition) in points or stories;

4) The amount of the stories or tasks that were included in the sprint, but not
implemented due to weak formalization and unclear requirements;

2 Adopting to constant changes in
requirements

1) The number of tasks with the highest priority implemented in the sprint;
2) The amount of the stories or tasks that were included in the sprint, but not
implemented due to the loss of relevance;

3) A constant balance between the number of tasks and stories in three categories:
A) “urgent” with high priority, B) technical and infrastructure
(including QA and CI \ CD), C) “long-term” actual core features.

3 Common goals in software development
for product teams and core customers

1) Amount of product hypotheses that have passed all stages of
development and became software feature;

2) Amount of stories and tasks that were removed from commercial
operation due to negative user feedback during the reasonable period;

3) The growth of the team’s capacity in story points or tasks;
4) A constant balance between the number of tasks and stories in three categories:
A) “urgent” with high priority, B) technical and infrastructure
(including QA and CI \ CD), C) “long-term” actual core features.

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

04

goals. One of the sprints had deviations of 27% and 43% – the
maximum observed for the team – this sprint was the most
unsuccessful and required team rework and additional resource
costs. The analysis of mentioned parameters made it possible to
form individual capacities of teams and team leads, adjust the task
planning stage, and make effective changes in the process of
stabilizing the quality of the functionality being put into operation.
Thus, the potential of formalized sprint parameters is real, and the
analysis and management of such parameters is a practical tool for
improving the quality of SD and achieving goals. Of course, the
implementation of such parameters is a process that requires
professional skills, attention to detail, and adaptation to specific
teams and their tasks.

Thus, formalizing the goals and parameters of the sprint and
constantly working with digital indicators of customer satisfaction
is the first and very important practice for improving software
engineering production processes within the framework of the
software production paradigm.

Next element of the excellence of the Scrum software production
paradigm, based on IT branch digitalization, is a “smart” technical debt
management. Rising set of digital data about the software product
gives a new opportunity to evaluate the relevant needs of
re-factoring or additional measures in software quality management.
Criticism of the Scrum methodology relates to the project team’s
ability to neglect the parameters of long-term software quality [16].
However, such “savings” can rarely be justified in a large part of
the software, where long-term quality is at the heart of the
competitive opportunities of IT companies. Technological
development of software products, and, for example, technical debt
management positively affects a significant number of parameters
of long-term software quality. The relevance of the problem of
technical debt in Scrum and other “agile” paradigms (SAF, SofS) in
the development of SD production processes is beyond doubt. The
solution to this problem lies in several aspects at once. Consider
several levels of it:

• accounting for and eliminating technical debt is an activity in each
sprint, specifically discussed in the planning, demo, and
retrospective. Forming only “technology sprints” (in Scrum) or
entire trains (in SAF) is not a best practice, but a necessary measure;

• tasks of technological development and decommissioning of tech debts
form independent epics in product backlogs and have own assessments
(labor intensity, priority, risks, and connections with other tasks);

• actual re-factoring is carried out according to the schedule, its
connection with the functional development of the system is less
important than the convenience of managing the team’s capacity;

• the best practice is to identify independent and long-term software
quality indicators related to technological development and
decommissioning of tech debt rather than trying to tie “tech
tasks and stories” to functional epics and their quality/success
indicators;

• interaction between business customers and the development team
in terms of technical debt should be clear in terms of goals and so
long until “technological tasks and stories” find the right place in
the understanding of customers in planning priorities.

The aforementioned list provides insight into the management of
technical debt and technological development within Scrum
projects. It is important to recognize that technological development
is just as crucial as functional development in the majority of IT
products. Therefore, team members must pay close attention to the
time and resources dedicated to technological aspects of product
development as it is an essential aspect of SD projects. Accounting

for technical debt is a continuous activity that begins in the
planning of each sprint [17]. A recommended approach involves the
creation of “technology epics” which consist of stories that are
allocated to development sprints according to the team’s capacity.
There are several general recommendations for forming these epics,
including defining clear goals and linking them to product quality
indicators, maintaining a balance between story components in each
epic, and allocating independent process areas into separate epics if
significant development is required in these areas, such as CI/CD or
architectural redesign. These epics may contain stories that
exclusively implement development in these areas.

Shift to fully remote work \ “hybrid” model made the significant
changes in some traditional areas of production processes. The key area
– team communications – also has changed due to decreasing or even
lack of personal face-to-face interactions. Different studies showed
unlike results in the estimation of success in adapting this trend.
According to [18], the remote work necessitates a heavy reliance on
digital tools like Slack, Zoom, and Jira. While these tools facilitate
structured communication, they often fail to capture the nuances of
in-person interactions. This can lead to misunderstandings,
delays, and fragmented communication. For example, during Scrum
ceremonies such as daily stand-ups, sprint planning, and
retrospectives, the absence of non-verbal cues can hinder the
effectiveness of communication and collaboration. Another study
[7, 19] defines that fully remote work in software domain did not
change the efficiency of communications, and its transferring into
digital channels has a positive impact on team’s productivities. On
the basis of this, conclusion is total formalization of communications
and production process documentation, that makes Scrum paradigm
more effective. Detailed and accessible documentation ensures that
all team members are aligned and have a shared understanding of
project goals, tasks, and progress. This can mitigate the risk of
misunderstandings and ensure continuity in communication.

The shift to full remote work has undeniably impacted the
communication processes within Scrum teams in the software
domain. While challenges such as lack of personal communications,
potential misunderstandings, and feelings of isolation exist, these
can be mitigated through strategic use of digital tools and practices
[7]. Regular video meetings, clear documentation, and a culture of
open communication are key strategies that can help remote Scrum
teams thrive. As the landscape of FRM continues to evolve, these
practices will be essential in ensuring that remote teams remain
effective, cohesive, and productive.

Another promising direction in the development of the Scrum
methodology, which is consistent with the market demand to reduce
the cost of development teams and rising of cross-functionality of
engineers because of the FRM labor factor, is the optimization of the
role model in the team. The paradigm of Scrum SD is evolving at a
high pace: new methods and approaches are emerging to optimize
labor costs in product development, to increase productivity and
engagement of engineers, and to improve other quality parameters of
software products. Based on successful industry experience, the
author recommends the following optimizations:

• Scrummaster is not an independent role; Scrummaster is a current
member of the project team: find a leader who will combine this
role with his current own one;

• team lead, tech lead, architect – it is necessary to find the right role
for each team or determine a successful balance of their partial
participation;

• internal outsourcing of services of DevOps engineers, instead of
including an engineer in the team.

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

05

Let us begin by defining that the role of Scrum Master is not a
standalone position within a team, but rather an important role
that can be fulfilled by various leaders on the project, including
team leaders, analysts, QA engineers, or project managers.
Therefore, a Scrum master should be identified from among the
current leaders of the development team in such a way that this
role in the project team does not incur additional costs for the project.

In determining the balance of effort and need for team lead,
technical lead, and architect roles, budgeting becomes a crucial factor.
In smaller projects with up to 10 team members, it is advisable to
combine these three roles into one or two people (1,5 FTE), with the
team lead being the key role. For larger projects, the scale may
require the involvement of solution and enterprise architects, with an
estimated time commitment of no more than 0.5 FTE every six
months. Technical lead is an essential role for scaling development
(SAF, Scrum of Scrum), especially when using proprietary
technologies and complex integrations between software projects [20],
but can be sacrificed in projects experiencing budgetary constraints.

Finally, the approach to optimizing the composition of the project
team in the face of budget constraints is to change the budgeting of
DevOps engineers (and similar roles such as system administrators,
environment engineers, SD automation engineers). The allocation of
such engineers to internal units, which provide their services at the
company’s internal price, is a slow but effective option for
optimizing the budgets of development projects. Of course, many
project managers and team leaders would like to have a dedicated
engineer for product environments, CI \ CD support, but from the
point of view of optimizing project costs, it seems more promising
to automate these regular needs through by special DevOps unit
within a software company. This transformation carries certain risks
associated with infrastructure problem-solving efficiency in the
project and the reduction of DevOps engineers’ involvement in
each software project’s problems. However, these risks can be
managed through formal agreements such as SLA and KPI and
informal measures such as creating good working relationships and
assigning engineers to areas of responsibility.

One more significant trend – rising of active usage of AI tools in SD
projects since 2023, that is aligning with global shift to FRM and fully

corresponding to demand of more effective cost-saving models in IT
businesses [21]. As presented above, AI tools are actively implementing
in all production processes in software engineering: from analysis and
coding to product documentation. It’s the start of new format of SD
team – where every team member might do simple cross-functional
tasks via AI tools and be much more independent in software product
realization. The impact of this trend on Scrum paradigm needs more
time to final estimation, but a few things are clear now:

1) with AI tools, many types of ordinary tasks (e.g. software
prototyping, RnD, product documentation, etc) need less time
and lower level of collaboration within the teams;

2) communications in digital channels might be formalized and
documented better with AI agents;

3) almost all technologies in software engineering are improving via
AI elements, that generate much more data for managing
decisions: from estimation of product’s (and its technology’s)
quality to efficiency of the whole team in sprints.

As a main contribution, this article is providing the focus in Scrum
methodology excellence on the following aspects:

1) Data-driven formalization of Scrum production process: from
sprint goals and sets of parameters to “smart” tech debt
management;

2) Constant automation of production processes (via AI tools) that
leads to increased efficiency of Scrum teams;

3) Cost-saving optimization of developer’s teams in a changing
paradigm of labor relations (FRM \ “hybrid”).

Those findings might be used in the planning of Scrum excellence in
software company, have a solid industry practice of usage, and align
with modern trends of digital world.

4. Conclusion and Recommendations

Competition in the software production and IT industries
involves unique characteristics, including the continuous need for
changes in major production processes under the pressure of

Table 2

1 how modern software development companies might improve the usage of Scrum in their production processes?
Answer: There is a set of actions to improve the software production paradigm:
1) Formal and digital approach for every sprint: goals in SMART format, sprint parameters, estimated feedback from customers, “smart”
technical debt management.
2) Respect to rising demand of fully remote work or “hybrid” model with redesign of the formal and digital communications in team via
modern software tools;
3) Respecting the demand of cost-saving in software development: optimization of roles in the team (Scrum master, tech lead, DevOps
engineer) and active usage of AI tools in all production processes.

2 What’s the cumulative effect of modern trends in IT domain (like usage of artificial intelligence or remote model of working) on
changes in software production methodology Scrum?

Answer: Despite of initial ideas of Scrum some production processes are changing:
1) All processes and estimations of success/failure in sprints are becoming more formal and digital;
2) All communications inside of team and with external agents (like customers) are becoming much more formal and automated;
3) Virtualization of the production processes is becoming much clear and supported by special software tools in every process area or
internal outsourcing (like in the case with DevOps engineers);

According to the initial ideas of Scrum some production processes are developing very fast:
1) Total digital focus on the product and automation of feedback and review processes;
2) Cross-functionality in Scrum team is increasing;
3) Production process has new automation tools (like AI tools in software development).

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

06

competitive factors. The digital transformation in SD has a
significant impact on competition within the industry, and the
Scrum methodology is an effective process for managing these
changes. From another point of view, the Scrum methodology
excellence process should use the results of this transformation:
total automation and focus on measurable processes give
continuous flows of digital data that might be used on different
levels of IT business development, production processes, and even
software product client’s expectation. Management of core
activities is becoming sophisticated and more flexible, based on
relevant and estimated indicators.

Principal research questions should be answered in the
following manner (Table 2):

Main findings of the article in Scrum excellence:

• Data-Driven Formalization of Scrum Processes: The article
emphasizes the importance of formalizing Scrum sprint
parameters through measurable and specific goals. It introduces
the use of SMART criteria for sprint goals and advocates for
constant evaluation of sprint success based on formalized
parameters. This structured approach aims to enhance project
management, improve development speed, and align product
development closely with business needs.

• Optimized Role Model in Scrum Teams: The article proposes
optimizing team roles to reduce costs and improve efficiency. It
suggests that the Scrum Master role can be combined with other
leadership roles within the team and discusses the balance
between team leads, technical leads, and architects, especially
under budget constraints. Additionally, it advocates for the
internal outsourcing ofDevOps services to optimize project budgets.

• Technical Debt Management: The article highlights the importance
of managing technical debt within Scrum projects, emphasizing that
it should be an ongoing activity integrated into each sprint. It
provides practical recommendations for balancing technical and
functional development instead of creating “technology epics”.

• Impact of RemoteWork on Scrum: The article discusses the effects
of fully remote and hybrid work models on team communication
and productivity. It suggests that formalized communication and
detailed documentation can mitigate the challenges of remote
work, ensuring continuity and alignment in Scrum teams.

• AI Integration in SD: The article acknowledges the growing use of
AI tools in SD, which can enhance efficiency and reduce the need
for extensive collaboration on routine tasks.

In this article, the presented focus on the most experienced in
practice, wide-used, and perspective approaches in Scrum
methodology improvement: data-driven formalization of Scrum
production process and cost-saving optimization of engineer’s
teams. As it was mentioned in introduction, the constant
investments in production process in SD are key factor in industry
competition. Presented in article recommendations are the main
contribution in this research area. Those recommendations might
help in practical implementation of those process changes, based
on industry practice and reduce any corresponding risks.
Implementing measurable and specific sprint goals using the
SMART format ensures clarity and focus. Additionally,
continuously assessing the short-term impact of software
product’s development on customer and user satisfaction through
methods like product manager reviews, user focus groups, and
beta tests provides immediate and valuable insights.

Scrum paradigm is an excellent methodology for SD that
requires formalization to achieve project success and stakeholder
satisfaction. Formalizing the parameters of Scrum development
sprints is crucial to improving the success of software
projects. The use of formalized sprint goal and parameters,
including delivery speed, relevance of created functionality,
cross-functionality of employees, and risk management of timely
changes, is needed. The management of technical debt is also
crucial to long-term software quality, and its solution lies in
several aspects, including accounting for and eliminating
technical debt in each sprint and forming specific tasks for
technological development and decommissioning of tech debts.
Optimizing Scrum team roles is an effective change for software
projects experiencing budgetary constraints. There were listed
more widely used actions: from defining the Scrum master to
outsource DevOps service for software projects within IT
company.

Presented approaches are formed the solid base for Scrum
excellence in software company that means the reaching of this
study’s goal. The shift towards data-driven formalization, automation
via AI tools, and cost optimization in Scrum teams aligns with the
demands of modern IT businesses. These practices enhance efficiency,
ensure high-quality software production, and maintain alignment with
rapidly changing business requirements. By integrating feedback loops
and formalizing sprint parameters, developer’s teams can achieve
higher satisfaction and loyalty from both users and business customers,
ultimately leading to software product success.

The ideas of further research should be considered the
following:

1) tracking of the rising impact of AI tools in SD by Scrum teams;
2) future optimizations in Scrum teams and its role management

with rising excellence of CI\CD technologies and IDE tools
and strong demand of cost-saving in SD projects.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The author declares that he has no conflicts of interest to this
work.

Data Availability Statement

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

Author Contribution Statement

Denis Pashchenko:Conceptualization,Methodology, Software,
Validation, Formal analysis, Investigation, Data curation, Writing –

original draft, Visualization, Supervision, Project administration.

References

[1] Uppal, R. (2022). Agile and Scrum have become dominant
software project development methods. IDST. AI & IT.
Retrieved from: https://idstch.com/technology/ict/agile-and-
scrum-have-become-dominant-software-project-development-
methodsome-dominant-software-development-methods

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

07

https://idstch.com/technology/ict/agile-and-scrum-have-become-dominant-software-project-development-methodsome-dominant-software-development-methods
https://idstch.com/technology/ict/agile-and-scrum-have-become-dominant-software-project-development-methodsome-dominant-software-development-methods
https://idstch.com/technology/ict/agile-and-scrum-have-become-dominant-software-project-development-methodsome-dominant-software-development-methods

[2] Pashchenko, D. (2021). Fully remote software development due
to covid factor: Results of industry research (2020). International
Journal of Software Science and Computational Intelligence,
13(3), 64–70.

[3] Aghina,W., Handscomb, C., Salo, O., &Thaker, S. (2021). The
impact of agility: How to shape your organization to compete.
McKinsey & Company, 25.

[4] Khristich, S. (2021). How custom healthcare software is
developed for secure HIPAA compliance. Retrieved from:
https://tateeda.com/blog/how-healthcare-software-is-developed-
for-secure-hipaa-compliance

[5] Deloitte Insights. (2019). Leading the social enterprise: Reinvent
with a human focus. Retrieved from: https://www2.deloitte.com/
content/dam/insights/us/articles/5136_HC-Trends-2019/DI_HC-
Trends-2019.pdf

[6] Project Management Institute. (2000). A guide to the project
management body of knowledge (PMBOK guide). Project
Management Institute.

[7] Pashchenko D. (2023). Fully remote software development
as a new standard in the IT industry: European study
2022–2023. Software Engineering, 14(5), 217–224. https://
doi.org/10.17587/prin.14.217-224

[8] Cucolaş, A. A., & Russo, D. (2023). The impact of working
from home on the success of Scrum projects: A multi-
method study. Journal of Systems and Software, 197, 111562.

[9] Emmanni, P. S. (2023). The impact of remote work on agile
project management. Journal of Scientific and Engineering
Research, 10(2), 202–207.

[10] Laato, S., Mäntymäki, M., Birkstedt, T., Islam, A. N., &
Hyrynsalmi, S. (2021). Digital transformation of software
development: Implications for the future of work. In
Responsible AI and Analytics for an Ethical and Inclusive
Digitized Society: 20th IFIP WG 6.11 Conference on
e-Business, e-Services and e-Society, 609–621. https://
doi.org/10.1007/978-3-030-85447-8_50

[11] Rodríguez, P., Markkula, J., Oivo, M., & Turula, K. (2012).
Survey on agile and lean usage in finnish software industry. In
Proceedings of the ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, 139–148.

[12] Barenkamp,M., Rebstadt, J., &Thomas, O. (2020). Applications
of AI in classical software engineering. AI Perspectives, 2(1), 1.
https://doi.org/10.1186/s42467-020-00005-4

[13] Lv, C., Guo,W., Yin, X., Liu, L., Huang, X., Li, S., & Zhang, L.
(2024). Innovative applications of artificial intelligence during
the COVID-19 pandemic. Infectious Medicine, 100095.

[14] Pashchenko, D. (2023). Early formalization of AI-tools usage
in software engineering in Europe: Study of 2023. International
Journal of Information Technology and Computer Science,
15(6), 29–36. https://doi.org/10.5815/ijitcs.2023.06.03

[15] Terragni,V., Roop, P.,&Blincoe,K. (2024). The future of software
engineering in an AI-driven world. arXiv Preprint: 2406.07737.

[16] Misra, S., Kumar, V., Kumar, U., Fantazy, K., & Akhter, M.
(2012). Agile software development practices: Evolution,
principles, and criticisms. International Journal of Quality &
Reliability Management, 29(9), 972–980.

[17] Murillo, M. I., López, G., Spínola, R., Guzmán, J., Rios, N., &
Pacheco, A. (2023). Identification and management of
technical debt: A systematic mapping study update. Journal
of Software Engineering Research and Development, 11(1),
1–8. https://doi.org/10.5753/jserd.2023.2671

[18] Ford, D., Storey, M. A., Zimmermann, T., Bird, C., Jaffe, S.,
Maddila, C., : : : , & Nagappan, N. (2021). A tale of two cities:
Software developers working from home during the COVID-19
pandemic. ACM Transactions on Software Engineering and
Methodology, 31(2), 1–37. https://doi.org/10.1145/3487567

[19] Baakeel, O. A. (2021). Impacts of remote working on
employees during the COVID-19 pandemic. International
Transaction Journal of Engineering, Management, &
Applied Sciences & Technologies, 12(10), 1–14. https://
doi.org/10.14456/ITJEMAST.2021.196

[20] Spiegler, S. V., Heinecke, C., & Wagner, S. (2021). An
empirical study on changing leadership in agile teams.
Empirical Software Engineering, 26, 1–35. https://doi.org/
10.1007/s10664-021-09949-5

[21] Bhandari, K., Kumar, K., & Sangal, A. L. (2023). Artificial
intelligence in software engineering: Perspectives and
challenges. In 2023 Third International Conference on
Secure Cyber Computing and Communication, 133–137.
https://doi.org/10.1109/ICSCCC58608.2023.10176436

How to Cite: Pashchenko, D. (2024). Excellence Practices in Scrum Paradigm in
Software Development. Journal of Data Science and Intelligent Systems. https://
doi.org/10.47852/bonviewJDSIS42023645

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

08

https://tateeda.com/blog/how-healthcare-software-is-developed-for-secure-hipaa-compliance
https://tateeda.com/blog/how-healthcare-software-is-developed-for-secure-hipaa-compliance
https://www2.deloitte.com/content/dam/insights/us/articles/5136_HC-Trends-2019/DI_HC-Trends-2019.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/5136_HC-Trends-2019/DI_HC-Trends-2019.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/5136_HC-Trends-2019/DI_HC-Trends-2019.pdf
https://doi.org/10.17587/prin.14.217-224
https://doi.org/10.17587/prin.14.217-224
https://doi.org/10.1007/978-3-030-85447-8_50
https://doi.org/10.1007/978-3-030-85447-8_50
https://doi.org/10.1186/s42467-020-00005-4
https://doi.org/10.5815/ijitcs.2023.06.03
https://doi.org/10.5753/jserd.2023.2671
https://doi.org/10.1145/3487567
https://doi.org/10.14456/ITJEMAST.2021.196
https://doi.org/10.14456/ITJEMAST.2021.196
https://doi.org/10.1007/s10664-021-09949-5
https://doi.org/10.1007/s10664-021-09949-5
https://doi.org/10.1109/ICSCCC58608.2023.10176436
https://doi.org/10.47852/bonviewJDSIS42023645
https://doi.org/10.47852/bonviewJDSIS42023645

	Excellence Practices in Scrum Paradigm in Software Development
	1. Introduction
	2. Theoretical Framework, Literature Overview, and the Goal of the Study
	3. Research: Excellence of Scrum Paradigm in SD
	4. Conclusion and Recommendations
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

