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Abstract: This paper explores the pervasive challenges of pedestrian positioning using smartphones in densely populated urban 
environments where Global Navigation Satellite System (GNSS) signals are inaccessible, for example, in indoor areas. Existing 
sensor-based positioning methods, such as inertial navigation systems (INS), GNSS, and visual-inertial odometry (VIO), suffer 
from inherent restrictions that compromise the accuracy and reliability of the positioning performance. An approach based on 

machine learning is proposed to address these limitations, employing the Support Vector Machine (SVM) algorithm to accurately 
distinguish indoor/outdoor (IO) based on the measurement of GNSS. The proposed approach in this study seamlessly incorporates 
3D mapping aided (3DMA) GNSS measurements and localized estimations derived by VIO via factor graph optimization (FGO), 
complemented by an IO detection switch, to achieve accurate pose estimation and effectively eliminate global drift. The system's 
effectiveness and robustness are rigorously assessed through comprehensive extensive real-life experiments, with an average 
reduction of 4 meters, leading to noteworthy and statistically significant findings.  

 
Keywords: FGO, pedestrian positioning, smartphone, sensor integration, IO, VINS, 3DMA GNSS 

 
 

1. Introduction 
 
Smart mobility faces challenges in accurate smartphone 

positioning within urban canyons. The development makes 
use of various sensors, advanced intelligence, and next-
generation networks to improve performance. A diverse 
range of mobile positioning techniques has been studied to 
facilitate location-based services (LBS), with smartphones 
emerging as key instruments. Equipped with various sensors 
such as Wi-Fi, inertial sensors, magnetometers, and 

monocular cameras [1-3], smartphones offer reliable 
localization information and comprehensive positioning 
through different sensor combinations. However, urban 
areas pose significant obstacles to the effectiveness of 
mobile Global Navigation Satellite Systems (GNSS) 
positioning. Studies by Rajak et al. [4] demonstrated the 
limitations of conventional GNSS localization methods in 
cityscapes, highlighting the adverse impact of low 

positioning accuracy on user experiences, particularly for 

smartphone users. To overcome these challenges, additional 
data enhance urban positioning. One such approach is the 
utilization of 3D building models as a software-based aid for 
low-cost positioning, known as 3D mapping aided (3DMA) 
GNSS. Noteworthy research [5] showcased the superior 
3DMA GNSS urban positioning results. Doppler 
measurements are frequently integrated with the position 

solution to enhance the precision and reliability of the 
positioning. The fusion of velocity and 3DMA GNSS 
estimated from Doppler frequency is proposed [6]. Building 
upon these foundations, the present study adopts a loosely 
coupled approach to integrating Doppler velocity and 3DMA 
GNSS, striving to offer precise positioning on a global scale. 

In scenarios where GNSS signals are compromised, 
such as indoor environments, GNSS positioning is 
significantly affected, leading to outages and degraded 

accuracy [7]. Indoor positioning suffers from weakened and 
scattered signals caused by various objects within the 
environment. Studies have revealed a decline in GNSS 
signal strength of approximately 10-12 decibels, rapidly 
reducing positioning accuracy [4]. Detection of 
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indoor/outdoor (IO) environments becomes crucial for 
achieving ubiquitous positioning [8]. Several researchers 
have worked on IO detection using GNSS measurements to 
create a framework for indoor localization that relies on only 

smartphone sensors, requiring no additional infrastructure. 
To enhance indoor positioning capabilities, VIO has 

been extensively employed in GNSS-denied areas to bridge 
the gaps in the absence of GNSS signals [9]. VIO poses 
implementation challenges due to the speed and latency 
constraints; however, nonlinear optimization techniques 
address these challenges [10, 11]. In the case of scattered and 
weakened signals encountered, standalone GNSS is not 

considered for indoor positioning. Instead, the system uses a 
combination of inertial navigation system (INS) and VO, 
leveraging inertial measurement unit (IMU) and monocular 
camera sensors. This paper explores the complementarity 
between GNSS and visual-inertial navigation systems 
(VINS) for pedestrian positioning. 

Promising results of the GNSS/INS fusion using factor 
graph optimization (FGO) are shown [12]. FGO is an 

advanced method for nonlinear optimization that uses 
probabilistic graphical models and integrates GNSS/INS 
data. By factorizing the problem and transforming it into a 
factor graph, the process simulates the connection between 
poses and estimates the values. This approach effectively 
accommodates alterations in the ever-changing environment 
[13, 14]. Additionally, FGO optimally utilizes feature 
constraints, leading to higher accuracy and efficiency in 

achieving robust estimations [15]. 
This paper is an extension of the proceedings paper 

[16]. The paper is structured as follows: Section 2 reviews 
relevant literature; Section 3 provides a system overview, 
covering Support Vector Machine (SVM) classification, 
3DMA GNSS/VINS, and FGO; Section 4 presents the 
experimental results of 3DMA GNSS/VINS-IO FGO; and 
finally, Section 5 concludes the paper. 

 

2. Literature Review 
 

2.1. Integration of GNSS and VINS for 

pedestrian positioning  
 
Pedestrian localization in urban and indoor settings has 

gained attention, with GNSS and VINS as key technologies. 
Integrating these methods enhances accuracy and continuous 
positioning. Recent studies focus on improving GNSS by 
incorporating INS and combining inertial, visual sensors, 

and GNSS for precise positioning in GNSS-denied 
environments. [17, 18]. Evaluation in actual urban 
environments has convincingly proven its effectiveness for 
positioning accuracy compared to standalone INS or GNSS 
systems [19]. Despite its potential, the VINS and GNSS 
fusion encounters various obstacles and restrictions, such as 
addressing signal loss, streamlining computational 
complexity, and enhancing robustness across diverse 

environmental conditions. 
 

2.2. Challenges and opportunities of 

GNSS/VINS integration 
 

Accurate real-time positioning in smartphone 
pedestrian applications is challenging due to noisy 
measurements and limited processing power. While GNSS 
is widely used for its accessibility and affordability, it 

struggles with accuracy and availability in urban and indoor 
environments due to signal interference and blockage [20]. 
Additionally, multipath interference frequently manifests, 
especially with low-cost sensors. Multipath interference has 
the potential to contaminate GNSS measurements, imposing 
a substantial impact on smartphone positioning accuracy 
[21]. Advanced techniques like VIO, 3DMA GNSS, and 
PDR, which use smartphone inertial sensors, are employed 

to address these challenges for enhanced pedestrian 
positioning. One notable approach is Pedestrian Dead 
Reckoning (PDR), which exploits the use of inertial sensors, 
e.g., accelerometers and gyroscopes. Bluetooth and 
Received Signal Strength Indicator (RSSI) are also 
leveraged [2, 22, 23]. By leveraging a low-cost Micro 
Electro Mechanical Systems (MEMS) IMU in smartphones, 
an efficient PDR algorithm has been developed, exhibiting 

advantages such as affordability, simplicity, and user-
friendliness when compared to alternative methods [24-26]. 
Despite the noteworthy PDR advantage of being 
independent of infrastructure requirements [27], it is 
important to acknowledge certain limitations associated with 
this technique, including diminished accuracy and drift. 
Cost-effective MEMS IMUs encounter a range of 
inaccuracies, with biases on time-varying [28].  

To overcome the challenges and achieve heightened 
precision in localization, researchers have proposed 
integrating VIO with supplementary sensors [29-31]. One 
notable approach involves integrating Light Detection and 
Ranging (LiDAR) and VIO through the utilization of 
Simultaneous Localization and Mapping (SLAM) [29]. 
SLAM technology leverages LiDAR and visual data to 
create maps of the surrounding environment that are more 
accurate and detailed, thereby enhancing accuracy, 

robustness, and overall efficiency. LiDAR for pedestrian 
tracking exhibits considerable promise due to its exceptional 
accuracy and resilience across diverse environmental 
conditions. Nevertheless, it is imperative to acknowledge 
that this integration approach encounters challenges related 
to high computational complexity and associated costs. 

In the context of urban canyons, the utilization of 3D 
building models has emerged as a prominent approach to 

improve GNSS positioning. Specifically, a technique known 
as 3DMA GNSS [32], has gained considerable popularity. 
3DMA GNSS typically adopts a particle-based 
methodology, wherein measurements are modeled as 
predictions at various hypothetical positions. The candidate 
that exhibits the greatest similarity between the modeled and 
received measurements is deemed to represent the location 
of the receiver.  

Within 3DMA GNSS, two common variants can be 
identified: shadow matching [33] and ranging-based 
approaches. Shadow matching involves the matching of 
satellite visibility patterns across distributed locations. On 
the other hand, ranging-based 3DMA GNSS employs 
NLOS-predicted pseudo-range modeling by estimating 
reflection delays. Utilizing geometric methodologies like 
Skymask 3DMA [34] and ray-tracing GNSS [35, 36] enables 
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the determination of reflection delays through the validation 
of signal transmission paths and the computation of 
reflection delays contingent on predicted reflection points. 
An alternative technique called likelihood-based ranging [5], 

adopts a skew-normal distribution for the statistical 
representation of NLOS delay measurements. It transforms 
these discrepancies into LOS measurements via a normal 
distribution. 

Moreover, expanding the single-epoch positioning 
method to incorporate temporal linkages can substantially 
fortify positioning robustness. Zhong and Groves [5] 
proposes the utilization of a grid filter to evenly distribute 

positioning candidates, thereby improving solution 
smoothness. Alternatively, the integration of 3DMA GNSS 
and velocity estimates obtained through Doppler 
measurements, coupled with the adoption of FGO for batch 
optimization, has been explored by Ng et al. [6] as a loosely 
coupled solution. The results demonstrate that this approach 
yields a more resilient trajectory suitable for pedestrian 
applications. 

VINS has become an integrated navigation system that 
leverages the synergy between inertial and visual sensors to 
calculate a platform’s orientation and position. However, 
due to technological and technical constraints, MEMS 
gyroscope bias instability commonly exceeds 15°/h [37]. 
Consequently, there is a worse result of MEMS in the 
process of heading initialization. Compared with INS, VINS 
harnesses the synergies between inertial and visual data, 

resulting in a proven enhancement of stability and precision 
in local pose estimation [38]. It is possible to integrate an 
IMU for the development of VINS and retrieve scale 
information [28]. While VINS shows promise across various 

applications, it faces challenges like accumulated errors and 
time drift in complex environments. Two residual errors 
stem from IMU predictions and visual odometry estimates. 
Algorithms such as keyframe-based methods, inertial 
measurement pre-integration, and machine learning 
approaches have been explored to address these. Pre-
integrating IMU measurements into relative motion 
constraints within keyframes improves precision and 

computational efficiency, enhancing accuracy while 
reducing complexity [39]. 

On the other hand, the nonlinear optimization approach 
can attain highly accurate state estimation [40]. Nonetheless, 
real-time optimization becomes increasingly challenging as 
the trajectory expands over time due to the high rate of 
incoming inertial measurements [39]. DeepVIO, an 
innovative approach, explores the potential VIO applications 

in various fields and highlights future research directions, 
including the utilization of deep learning techniques to 
enhance performance [41]. Nevertheless, when employing 
VINS, time drifting continues to be a notable cause of 
uncertainty. 

 
 
 

 

 

 

 

 

 

Figure1 

Literature Mapping 

In summary, Figure 1 highlights the integration of 
various technologies to enhance location accuracy. Radio-
based methods such as Wi-Fi and Bluetooth leverage signal 
strength indicators for positioning. Sensor-based techniques 

including IMUs, VIO, and LiDAR integrated with SLAM 

aid navigation in complex environments. GNSS-based 
systems, including 3DMA GNSS and Doppler velocity 
integration, are optimized using FGO. The integration of 
GNSS and VINS addresses challenges such as signal loss 

and computational complexity, particularly in urban and 

1. Aided 
Positioning 
Techniques

1.1 Radio-
Based 
Positioning

Wi-Fi 
Positioning: 
Utilizes Wi-
Fi signals for 
location 
estimation. 
(Li, 2022)

Bluetooth 
Positioning: 
Leverages 
Bluetooth 
signals for 
proximity-
based location 
services. (L. Bai 
et al., 2020) 
(Gu & Ren, 
2015)

RSSI (Received 
Signal Strength 
Indicator): 
Uses signal 
strength for 
distance 
estimation. 
(Biswas et al., 
2023) (Boussad 
et al., 2021)

GNSS-Based 
Positioning

Doppler 
Velocity 
Integration: 
Enhances 
positioning 
through 
Doppler 
frequency 
data. (Ng et al., 
2022)

3DMA GNSS: 
Utilizes 3D 
building 
models for 
improved 
accuracy. 
(Zhong & 
Groves, 2022) 
(Ng et al., 
2022) 
(Diggelen, 
2021)

1.2 Sensor-
Based 
Positioning

Inertial 
Measurement Unit 
(IMU): Provides data 
for Pedestrian Dead 
Reckoning (PDR) 
through 
accelerometers and 
gyroscopes. (Huang 
et al., 2020) 
(Rehman et al., 
2020) (Jimenez et 
al., 2009) (Pratama 
et al., 2012)

Monocular 
Cameras: Used 
for visual data 
acquisition and 
analysis. 
(Sheta et al., 
2018) (Werner 
et al., 2011)

Visual Inertial 
Odometry 
(VIO): 
Combines 
visual data 
with inertial 
data for 
precise 
navigation. 
(Huai et al., 
2015) (Nam et 
al., 2024) (He 
et al., 2018)

Light Detection 
and Ranging 
(LiDAR): Used 
with SLAM for 
mapping and 
positioning. 
(Debeunne & 
Vivet, 2020) 
(Shan et al. 
2021)

1.3 Machine Learning Approaches: 
Incorporates AI techniques for 
positioning improvements. (Han 
et al. 2019)

2. Integration 
Techniques

2.1 GNSS and VINS 
Fusion: Combines 
GNSS and VINS for 
higher positioning 
accuracy. (Liu et al., 
2024) (Hua et al., 
2023) (Chiang et al., 
2023) (Li et al., 
2021) (Cao et al., 
2022) (Chen et al., 
2014), (Falco et al., 
2017)

2.2 Challenges 
and 
Opportunities

Addresses 
signal loss, 
computational 
complexity, 
and 
environmental 
robustness. 
(Liu et al., 
2024) (Li et al., 
2023)

3. Integration 
Approaches

3.1 Nonlinear 
Optimization: Utilizes 
advanced algorithms 
for precise 
positioning. (Cao et 
al., 2022) (Zhang & 
Scaramuzza, 2018) 
(Forster et al., 2017)

3.11 Factor Graph 
Optimization (FGO): 
Advanced method 
for integrating sensor 
data. (Zhang et al. , 
2024) (Dellaert & 
Kaess, 2017) (Chen et 
al., 2016) (Zhu et al., 
2024) (Li et al., 2023) 

3.12 Fusion Method 
Comparison: 
Compares Extended 
Kalman Filter (EKF)  
and FGO for sensor 
fusion and 
optimization. (Bailey 
et al., 2006) (He et al. 
2018)  (Hu et al., 
2024) (Wang et al.,  
2023) (Zhang et al., 
2022) 

4. Application 
Scenarios

Urban 
Environments: 
Challenges 
with GNSS 
signal 
obstructions 
and multipath. 
(Rajak, 2021) 
(Bai et al. 
2022), (Zhu et 
al. 2019, 2021)

Indoor 
Environments: 
Utilizes VINS 
and additional 
sensors in 
GNSS-denied 
scenarios. 
(Kumar & 
Singh, 2020) 
(Rajak et al., 
2021) (Huai et 
al., 2015)
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indoor settings. Advanced optimization techniques, 
including nonlinear algorithms and machine learning, refine 
accuracy. Comparing the Extended Kalman Filter (EKF) and 
FGO underscores advantages in nonlinear systems.  

 

2.3. Review of GNSS/VINS integration in 

pedestrian positioning  
 
The EKF has been widely utilized for sensor fusion [42-

44]; however, its linear approximation of system dynamics 
compromises accuracy when applied to nonlinear systems. 

Computational demands of the EKF surge quadratically as 
the number of 3D landmarks grows, imposing restrictions on 
its scalability [10]. In densely populated urban regions, the 
EKF falls short of attaining peak performance because of the 
accumulation of Gaussian errors [45]. To overcome these 
limitations, nonlinear optimization methods are proposed as 
alternatives. 
Another promising method for pedestrian positioning is 

FGO [46], which models the relationships between observed 
measurements and unknown system states, resulting in high 
accuracy and efficiency. FGO is superior at managing noisy 
or incomplete data-changing dynamics than EKF. FGO is 
better suited for nonlinear problems, using iterative solvers 
like Gauss-Newton or Levenberg-Marquardt to refine the 
solution which shows that FGO is a more appropriate 
method than the EKF. FGO may necessitate greater 

computational resources, and precise system dynamics 
modelling is critical. The environmental conditions and 
specific applications ultimately determine the choice of the 
positioning system. FGO-based methods show a superior 
capacity for achieving dependable and uniform state 
estimation than traditional filter-based techniques due to 
FGO's adeptness at tackling nonlinear optimization 
challenges through iterative processes and relinearization 

[38]. FGO is better equipped to handle the inherent 
nonlinearities in the pedestrian positioning problem 
compared to filter-based techniques like EKF. Additionally, 
FGO adeptly exploits time correlation, which significantly 
improves accuracy and robustness. This global optimization 
approach is a key advantage over EKF. The entire graph 
optimizes simultaneously, leading to a globally consistent 
solution.  

Standalone GNSS and VINS have complementary 

strengths and limitations. GNSS offers global positioning 
but struggles with errors in urban and indoor settings, while 
VINS provides accurate relative positioning but suffers from 
drift over time. Integrating VINS with 3DMA GNSS through 
FGO enhances accuracy, robustness, and reliability. This 
combination, along with an IO switch to detect indoor or 
outdoor environments, allows for more precise and reliable 
positioning by adjusting algorithms accordingly, offering a 

robust solution for pedestrian positioning. 
 

2.4. Our contributions  
 
Three problems and key objectives were identified: 
Contribution 1: Development of a machine learning-

based method for IO detection using GNSS measurements 

as features. It facilitates the selection of the most reliable 
sensor during fusion to maximize smartphone positioning. 

Contribution 2: Loosely integrate smartphone-based 
solutions of VINS and 3DMA GNSS in a batch using FGO 

and a switching factor to provide complete robustness.  
Contribution 3: Validate 3DMA GNSS/VINS 

performance using FGO and an IO switching factor via 
actual smartphone experiments in an urban canyon. The code 
is also open source on https://github.com/queenie-
ho/3DMAGNSSVINS-IOFGO.   

Our study proposes a comprehensive framework for 
smartphone-level pedestrian positioning to significantly 

enhance robustness, efficiency, and accuracy in urban and 
indoor environments. Existing techniques encounter various 
challenges, including signal obstructions, drift, and 
multipath, which hinder their effectiveness. To overcome 
these challenges, our framework focuses on the integration 
of VINS and 3DMA GNSS using FGO, aiming to achieve 
substantial improvements in reliability, accuracy, and 
robustness, particularly in complicated and demanding 

environments. It emphasizes IO detection, leveraging 
machine learning with SVM to accurately differentiate IO 
conditions. 

Our methods directly enhance smartphone navigation 
accuracy, particularly in urban areas prone to signal 
obstruction and multipath effects. Reliable indoor 
positioning is crucial for applications, including wayfinding 
in large buildings such as shopping malls and airports, asset 

tracking, and emergency response. VIO and improved 
indoor navigation systems enhanced positioning accuracy 
for AR applications, which rely on precise location data to 
overlay digital information onto the real world. Leveraging 
smartphone sensors and existing GNSS infrastructure makes 
the solution cost-effective and widely accessible. 
 

3. Definition and Notation 
 

3.1. Definition 
 
Local frame: A local world frame is an unchanging 

reference frame employed to represent the orientation and 
position of objects in the visual-inertial system. 

Global frame: A reference frame utilized to represent 
the orientation and position of objects in an ECEF frame 

where all axes are fixed with respect to the Earth. 
IO (Indoor/Outdoor): The term ‘indoor’ pertains to 

physically confined areas, while ‘outdoor’ refers to spaces 
lacking complete confinement [8]. 

 

3.2. Notations 

 
A superscript or subscript of the system state and 

transformation representing a frame, it can be 𝑤 in the local 
world frame, 𝑏 in the body frame, c in the camera frame, and 

𝑖 in the IMU frame. A subscript 𝑡 of the frame refers to the 
frame at a specific time. Table 1 stated the notations. 

 

Table 1 

Notations of frame transformation 

 

https://github.com/queenie-ho/3DMAGNSSVINS-IOFGO
https://github.com/queenie-ho/3DMAGNSSVINS-IOFGO
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Symbol Explanation 

𝐑𝑤
𝑏t A rotational transformation from the local 

world frame to the body frame 

𝐩𝑏𝑡𝑘

𝑤  The position of the body frame with respect to 

the local world frame at time k ( 𝑡𝑘) 

𝐯𝑏𝑡𝑘

𝑤  The velocity of the body frame with respect to 

the local world frame at 𝑡𝑘 

𝐪𝑏𝑡𝑘

𝑤  The orientation of the body frame with respect 

to the local world frame at 𝑡𝑘  

 

4. Research Methodology 
 

4.1. Overview 
 

Figure2 

System flowchart of the proposed 3DMA GNSSVINS-

IO FGO 
 

 
 
Figure 2 illustrates the positioning framework from this 

study, featuring an SVM-based machine learning approach 
for IO classification. It uses GNSS measurement features, 

such as satellite numbers received and elevation angle, for 
categorization. This research combines advanced 3DMA 
GNSS algorithms involving likelihood-based ranging [5] 
and shadow-matching [33] for improved GNSS performance 
in a loosely coupled approach [6]. 

To address GNSS-denied areas and ensure reliable 
indoor positioning, VIO is used to fill GNSS gaps. The 
system processes images, pre-integrated angular velocities, 

and accelerations, avoiding repeated IMU reintegration. A 
pose graph is defined by selectively pre-integrating IMU 
measurements between keyframes and skipping frames, 
resulting in a manageable representation of IMU data. The 
pre-integrated IMU measurements, combined with visual 
measurements, generate VIO estimates that provide 
timestamps, position, orientation, and velocity. These 
estimates are then loosely fused with GNSS measurements 

and refined through global optimization using nonlinear 
techniques. It necessitates that the switch factor handles 

attenuated or scattered signals that may not be received 
indoors. A loosely coupled integration of GNSS and VINS 
achieves pedestrian positioning by leveraging the strengths 
of GNSS, IMU, and monocular camera sensors. 

This research aims to deliver reliable sensor fusion: 1) 
selecting the most reliable sensor for integration and 2) 
ensuring robustness integration. Consequently, a reliable 
smartphone-level ubiquitous pedestrian positioning solution 
can be achieved. The study developed a machine learning-
based Indoor/Outdoor transition method based on the GNSS 
feature to select the reliable sensor during incorporation, 
maximizing the performance of the positioning system. It 

coordinated frame alignment between the GNSS 
measurement in a global frame and VINS positioning in a 
local frame. This alignment ensures consistent and accurate 
positioning information across different coordinate systems. 
It loosely integrated VINS and GNSS solutions as a batch 
using FGO, enhancing the overall robustness of the system 
for smartphones. FGO enables the fusion of VINS and 
GNSS measurements, leading to improved positioning 

accuracy and reliability. Finally, the system’s performance 
was validated through experiments in urban canyons. 

 

4.2. Support vector machines (SVM) for 

indoor/outdoor (IO) classification  
 
To classify IO conditions, we adopt SVM with GNSS 

features, including satellite numbers, elevation angle, and 
average carrier-to-noise ratio (C/N0). SVM [47] is a 
supervised learning approach that enables binary 
classification by identifying a hyperplane to separate 
different types of data. SVMs are widely utilized in 
classification, regression, and outlier detection tasks. Using 
support vectors, SVMs achieve memory efficiency. The 
flexibility of SVMs allows different kernel functions in the 

decision function. SVMs for IO classification using GNSS 
measurements offer a promising solution to the challenges 
of positioning pedestrians with smartphones in urban areas 
and where GNSS signals are not available, including indoor 
areas.  

 
 
 
 

 
 
 
 
 
 

Figure3 

SVM Flowchart for IO classification 
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We collected data from The Hong Kong Polytechnic 

University encompassing both indoor and outdoor 
environments, suitable for smartphone use. Figure 3 shows 
the algorithm structure for IO detection, which relies on 
GNSS data and predefined relationships among elements 

like elevation angle, average C/N0, and the used and received 
satellite numbers. These elements are categorized as indoor 
or outdoor based on their expression patterns, which indicate 
their belonging to the indoor or non-indoor category. 

The framework comprises two main stages. In the 
training stage, the SVM is trained with labeled sample data. 
IO classification (presumptive data) and the measurements 
from GNSS are utilized to create a series of weights, then 

utilized in the next stage. IO conditions are manually labeled 
as the training data at the training phase.  

In the classification stage, the trained SVM assigns 
scores to new data points based on their similarity to the 
training data. It employs weights from the previous stage and 
new GNSS measurements to classify results. Therefore, 
SVM can classify the new inputs based on their scores. SVM 
has been widely used in various classification tasks due to its 

effectiveness in handling high-dimensional data. SVM 
distinguishes between indoor and outdoor environments by 
analyzing signal strengths from received satellites or other 
relevant parameters. This method is both computationally 
efficient and easy to implement. 

Convolutional Neural Networks (CNNs) have 
demonstrated success in image-related tasks like object 
recognition and scene understanding. With labeled indoor 

and outdoor images, CNN can learn intricate patterns and 
capturing the visual characteristic features that discriminate 
between these environments [48]. Comparing CNNs with 
SVMs in this study evaluates the performance of deep 
learning-based techniques against conventional machine 
learning approaches. SVMs have been widely used for 
various classification tasks, including indoor-outdoor 
detection, they often rely on handcrafted features manually 
designed and selected, which can limit their ability to capture 

the full complexity of visual information. In contrast, CNNs 
learn relevant visual representations directly from image 
data, without the need for extensive feature engineering [49]. 
This study compares CNN’s sophisticated feature learning 
capabilities with conventional techniques, such as SVMs, in 
indoor-outdoor classification. This comparative evaluation 
assesses whether visual information improves indoor-
outdoor detection accuracy, leveraging the rich visual 

information present in images, for more accurate and robust 
detection performance. The classification method is 
Places365 CNN developed by researchers from the 
Massachusetts Institute of Technology (MIT) [48]. The 

model is trained on a large-scale dataset named Places365, 
which contains millions of labeled images across a wide 
range of scene categories, including both indoor and outdoor 
environments. With the Places365 CNN model, an image is 

passed through the network to analyze the output 
probabilities across different scene categories. Examining 
probabilities tied to indoor and outdoor scene labels, the 
decision rule classifies the input image as either indoor or 
outdoor. 

 

4.3. Loosely coupled 3DMA GNSS using FGO 

 
Although VINS is integrated to help outdoor 

positioning and recovery when GNSS is unavailable, it still 
relies on GNSS to provide reliable positioning in an absolute 

coordinate frame. As a result, improving GNSS performance 
can positively influence the overall performance of the 
proposed positioning framework. 3DMA GNSS provides a 
huge potential for improving positioning performance in 
urban canyons [32]. It is a software-based approach that aids 
in positioning with 3D building models. Unlike approaches 
such as the consistency check [50], to exclude the NLOS 
unhealthy measurement, 3DMA GNSS also uses NLOS 
measurements as features for positioning.  

The cutting-edge 3DMA GNSS algorithms on shadow 
matching [33] and likelihood-based ranging 3DMA GNSS 
[5] are combined in this study. To increase the robustness, 
the 3DMA GNSS solution incorporates Doppler 
measurements through FGO in a loosely coupled manner. 
Details are available in Ng et al. [6].  

3DMA GNSS spreads out potential positioning 
candidates around the initial position. It simulates 

measurements for each candidate and compares them with 
actual measurements. This research combines shadow 
matching and likelihood-based ranging for 3DMA GNSS, 

denoted as 𝐱𝑘,3𝐷𝑀𝐴, in the context of FGO. 
Shadow matching [33] uses LOS and NLOS satellite 

visibility as the feature for positioning. Non-received 
satellites in the ephemeris are assumed to be  NLOS 
satellites, while the received satellites are evaluated in their 
LOS probability based on the C/N0 value, as 

𝑝(𝐿𝑂𝑆| 𝐶 𝑁0⁄ )𝑖, to mitigate the NLOS reception effect. The 

LOS probability is then compared with the predicted 
visibility at each distributed candidate, with the elevation 
angle of the building boundary at the corresponding azimuth 

angle, as 𝑝(𝐿𝑂𝑆|𝐵𝐵)𝑗
𝑖 . The consistency of the satellite at the 

candidate can be formed, 
 

 𝑃𝑗
𝑖 = 𝑝(𝐿𝑂𝑆| 𝐶 𝑁0⁄ )𝑖𝑝(𝐿𝑂𝑆|𝐵𝐵)𝑗

𝑖 + 

[1 − 𝑝(𝐿𝑂𝑆| 𝐶 𝑁0⁄ )𝑖][1 − 𝑝(𝐿𝑂𝑆|𝐵𝐵)𝑗
𝑖 ] (1) 

 

Shadow matching likelihood score for the candidate 𝑗 
is then calculated by the geometrical mean of the visibility 

consistency of all satellites’ 𝑖 = 1…𝐼, 𝑃𝑗
𝑖,  

 

 𝑆𝑗,𝑆𝐷𝑀 = (∏ 𝑃𝑗
𝑖

𝑖 )
1

𝐼⁄  (2) 
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The candidate with the highest similarity is determined 
as the receiver’s location. The detailed implementation of 
shadow matching follows in  Wang et al. [33].  

Likelihood-based ranging 3DMA GNSS [5] determines 

the user’s location by comparing the modeled pseudorange 
at each distributed candidate with the measurements. The 
implementation of likelihood-based ranging 3DMA GNSS 

follows in pseudorange, 𝜌̂𝑗
𝑖 , obtains the smallest difference 

between the measured, 𝜌̃i . This forms the pseudorange 

innovation of satellite 𝑖 at candidate 𝑗, as ∆𝜌𝑗
𝑖 ,  

 

 ∆𝜌𝑗
𝑖 = 𝜌̃i − 𝜌̂𝑗

𝑖   (3) 

 
For the satellite that predicted NLOS at a corresponding 

candidate, the pseudorange innovation, ∆𝜌𝑗
𝑖 , is inputted to a 

skewed distribution and then remapped to the normal 
distribution to eliminate the NLOS delay error. While the 
predicted LOS satellite at candidate keeps the pseudorange 

innovation remains unchanged, such that,  
 

 ∆𝜌𝑗,𝐿𝐵𝑅
𝑖 = 

  {
∆𝜌𝑗

𝑖 𝐿𝑂𝑆

𝑅𝑒𝑚𝑎𝑝𝑝𝑖𝑛𝑔(∆𝜌𝑗
𝑖 , 𝐶 𝑁0⁄ 𝑖) 𝑁𝐿𝑂𝑆

  (4) 

 

where 𝐶 𝑁0⁄ 𝑖
 is the 𝐶 𝑁0⁄  measurements of satellite 𝑖. This 

study selects the highest elevation angle satellite as the 

reference satellite. 𝑅𝑒𝑚𝑎𝑝𝑝𝑖𝑛𝑔(∙) is the function to remap 
the pseudorange innovation using a skewed distribution to a 
normal distribution and become NLOS delay-free 
pseudorange innovation, the full implementation can be 
found in Zhong and Groves [5]. Therefore, an array consists 

of all pseudorange innovations of available satellites, from 1 

to 𝑖 , as ∆𝛒𝑗,𝐿𝐵𝑅 = [∆𝜌𝑗,𝐿𝐵𝑅
1 …∆𝜌𝑗,𝐿𝐵𝑅

𝑖 ]
T

 , can be used to 

calculate the score based on their consistency,  
 

 𝑆𝑗,𝐿𝐵𝑅 = exp(−[
1

∑𝐐
(∆𝛒𝑗,𝐿𝐵𝑅

T 𝐐−1∆𝛒𝑗,𝐿𝐵𝑅)]
1

𝐼⁄
)    (5) 

 

where 𝐐 is the weighting matrix. Diagonal elements are the 

uncertainty of each satellite, such that ∑𝐐 is the summation 
of the uncertainty of all satellites. 

The scores from shadow matching and likelihood-based 
ranging 3DMA GNSS are then taken the square root of their 

product as the integrated score, such as 𝑆𝑗,3𝐷𝑀𝐴 =

√𝑆𝑗,𝑆𝐷𝑀 × 𝑆𝑗,𝐿𝐵𝑅 . As a result, the 3DMA GNSS solution, 

𝐩𝑘,3𝐷𝑀𝐴 , can be obtained by weighted averaging of all 

distributed candidates, 𝐩𝑗=1…𝐽 , with their score, 

𝑆𝑗=1…𝐽,3𝐷𝑀𝐴,  

 

 𝐩𝑘,3𝐷𝑀𝐴 =
∑ 𝐩𝑗𝑆𝑗,3DMA

𝐽
𝑗=1

∑ 𝑆𝑗,3DMA
𝐽
𝑗=1

 (6) 

 
To increase the robustness of positioning, this study 

integrates 3DMA GNSS with Doppler measurements using 

FGO. Receiver’s velocity and clock drift, 𝐯𝑘 , and c𝛿𝑡̇𝑘 , 

respectively, are estimated by 𝑖 -th satellite’s Doppler 

measurements at epoch 𝑘, 𝑑𝑘 = [𝑑𝑘
1 ,… , 𝑑𝑘

𝑖 ], via the least-

squares (LS) method [51]. The FGO framework includes 
three components. The initial error component limits the 
Euclidean distance between the 3DMA GNSS solution and 

the optimized state, denoted as 𝐱𝑘,3𝐷𝑀𝐴  and 𝐱𝑘 , 

respectively. The error function can be expressed as,  

 

 ‖𝑒𝑘,𝟑𝐃𝐌𝐀‖
𝛔𝟑𝐃𝐌𝐀

𝟐

2
= ‖𝐩𝑘 − 𝐩𝑘,3𝐷𝑀𝐴‖

𝛔𝟑𝐃𝐌𝐀
𝟐

2
  (7) 

 

where 𝛔𝟑𝐃𝐌𝐀
𝟐  is a diagonal variance matrix of the 3DMA 

GNSS at x-, y-, and z-axis, respectively. 
Two factors are introduced to constraint consecutive 

epochs, utilizing both the motion propagation model and the 
constant velocity motion model [52], expressed with error 

functions, ‖𝑒𝑘,𝐯‖𝛔𝐯,𝑘
𝟐

2
 and ‖𝑒𝑘,𝐯̅‖𝛔𝐯̅

𝟐

2
, respectively. They are 

given by, 
 

 ‖𝑒𝑘,𝐯‖𝛔𝐯,𝑘
𝟐

2
= ‖𝐯𝑘 −

1

∆𝑡
(𝐩𝑘+1 − 𝐩𝑘)‖

𝛔𝐯,𝑘
𝟐

2
   (8) 

 

 ‖𝑒𝑘,𝐯̅‖𝛔𝐯̅
𝟐

2
= ‖

1

2
(𝐯𝑘 + 𝐯𝑘+1) −

1

∆𝑡
(𝐩𝑘+1 − 𝐩𝑘)‖

𝛔𝐯̅
𝟐

2
 (9) 

 

where ∆𝑡 represents the time gap between epoch 𝑘 and 𝑘 +
1. 𝛔𝐯

𝟐 is a diagonal covariance matrix of velocity 𝐯𝑡,while 𝛔𝐯̅
𝟐 

is the averaged diagonal covariance matrix at epoch 𝑘 and 

𝑘 + 1. As a result, FGO aims to minimize the collective error 
of three cost functions related to the loosely coupled 3DMA 
GNSS as,  
 

 𝛘∗ = argmin
𝛘

∑ ‖𝑒𝑘,𝟑𝐃𝐌𝐀‖
𝛔𝟑𝐃𝐌𝐀

𝟐

2
𝑘

+‖𝑒𝑘,𝐯‖𝛔𝐯,𝑡
𝟐

2
+ ‖𝑒𝑘,𝐯̅‖𝛔𝐯̅

𝟐

2    (10) 

 

where 𝛘 = [𝐩1 , … , 𝐩𝑘] is the state set of the receiver, while 

𝛘∗ represents the optimal set of states. The optimal set of 
3DMA GNSS is then integrated with the VINS results.  

 

4.4. GNSS/VINS integration 
 
Establishing a visual trajectory involves detecting and 

tracking camera image features,  matching images. SLAM 

techniques construct a visual trajectory using Structure-
from-Motion (SfM) principles [53]. IMU data helps estimate 
scale, velocity, and IMU deviation  [54]. Updating every 
state with every IMU measurement at high frequency is 
impractical. Therefore, a pose graph consolidates the 
majority of IMU measurements into a single pose constraint. 
Pose graph integration with keyframes and pose constraints 
improves scalability and computational efficiency. 

IMU pre-integrations use a continuous-time 
quaternion-based approach, building upon previous work, 
and incorporating IMU [52]. Measurements from the IMU  
include force and platform dynamics with gravity. These 

measurements include additive noise 𝐧𝑎 , acceleration bias 

𝐛𝑤 , and gyroscope bias 𝐛a . The additional noise in the 
acceleration and gyroscope measurements follows a 
Gaussian white noise distribution. The biases follow a 
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random walk and their derivatives are Gaussian white noise. 

The raw gyroscope and accelerometer measurements are 𝝎̂ 

and 𝐚̂, expressed in Equation 11.  
 

 
𝒂̂𝑡 = 𝒂𝑡 + 𝒃𝑎𝑡

+ 𝑹𝑤
𝑏𝑡𝒈𝑤 + 𝒏𝑎

𝝎̂𝑡 = 𝝎𝑡 + 𝒃𝑤𝑡
+ 𝒏𝑤

  (11) 

 

where 𝐚𝑡  represents the expected accelerometer 

measurements, 𝐠𝑤 represents the gravity in the world frame, 
𝐧𝑎 represents the additive noise, 𝝎𝑡 represents the expected 

accelerometer measurements gyroscope, 𝐑w
𝑏t  represents a 

rotation matrix of the transformation from the local world 

frame to the body frame 𝑏𝑘 at time 𝑡, and both 𝐧𝑎 and 𝐧𝑤  
are the additive noise, calculated according to IMU 
specification.  

Gaussian white noise distributions the measurement 
errors of acceleration and gyroscope. A random walk process 

to model the biases of acceleration and gyroscope, using 
Gaussian white noise. To transmit the covariance of the 
orientation angles α, β, and γ: 

 

 𝜶𝑏𝑘+1

𝑏𝑘 = ∬  
𝑡∈[𝑡𝑘,𝑡𝑘+1]

𝐑𝑡
𝑏𝑘(𝐚̂𝑡 − 𝐛𝑎𝑡

)𝑑𝑡2 (12) 

 

 𝜷𝑏𝑘+1

𝑏𝑘 = ∫  
𝑡∈[𝑡𝑘,𝑡𝑘+1]

𝐑𝑡
𝑏𝑘(𝐚̂𝑡 − 𝐛𝑎𝑡

)𝑑𝑡 (13) 

 

 𝜸𝑏𝑘+1

𝑏𝑘 = ∫  
𝑡∈[𝑡𝑘,𝑡𝑘+1]

1

2
𝛀(𝝎̂𝑡 − 𝐛𝑤𝑡

)𝜸𝑡
𝑏𝑘𝑑𝑡  (14) 

 

 Ω(𝜔) =

[
 
 
 
 

0 −𝜔𝑧 𝜔𝑦 𝜔𝑥

𝜔𝑧 0 −𝜔𝑥 𝜔𝑦

−𝜔𝑦 𝜔𝑥 0 𝜔𝑧

𝜔𝑥 𝜔𝑦 𝜔𝑧 0 ]
 
 
 
 

  (15) 

 

The equations apply to[𝑡𝑘 , 𝑡𝑘+1 ] of two consecutive 

frames between 𝑏𝑘  and  𝑏𝑘+1 , where  𝑏𝑘  denoted the 

reference frame with the bias, 𝐑𝑡
𝑏𝑘  represents the rotation 

matrix of the transformation from the body frame to the 

reference frame 𝑏𝑘 at time 𝑡, and 𝜔𝑥, 𝜔𝑦 and 𝜔𝑧 represents 

the angular velocities in the body frame. 

 

4.5. Probabilistic framework formulation 
 

4.5.1. Inertial factor 

 

In this context, 𝑏𝑡𝑘
 refers to the body frame at time 𝑡𝑘, 

and the set {𝜶,𝜷, 𝜸} denotes the relative position, velocity, 

and rotational information of 𝑏𝑡𝑘
 and 𝑏𝑡𝑘+1

.  

 
Lastly, the residual that establishes the relationship 

between the system states and pre-integrated IMU [52] 
measurements is expressed as  

 

 

𝐫ℬ (𝐳̃
𝑏𝑡𝑘+1

𝑏𝑡𝑘 ,𝒳) =

[
 
 
 
 
 
 
 𝛿𝜶

𝑏𝑡𝑘+1

𝑏𝑡𝑘

𝛿𝜷
𝑏𝑡𝑘+1

𝑏𝑡𝑘

𝛿𝜽
𝑏𝑡𝑘+1

𝑏𝑡𝑘

𝛿𝐛𝑎

𝛿𝐛𝑔 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 𝐑𝑤

𝑏𝑡𝑘 (𝐩𝑏𝑡𝑘+1

𝑤 − 𝐩𝑏𝑡𝑘

𝑤 +
1

2
𝐠𝑤Δ𝑡𝑘

2 − 𝐯𝑏𝑡𝑘

𝑤 Δ𝑡𝑘) − 𝜶̂
𝑏𝑡𝑘+1

𝑏𝑡𝑘

𝐑𝑤

𝑏𝑡𝑘 (𝐯𝑏𝑡𝑘+1

𝑤 + 𝐠𝑤Δ𝑡𝑘 − 𝐯𝑏𝑡𝑘

𝑤 ) − 𝜷̂
𝑏𝑡𝑘+1

𝑏𝑡𝑘

2 [𝐪𝑏𝑡𝑘

𝑤−1
⊗ 𝐪𝑏𝑡𝑘+1

𝑤 ⊗ (𝜸̂
𝑏𝑡𝑘+1

𝑏𝑡𝑘 )
−1

]
𝑥𝑦𝑧

𝐛𝑎𝑏𝑡𝑘+1
− 𝐛𝑎𝑏𝑡𝑘

𝐛𝑤𝑏𝑡𝑘+1
− 𝐛𝑤𝑏𝑡𝑘 ]

 
 
 
 
 
 
 
   

  (16) 
 

where 𝐩𝑏𝑡𝑘

𝑤 , 𝐯𝑏𝑡𝑘

𝑤 , 𝐪𝑏𝑡𝑘

𝑤  are the position, velocity, and 

orientation, respectively, of the body frame with respect to 

the local world frame at 𝑡𝑘; 𝐑𝑤

𝑏𝑡𝑘  transforms from the body 

frame to local world frame at 𝑡𝑘; 𝛿𝜽
𝑏𝑡

𝑘+1

𝑏𝑡𝑘  denotes the error in 

the relative rotation within the 3-D Euclidean space. The 

operator [𝐪𝑏𝑡𝑘

𝑤−1
⊗ 𝐪𝑏𝑡

𝑘+1

𝑤 ⊗ (𝜸̂
𝑏𝑡

𝑘+1

𝑏𝑡𝑘 )

−1

]

𝑥𝑦𝑧

 extracts the 

imaginary component of a quaternion. 
 

4.5.2. Visual factor 

 
In our system, the visual measurement use of sparse 

feature points extracted from image frames. These points are 
identified as strong corners [55] and are tracked using the 
iterative Lucas-Kanade method [56]. After applying 
distortion correction [57], the projection process is modeled 

as 𝒫̃ = [𝑢, 𝑣]𝑇 
 

 𝒫̃ = 𝜋𝑐(𝐑𝑏
𝑐 (𝐑𝑤

𝑏 𝐱𝑤 + 𝐩𝑤
𝑏 ) + 𝐩𝑏

𝑐 ) + 𝐧𝑐  (17) 

 

where 𝒫̃ denotes the feature coordinates in the image plane, 

𝐱𝑤  represents the corresponding 3-D landmark position in 

the local world frame, 𝜋𝑐(. )denotes the camera projection 

function in the camera frame, and 𝐧𝑐 represents the 
measurement noise. 

 

 𝐫𝐶(𝐳̃𝑙 ,𝒳) = 𝒫̃
𝑙

𝑎𝑗 − 𝜋𝑒 (𝐱̂
𝑙

Θ𝑗)    (18) 

 

 𝐱̂
𝑙

𝑐𝑗 = 𝐑𝑏
𝑐 (𝐑𝑤

𝑏𝑗 (𝐑𝑏𝑖

𝑤 (𝐑𝑐
𝑏 1

𝜌𝑙
𝜋𝑐

−1(𝒫̃𝑙
𝑐𝑖) + 𝐩𝑐

𝑏) + 𝐩𝑏𝑖

𝑤) +

𝐩𝑤
𝑏𝑤) + 𝐩𝑏

𝑐   (19) 

 

To link the observations of a feature point 𝑙  with 

inverse depth 𝒫𝑙  in two frames 𝑖 and 𝑗, we use the residual 

{𝐑𝑏
𝑐 , 𝐭𝑐

𝑏}, which represents the transformation between the 

IMU and the camera. This residual is expressed as the 

difference between the projected feature point in frame 𝑗 and 
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the estimated feature point in frame 𝑖. The estimated feature 
point is obtained by applying a sequence of rotation and 
translation transformations to the projected feature point in 

frame 𝑗. These transformations relate the camera frame to the 
IMU frame and the local world frame to the IMU frame. 

 

4.5.3. GNSS VINS alignment 
 

Since VINS completes gravitational acceleration 
alignment, only the yaw angle offset between the coordinate 
systems of VINS and GNSS  remains estimated before 
integration. This study optimizes the positioning solution in 
the world frame. The alignment process uses the motion of 

the GNSS antenna and  VINS. Velocity, 𝐯𝑘, estimated by 
Doppler measurements facilitates the alignment process   
once Doppler measurements are less noisy than pseudorange 
measurements.   

The relative position from VINS, 𝐯𝑉𝐼𝑂, rotates over the 

yaw, 𝜓, axis using the rotational matrices from local frame 
to global frame in ENU and ENU to ECEF, 

𝐑𝐸𝐶𝐸𝐹
𝐸𝑁𝑈 𝐑𝐸𝑁𝑈

𝑙𝑜𝑐𝑎𝑙(𝜓) , aligning VINS  with GNSS.  An objective 
function  is formulated to minimize the difference between 

the relative motion of GNSS velocity and VINS by changing 

the yaw angle, 𝜓, expressed as,  
 

 𝜓∗ = argmin
           𝜓

‖𝐯𝑘 − 𝐑𝐸𝐶𝐸𝐹
𝐸𝑁𝑈 𝐑𝐸𝑁𝑈

𝑙𝑜𝑐𝑎𝑙(𝜓)𝐯𝑉𝐼𝑂‖
2
   (20) 

 
As a result, the transformation between the local frame 

and the global frame is completely calibrated. The estimated 

yaw angle, 𝜓, is used in the optimization process for VINS 
to rotate to the global frame and integrate with GNSS. 

 

4.5.4. Factor graph optimization 

 
FGO integrates multiple sensors in the GNSS/VINS system, 

using a loosely coupled approach. It employs nonlinear 
optimization via factor graphs to capture interdependencies 
and enhance accuracy, reducing challenges related to drift 
and error accumulation. Following the alignment of the 
global and local frames, the obtained results undergo further 
optimization. The VINS estimates become factors in the 
graph, with GNSS measurements incorporated as constraints 
to refine these estimates. 

 
 
 
 
 
 
 

Figure 4 

FGO structure on loosely coupling GNSS and VINS 

with IO switching factor  
 

 
 

The problem is constructed by setting up the parameter 
blocks and residual blocks. The Ceres Solver [58] is 
employed as the optimization solver for this study, and the 
system structure is illustrated in Figure 4. 

 

 𝑋 = [x0 , x1 , x2 , … , xt] (21) 
 

 x0,t = (𝐩0,t, 𝐯0,t, 𝐪0,t)
T
   (22) 

 
Figure 4 showcases the system state representation, 

where X represents system states in Equation 21. The system 

states at each epoch 𝑡, as xt,are composed of position (𝐩), 

velocity (𝐯 ), and orientation (𝐪 ) parameters denoted as 
p0,t, v0,t, q0,t in Equation. 22.  

 

 ‖𝑓𝑡
𝑉𝐼𝑁𝑆‖

Σ𝑡
𝑉𝐼𝑁𝑆

2
= ‖[

𝐪𝑡−1
𝑙 −1

𝐑(𝐩𝑡
𝑙−𝐩𝑡−1

𝑙 )

𝐪𝑡−1
𝑙 −1

−𝐪𝑡
𝑙

] −

[
𝐪𝑡−1

𝑤 −1
𝐑(𝐩𝑡

𝑤−𝐩𝑡−1
𝑤 )

𝐪𝑡−1
𝑤 −1

−𝐪𝑡
𝑤 ]‖

Σ𝑡
𝑉𝐼𝑁𝑆

2

  (23) 

 

 ‖𝑓𝑡
3𝐷𝑀𝐴 𝐺𝑁𝑆𝑆‖

Σ𝑡
3𝐷𝑀𝐴 𝐺𝑁𝑆𝑆

2
= ‖𝐩𝑡

3𝐷𝑀𝐴 𝐺𝑁𝑆𝑆 − 𝒑𝑡‖Σ𝑡
3𝐷𝑀𝐴 𝐺𝑁𝑆𝑆

2
   

  (24) 
 

 ‖𝑓𝑡
𝑆𝑊‖

2
= ‖𝑠𝑡𝑓𝑡,3𝐷𝑀𝐴 𝐺𝑁𝑆𝑆 + ((1 − 𝑠𝑡)𝑓𝑡,𝑉𝐼𝑁𝑆)‖

2
  

   (25) 
 

where Σ𝑡
∗  is the covariance matrix of the corresponding 

methods, ∗, at epoch 𝑡. 

The term ‖𝑓𝑡
𝑉𝐼𝑁𝑆‖

Σ𝑡
𝑉𝐼𝑁𝑆

2
 in Equation. 23 represents the 

VINS factor, which computes the difference between the 

estimated orientation using the local frame 𝐪𝑡−1
𝑙  and the 

relative rotation obtained from the position difference 

(𝐩𝑡
𝑙−𝐩𝑡−1

𝑙 ), and the global frame 𝐪𝑡−1
𝑤  and (𝐩𝑡

𝑤−𝐩𝑡−1
𝑤 ). 

The term ‖𝑓𝑡
3𝐷𝑀𝐴 𝐺𝑁𝑆𝑆‖

Σ𝑡
3𝐷𝑀𝐴 𝐺𝑁𝑆𝑆

2
 in Equation. 24 

represents the GNSS factor, which measures the position 
difference between the loosely coupled FGO 3DMA GNSS-

derived position 𝐩𝑡
𝐺𝑁𝑆𝑆and the estimated position 𝒑𝑡. 

The term ‖𝑓𝑡
𝑆𝑊‖

2
 in Equation. 25 represents the 

switching factor, which combines the 3DMA GNSS and 

VINS factors based on a switching variable 𝑠𝑡 . The term 

𝑠𝑡𝑓𝑡,𝐺𝑁𝑆𝑆  corresponds to the 3DMA GNSS factor 

contribution, while (1 − 𝑠𝑡)𝑓𝑡,𝑉𝐼𝑁𝑆 corresponds to the VINS 

factor contribution. 
 

 X∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
X

∑ ‖𝑓𝑡
𝑉𝐼𝑁𝑆‖

Σ𝑡
𝑉𝐼𝑁𝑆

2
+ ‖𝑓𝑡

3𝐷𝑀𝐴 𝐺𝑁𝑆𝑆‖
Σ𝑡

3𝐷𝑀𝐴 𝐺𝑁𝑆𝑆

2
𝑡  

+‖𝑓𝑡
𝑆𝑊‖

2
                                                                        (26) 

 
This estimate the system states X by minimizing the 

objective function in Equation. 26, which comprises the 
VINS factors, 3DMA GNSS factors, and switching factors. 

The optimal system state X∗  is obtained by solving the 
estimation problem and minimizing the costs associated with 
each measurement type. The FGO framework integrates 
measurements from VINS, 3DMA GNSS, and switching IO 
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to accurately estimate pedestrian position. The optimization 
process achieves the maximum a posteriori (MAP) 
estimation by jointly optimizing all states and minimizing 
the costs from measurements. 

 

5. Experiment 
 

Figure 5 
(a) Trajectory A        (b) Trajectory B         (c) Trajectory C 

 

 
 
Experiments were conducted in the urban city of Hong 

Kong. Trajectories A and B were conducted at The Hong 
Kong Polytechnic University and C in Tsim Sha Tsui.  
Trajectory A contained both outdoor and indoor 
environments, with outdoor areas surrounded by trees and 
indoor areas with sufficient light. Trajectory B includes both 
open and confined areas outdoors and in a narrow corridor 
indoors. Trajectory C includes urban outdoor and indoor 
environments, taking place in the bus terminal, with many 

people, buses, and insufficient indoor lighting.   
All three experiments involved two scenarios to 

evaluate performance with different positioning. Trajectory 
A, B and C were tested under Scenario 1 (starting from 
indoors, transitioning to outdoors, and returning to indoors) 
and Scenario 2 (starting from outdoors, transitioning to 
indoors, and returning to outdoors. We compared the root 
mean square error (RMSE) of absolute positioning error, 

standard deviation (std), and SVM accuracy of 
VINSMONO, 3DMA GNSS, 3DMA GNSSVINS FGO, and 
3DMA GNSSVINS-IO FGO in all experiments. The ground 
truth (GT) of trajectories A, B and C, accordingly, presented 
in Google Earth can be seen in Figure 5, respectively. This 
section presents a comparison of the following methods: 

 

 VINSMONO [52]: A monocular visual-inertial 
state estimator. 

 3DMA GNSS [6]: Loosely coupled 3DMA GNSS 
and velocity estimated by weighted least squares.  

 3DMA GNSSVINS FGO: The proposed method 
without IO switching factor in FGO. 

 3DMA GNSSVINS-IO FGO: The proposed 
method utilizes VINS, 3DMA GNSS, and FGO in 
a loosely coupled way, incorporating the IO 
switching factor. 

 

5.1. Experiment setup 
 
In this experiment, we utilized the Xiaomi Mi8 

smartphone, to acquire the GNSS measurements as well as 

inertial and visual data. The smartphone is equipped with a 
Triple-axis MEMS-IMU (TDK-InvenSense ICM-20690) 
operating at 100Hz. Additionally, it features GNSS receivers 

with a Broadcom BCM47755 chip, receiving the signals 
from GPS (L1+L5), Galileo (E1+E5a), GLONASS (L1), and 
Beidou (B1) at 1 Hz during the experiments. The smartphone 
also incorporates a monocular camera with a resolution of 

1280 × 640 pixels and a pixel size of 1.4 µm, operating at 30 
frames per second. The output rate after integrating with 
IMU and GNSS is 10 Hz. To ensure accurate data 
acquisition, we performed calibration of the extrinsic and 
intrinsic parameters of the IMU and camera of the Xiaomi 
Mi8. A window size of 10 was employed, consistent with 
VINS-Mono. However, the loop closure function was not 
enabled. For optimization purposes, the Ceres library was 

selected. A desktop personal computer that had an Intel i9-
9900K processor operating at 3.6 GHz and 31.2 GB of 
memory was used. 

 

5.2. Experimental validation 
 

Figure 6 
Ground truth (GT) generated by LIO-SAM: 

(a) Trajectory A     (b) Trajectory B         (c) Trajectory C  
                                                   

 
LiDAR technology is employed as the ground truth 

reference in our investigation to attain precise centimetre-
level positioning. Specifically, we utilized the HDL 32E 
Velodyne LiDAR, with a 360-degree horizontal field of view 
(HFOV) and a vertical field of view (VFOV) spanning from 
+10° to -30°, with an 80-meter range, recorded at 10Hz. In 
addition, the Xsens Mti 10 AHRS IMU model, operating at 
a frequency of 5.0 Hz, was employed. Figure 6 presents the 

LiDAR ground truth data generated by the LIO-SAM 
algorithm for three distinct trajectories, denoted as A, B, and 
C. By leveraging the information from the LiDAR point 
cloud map, the IO flag can be accurately labeled, indicating 
whether the pedestrian is indoors or outdoors as ground truth 
for validation. 

 

Table 2 

Classification accuracy (%) 

 

Trajectory 
(Scenario) 

A 
(1) 

A 
(2) 

B 
(1) 

B 
(2) 

C 
(1) 

C 
(2) 

SVM 

Classification 
Accuracy 

84 77 94 97 94 99 

CNN 
Classification 
Accuracy [44] 

91 76 88 63 66 50 

 

 Table 2 presents the SVM and CNN classification 
accuracy for six scenarios: A1, A2, B1, B2, C1, and C2. It 
includes the accuracy percentage for the SVM and CNN 
algorithms. SVM achieved better accuracy with 92.8% than 
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CNN with 72.3% on average. SVM is better suited for 
classifying indoor and outdoor environments. 

Trajectory A in SVM IO detection shows lower 
accuracy compared to trajectories B & C. This discrepancy 

stems from the complexity of the environment in trajectory 
A, which poses greater challenges than trajectories B & C. 

In contrast, the CNN IO detection results reveal that 
trajectory A has better accuracy compared to trajectories B 
& C. This is due to the complexity of the environment in 
trajectory A, which poses more features for the CNN 
classification than trajectories B & C. 

Overall, SVM performs better than CNN. SVM 

primarily relies on manually engineered features, which can 
capture information beyond what is visible in the image. 
CNNs rely heavily on visual patterns to make classifications. 
If an outdoor environment is partially covered or occluded, 
the CNN may not have access to the complete visual 
information necessary to accurately classify it as outdoor. In 
such cases, SVM’s reliance on manually engineered features 
is an advantage. 

Abrupt changes in light conditions can pose significant 
challenges for CNNs. If the camera encounters low light or 
overexposure, the image may be too dark or too bright, 
reducing CNN accuracy. 

Furthermore, GNSS may not function properly for short 
periods. Accurate IO classification is critical in these 
scenarios to choose the right sensor to trust, and SVM’s 
robustness makes it more suitable. 

By comparing SVM and CNN accuracies, we conclude 
that SVM is more suitable for IO classification in 
environments where visual features may be inconsistent or 
occluded, and where robustness to lighting conditions is 
crucial. This makes SVM a more reliable choice for accurate 
indoor-outdoor classification in complex and varying 
environments. 

 

5.3. Experiment result 
 

Table 3 

The RMSE of absolute positioning error and the 

standard deviation  
 

Experiment Algorithm Std (m) RMSE 

 

Trajectory A 
Scenario 1 (A1) 

VINSMONO 2.47 11.94 

3DMA GNSS NA 8.80 

3DMA GNSSVINS 
FGO 

4.42 12.87 

3DMA GNSSVINS-
IO FGO 

5.29 8.34 

Trajectory A 
Scenario 2 (A2) 

VINSMONO 26.01 13.00 

3DMA GNSS NA 37.47 

3DMA GNSSVINS 
FGO 

12.55 44.60 

3DMA GNSSVINS-
IO FGO 

6.56 18.63 

Trajectory B 
Scenario 1 (B1) 

VINSMONO 13.24 7.29 

3DMA GNSS 1.73 10.29 

3DMA GNSSVINS 4.65 6.80 

FGO 

3DMA GNSSVINS-
IO FGO 

NA 5.73 

Trajectory B 
Scenario 2 (B2) 

VINSMONO 3.93 8.20 

3DMA GNSS NA 13.86 

3DMA GNSSVINS 
FGO 

3.93 18.35 

3DMA GNSSVINS-
IO FGO 

2.75 3.91 

Trajectory C 
Scenario 1 (C1) 

VINSMONO 2.36 5.31 

3DMA GNSS NA 5.48 

3DMA GNSSVINS 
FGO 

2.31 3.68 

3DMA GNSSVINS-
IO FGO 

1.89 2.93 

Trajectory C 
Scenario 2 (C2) 

VINSMONO 13.57 13.00 

3DMA GNSS NA 9.29 

3DMA GNSSVINS 
FGO 

3.28 7.61 

3DMA GNSSVINS-
IO FGO 

2.49 6.47 

 
Table 3 presents the results of six scenarios for 

VINSMONO, 3DMA GNSS, 3DMA GNSSVINS FGO, and 
3DMA GNSSVINS-IO FGO across trajectories A, B and C 
in two different scenarios. The standard deviation (std) 
represents the variability or spread of the positioning errors. 
The root means square error (RMSE) values indicate the 
error between the estimated and actual positions, providing 

an overall measure of accuracy.  
The 3DMA GNSSVINS-IO FGO algorithm 

demonstrates improved performance. The RMSE results 
indicate 3DMA GNSSVINS-IO FGO improvement of 4.53 
meters in A1, 18.84 meters in A2, 4.56 meters in B1, 4.29 
meters in B2, 2.93 meters in C1, and 6.47 meters in C2. It 
achieves lower std, showing more consistent positioning 
accuracy. 

The integration of the IO detection switch in the 3DMA 

GNSSVINS-IO FGO algorithm significantly contributes to 
its improved performance. The IO switch helps mitigate 
challenges related to global drift and enhances the 
algorithm’s ability to accurately estimate local poses, 
improving positioning accuracy. 

In summary, trajectory A demonstrates lower accuracy 
in IO detection compared to trajectory B and trajectory C, 
due to the complexity of the environment. Additionally, the 

3DMA GNSSVINS-IO FGO algorithm generally performs 
well with relatively low standard deviations, indicating 
consistent positioning accuracy. This improvement is due to 
the integration of the IO switching factor. VINSMONO 
shows lower standard deviations in some scenarios. 
Additionally, the std is not applicable for the 3DMA GNSS 
algorithm since the GNSS was not available all the time. 

 

 
 

Table 4 

3DMA GNSS Estimated Std(m) 
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Trajectory 
(Scenario) 

A (1) A (2) B (1) B (2) C (1) C (2) 

3DMA 
GNSS 
Estimated 
Std 

48.19 35.91 28.52 17.89 38.07 34.95 

 
Table 4 highlights the huge 3DMA GNSS Std which 

3DMA GNSS might not be throughout the entire period, 
including indoors and the transition time. IO detection 
mainly helps during transitions, in that time it is more 
difficult for GNSS to perform well due to reflections and 
diffraction.  

The IO detection can prevent large errors of GNSS. The 

IO trusts VINS first indoors, the error and std are small and 
once the IO detected it as outdoor, the IO trusts GNSS more, 
and the error may increase during this transition period. 
When no IO switching factor, it is based on the weighting of 
the std of GNSS, the GNSS affects the positioning 
performance even if the error is high.  It mistrusted the GNSS 
position, and the performance got worse while the std of the 
positioning error remained lower than having IO detection. 

Therefore, our proposed method effectively addresses this 
issue, enhancing the overall positioning performance and 
reliability. 
 

Figure 7 

The A1 absolute positioning error comparison with 

the estimated 3DMA GNSS standard deviation (STD) 

and IO indicator  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 

The A1 trajectory comparison 

 
 

Table 3 shows that the 3DMA GNSSVINS-IO FGO has 
the highest standard deviation and lowest RMSE with values 
of 5.29 meters and 8.34 meters respectively, which indicates 
a greater variability of positioning errors and higher 
accuracy compared to other algorithms. However, the 

incorporation of the IO switching factor may introduce 
additional complexity or noise into the positioning solution, 
leading to increased variability. The proposed method 
contributes to reduced variability by incorporating VINS 
measurements. 

Figure 7 presents the absolute positioning error 
observed in Experiment A1. The integration of VINSGNSS-
IO effectively reduces the overall positioning error. It is 

important to note that erroneous covariance in the 3DMA 
GNSS module can compromise the optimization outcomes, 
particularly during epochs spanning 80 - 100, where the 
covariance fails to accurately bound the actual positioning 
error. Consequently, FGO mistakenly relies on inaccurate 
3DMA GNSS data, leading to performance degradation. 
Significant GNSS error with a small covariance around 
epoch 75 substantially affects the performance of 
VINSGNSS FGO, resulting in distorted optimized results. 

The IO detection mechanism effectively identifies the 
epochs with the highest GNSS errors, mitigating the impact 
of large positioning errors. 

Figure 8 presents the trajectories observed in 
Experiment A1. We observe that the proposed method's 
trajectory is closest to the GT. 

 
 

 
 
 
 
 
 
 
 

 
 

Figure 9 

The A2 absolute positioning error comparison with 
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the estimated 3DMA GNSS standard deviation (std) 

and IO indicator  
 

 
 

Figure 10 

The A2 trajectory comparison 

 

 
 

Table 3 shows that the 3DMA GNSSVINS-IO FGO 
algorithm exhibits a low standard deviation and low RMSE 
with values of 6.56 meters and 18.63 meters respectively, 
suggesting improved accuracy compared to the previous 
algorithm due to adding the IO factor. 3DMA GNSSVINS-
IO FGO demonstrated its capability to recover orientation 
errors from VINS when IO is indicated as outdoor and the 
positioning with no GNSS signals in Figure 9. It also shows 

an increase of 3DMA GNSSVINS FGO error in time 25 to 
time 55 while there is a loss of GNSS signal and an 
accumulating error of VINS MONO.  The 3DMA GNSS 
VINS-IO FGO solution maintains better positioning 
accuracy during transitions from outdoor to indoor 
environments compared to the standard 3DMA GNSSVINS 
FGO method. The standard method struggles with the loss 
of GNSS signals and not trusting the VIO sufficiently. 

3DMA GNSS uncertainties lead to mistrust in the system 
and degrade the overall performance when transitioning 
indoors. 

 

Figure 10 shows that 3DMA GNSS gets the closest 
epochs when it is available, our proposed method 3DMA 
GNSSVINS-IO FGO gets the smooth closest trajectory 
among these methods to the GT. VINSMONO has an 

orientation error and affects the 3DMA GNSSVINS FGO 
method. Our proposed method recovered orientation errors 
from VINS MONO. 

 

Figure 11 

The B1 absolute positioning error comparison 
 

 
 

Figure 12 

The B1 trajectory comparison 

 

 
 

Table 3 shows that the highest standard deviation 
comes from 3DMA GNSSVINS FGO, with a value of 13.24 
meters and the lowest RMSE of 6.80 meters, indicating 

relatively high variability but good accuracy. Meanwhile, the 
algorithm with the lowest standard deviation and RMSE 
comes from 3DMA GNSSVINS-IO FGO, with a value of 
1.73 meters, indicating more consistent performance. The 
integration of the IO switching factor contributes to this 
improved performance. Figure 11 on the absolute 
positioning error shows how the integration of VINS and 
3DMA GNSS effectively mitigates the drift from the VINS 
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system, resulting in significantly improved positioning 
performance. Integrating IO detection further improves 
positioning performance compared to not using IO detection. 
Overall, the positioning performance was consistently better 

when IO detection was employed.  
In addition, Figure 12 presents the trajectories of our 

proposed method gets the smoothest trajectory among these 
methods while getting a close trajectory with the GT. 

 

Figure 13 

The B2 absolute positioning error comparison with 

the estimated 3DMA GNSS standard deviation (std) 

And IO indicator  

 

 
 

Figure 14 

The B2 trajectory comparison 

 

  
 
Table 3 shows that 3DMA GNSSVINS-IO FGO has the 

lowest standard deviation with a value of 2.75 meters, 
integrating with the IO switching factor contributes to this 

improved performance. Figure 13 shows a smoother 
transition into indoor environments for the 3DMA GNSS 
VINS-IO FGO method despite large GNSS uncertainty 

during the transition from time 40 to 80. Despite the large 
3DMA GNSS standard deviation, a system without IO 
remains affected by inaccurate 3DMA GNSS performance. 

In contrast, the 3DMA GNSS VINS-IO FGO method 
effectively balances the transition. Particularly, when IO 
detection is applied, the overall positioning performance is 
notably improved, especially during epochs 50s to 70s, 

where the peak positioning error is successfully suppressed. 
3DMA GNSSVINS-IO FGO enhances the device's correct 
heading and significantly reduces the overall positioning 
error of 3DMA GNSS/VINS-IO FGO compared to not using 
IO.   

Figure 14 shows that our proposed method gets a 
smooth and closest trajectory among these methods with the 
GT while 3DMA GNSS gets the closest epochs depending 

on its available and the 3DMA GNSSVINS FGO method has 
a wrong device heading which is affected by the 
VINSMONO error. Our proposed method 3DMA 
GNSSVINS-IO FGO recovered the heading error and 
resulted in the closest trajectory. 

 

Figure 15 

The C1 absolute positioning error comparison 
 

 
 

 
 

Figure 16 

The C1 trajectory comparison 
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Table 3 shows that both 3DMA GNSSVINS FGO and 
VINSMONO have the highest standard deviation, with a 
value of 2.31 and 2.36 meters, respectively. Meanwhile, the 
algorithm with the lowest standard deviation and RMSE is 

3DMA GNSSVINS-IO FGO, with a value of 1.89 meters 
and 2.93 meters respectively.  

There was a large positioning error between times 20s 
and 70s presented in Figure 15. However, this error was 
successfully suppressed by integrating GNSS and 
VINSMONO. The integration of these two systems 
effectively improved the accuracy and stability of the 
positioning results during that period. Also, Figure 16 shows 

that the proposed method achieves the closest trajectory to 
the GT. 

 

Figure 17 

The C2 absolute positioning error comparison 
 

 
 

 

Figure 18 

The C2 trajectory comparison 

 

 
 
Table 3 presents the lowest standard deviation and 

RMSE from 3DMA GNSSVINS-IO FGO, with a value of 
2.49 meters and 6.47 meters respectively.  

Furthermore, the analysis reveals that the 3DMA 
GNSSVINS-IO FGO algorithm significantly reduced a 

positioning error during an IO transition from 55s to 100s in 
Figure 17. This integration successfully mitigated the error 
stemming from both VINS and GNSS, indicating that the IO 
switching factor had a profound impact on the smoothness 

and accuracy of the positioning results. By effectively 
managing the IO transition, the algorithm demonstrated 
improved performance and minimized the adverse effects of 
the error during that period. 

Moreover, a substantial positioning error was observed 
between times 20s and 90s in Experiment C1. However, this 
error was effectively suppressed by integrating the GNSS 
and VINS systems. Notedly, the trajectory of the 3DMA 

GNSSVINS-IO FGO affected by the 3DMA GNSS outliner 
deviates from the GT, as shown in Figure 18.  
 

6. Conclusion 
 
In this study, an FGO framework was developed to 

integrate local pose estimates from previous 3DMA GNSS 
and VIO research, with an IO detection switch. The proposed 
system tackles the challenges of global drift and enables 
accurate local pose estimation. Real-world experiments 
evaluated the system's performance, yielding promising 
results. The 3DMA GNSSVINS-IO FGO algorithm, 

incorporating the IO detection switch, demonstrates superior 
performance, with lower RMSE values and more consistent 
positioning accuracy. Combining 3DMA and VINS systems 
using FGO enhanced the accuracy and stability of the 
positioning results. By leveraging the complementary 
strengths of GNSS and VINS, the algorithm successfully 
mitigated the impact of the error and improved reliability and 
consistency positioning performance. Adding the IO 

detection switch significantly mitigated global drift 
challenges, improving performance with an average error of 
under 3 meters. 

Real-life experiments validate the system’s 
effectiveness, surpassing other methods. However, certain 
limitations exist. The training model is specific to the 
smartphone used in the experiment, and its applicability to 
other devices may be limited. Future work should focus on 

enhancing sensor self-robustness, especially when a 
camera or GNSS cannot be used, allowing the IMU 
propagation to take over Further advancements should 

target the complexities in dynamic urban canyons and 
better manage environmental factors.  

To address device specificity, future efforts should 
include cross-device training by using data from various 
devices, enhancing generalizability across different 

hardware configurations and manufacturers. This approach 
will create a larger model that is more robust and applicable 
to a wider range of devices.  The goal is to achieve consistent 
performance and accuracy, regardless of device, thus 
extending the proposed system's usability and reliability. 
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