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Abstract: This paper explores the pervasive challenges of pedestrian positioning using smartphones in densely populated urban environments
where global navigation satellite system (GNSS) signals are inaccessible, for example, in indoor areas. Existing sensor-based positioning
methods, such as inertial navigation systems, GNSS, and visual-inertial odometry (VIO), suffer from inherent restrictions that
compromise the accuracy and reliability of the positioning performance. An approach based on machine learning is proposed to address
these limitations, employing the support vector machine (SVM) algorithm to accurately distinguish indoor/outdoor (IO) based on the
measurement of GNSS. The proposed approach in this study seamlessly incorporates 3D mapping aided (3DMA) GNSS measurements
and localized estimations derived by VIO via factor graph optimization (FGO), complemented by an IO detection switch, to achieve
accurate pose estimation and effectively eliminate global drift. The system’s effectiveness and robustness are rigorously assessed through
comprehensive extensive real-life experiments, with an average reduction of 4 meters, leading to noteworthy and statistically significant
findings.
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1. Introduction

Smart mobility faces challenges in accurate smartphone
positioning within urban canyons. The development makes use of
various sensors, advanced intelligence, and next-generation
networks to improve performance. A diverse range of mobile
positioning techniques has been studied to facilitate location-based
services, with smartphones emerging as key instruments.
Equipped with various sensors such as Wi-Fi, inertial sensors,
magnetometers, and monocular cameras [1–3], smartphones offer
reliable localization information and comprehensive positioning
through different sensor combinations. However, urban areas pose
significant obstacles to the effectiveness of mobile global
navigation satellite system (GNSS) positioning. Studies by Rajak
et al. [4] demonstrated the limitations of conventional GNSS
localization methods in cityscapes, highlighting the adverse
impact of low positioning accuracy on user experiences,
particularly for smartphone users. To overcome these challenges,
additional data enhance urban positioning. One such approach is

the utilization of 3D building models as a software-based aid for
low-cost positioning, known as 3D mapping aided (3DMA)
GNSS. Noteworthy research [5] showcased the superior 3DMA
GNSS urban positioning results. Doppler measurements are
frequently integrated with the position solution to enhance the
precision and reliability of the positioning. The fusion of velocity
and 3DMA GNSS estimated from Doppler frequency is proposed
[6]. Building upon these foundations, the present study adopts a
loosely coupled approach to integrating Doppler velocity and
3DMAGNSS, striving to offer precise positioning on a global scale.

In scenarios where GNSS signals are compromised, such as
indoor environments, GNSS positioning is significantly affected,
leading to outages and degraded accuracy [7]. Indoor positioning
suffers from weakened and scattered signals caused by various
objects within the environment. Studies have revealed a decline in
GNSS signal strength of approximately 10–12 decibels, rapidly
reducing positioning accuracy [4]. Detection of indoor/outdoor
(IO) environments becomes crucial for achieving ubiquitous
positioning [8]. Several researchers have worked on IO detection
using GNSS measurements to create a framework for indoor
localization that relies on only smartphone sensors, requiring no
additional infrastructure.
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To enhance indoor positioning capabilities, visual-inertial
odometry (VIO) has been extensively employed in GNSS-denied
areas to bridge the gaps in the absence of GNSS signals [9]. VIO
poses implementation challenges due to the speed and latency
constraints; however, nonlinear optimization techniques address
these challenges [10, 11]. In the case of scattered and weakened
signals encountered, standalone GNSS is not considered for
indoor positioning. Instead, the system uses a combination of
inertial navigation system (INS) and VO, leveraging inertial
measurement unit (IMU) and monocular camera sensors. This
paper explores the complementarity between GNSS and visual-
inertial navigation systems (VINS) for pedestrian positioning.

Promising results of the GNSS/INS fusion using factor graph
optimization (FGO) are shown [12]. FGO is an advanced method
for nonlinear optimization that uses probabilistic graphical models
and integrates GNSS/INS data. By factorizing the problem and
transforming it into a factor graph, the process simulates the
connection between poses and estimates the values. This approach
effectively accommodates alterations in the ever-changing
environment [13, 14]. Additionally, FGO optimally utilizes feature
constraints, leading to higher accuracy and efficiency in achieving
robust estimations [15].

This paper is an extension of the proceedings paper [16]. The
paper is structured as follows: Section 2 reviews relevant
literature; Section 3 provides a system overview, covering support
vector machine (SVM) classification, 3DMA GNSS/VINS, and
FGO; Section 4 presents the experimental results of 3DMA
GNSS/VINS-IO FGO, and finally, Section 5 concludes the paper.

2. Literature Review

2.1. Integration of GNSS and VINS for pedestrian
positioning

Pedestrian localization in urban and indoor settings has gained
attention, with GNSS and VINS as key technologies. Integrating
these methods enhances accuracy and continuous positioning.
Recent studies focus on improving GNSS by incorporating INS
and combining inertial, visual sensors, and GNSS for precise
positioning in GNSS-denied environments. [17, 18]. Evaluation in
actual urban environments has convincingly proven its
effectiveness for positioning accuracy compared to standalone
INS or GNSS systems [19]. Despite its potential, the VINS and
GNSS fusion encounters various obstacles and restrictions, such
as addressing signal loss, streamlining computational complexity,
and enhancing robustness across diverse environmental conditions.

2.2. Challenges and opportunities of GNSS/VINS
integration

Accurate real-time positioning in smartphone pedestrian
applications is challenging due to noisy measurements and limited
processing power. While GNSS is widely used for its accessibility
and affordability, it struggles with accuracy and availability in
urban and indoor environments due to signal interference and
blockage [20]. Additionally, multipath interference frequently
manifests, especially with low-cost sensors. Multipath interference
has the potential to contaminate GNSS measurements, imposing a
substantial impact on smartphone positioning accuracy [21].
Advanced techniques like VIO, 3DMA GNSS, and pedestrian
dead reckoning (PDR), which use smartphone inertial sensors, are
employed to address these challenges for enhanced pedestrian
positioning. One notable approach is PDR, which exploits the use

of inertial sensors, e.g., accelerometers and gyroscopes. Bluetooth
and received signal strength indicator are also leveraged [2, 22,
23]. By leveraging a low-cost micro-electro mechanical system
(MEMS) IMU in smartphones, an efficient PDR algorithm has
been developed, exhibiting advantages such as affordability,
simplicity, and user-friendliness when compared to alternative
methods [24–26]. Despite the noteworthy PDR advantage of
being independent of infrastructure requirements [27], it is
important to acknowledge certain limitations associated with this
technique, including diminished accuracy and drift. Cost-effective
MEMS IMUs encounter a range of inaccuracies, with biases on
time-varying [28].

To overcome the challenges and achieve heightened precision
in localization, researchers have proposed integrating VIO with
supplementary sensors [29–31]. One notable approach involves
integrating light detection and ranging (LiDAR) and VIO through
the utilization of simultaneous localization and mapping (SLAM)
[29]. SLAM technology leverages LiDAR and visual data to
create maps of the surrounding environment that are more
accurate and detailed, thereby enhancing accuracy, robustness,
and overall efficiency. LiDAR for pedestrian tracking exhibits
considerable promise due to its exceptional accuracy and
resilience across diverse environmental conditions. Nevertheless,
it is imperative to acknowledge that this integration approach
encounters challenges related to high computational complexity
and associated costs.

In the context of urban canyons, the utilization of 3D building
models has emerged as a prominent approach to improve GNSS
positioning. Specifically, a technique known as 3DMA GNSS
[32] has gained considerable popularity. 3DMA GNSS typically
adopts a particle-based methodology, wherein measurements are
modeled as predictions at various hypothetical positions [33]. The
candidate that exhibits the greatest similarity between the modeled
and received measurements is deemed to represent the location of
the receiver.

Within 3DMA GNSS, two common variants can be identified:
shadow matching [34] and ranging-based approaches. Shadow
matching involves the matching of satellite visibility patterns
across distributed locations. On the other hand, ranging-based
3DMA GNSS employs NLOS-predicted pseudo-range modeling
by estimating reflection delays. Utilizing geometric methodologies
like Skymask 3DMA [35] and ray-tracing GNSS [36, 37] enables
the determination of reflection delays through the validation of
signal transmission paths and the computation of reflection delays
contingent on predicted reflection points. An alternative technique
called likelihood-based ranging [5] adopts a skew-normal
distribution for the statistical representation of NLOS delay
measurements. It transforms these discrepancies into LOS
measurements via a normal distribution.

Moreover, expanding the single-epoch positioning method to
incorporate temporal linkages can substantially fortify positioning
robustness. Zhong and Groves [5] propose the utilization of a grid
filter to evenly distribute positioning candidates, thereby
improving solution smoothness. Alternatively, the integration of
3DMA GNSS and velocity estimates obtained through Doppler
measurements, coupled with the adoption of FGO for batch
optimization, has been explored by Ng et al. [6] as a loosely
coupled solution. The results demonstrate that this approach yields
a more resilient trajectory suitable for pedestrian applications.

VINS has become an integrated navigation system that
leverages the synergy between inertial and visual sensors to
calculate a platform’s orientation and position. However, due to
technological and technical constraints, MEMS gyroscope bias
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instability commonly exceeds 15°/h [38]. Consequently, there is a
worse result of MEMS in the process of heading initialization.
Compared with INS, VINS harnesses the synergies between
inertial and visual data, resulting in a proven enhancement of
stability and precision in local pose estimation [39]. It is possible
to integrate an IMU for the development of VINS and retrieve
scale information [28]. While VINS shows promise across various
applications, it faces challenges like accumulated errors and time
drift in complex environments. Two residual errors stem from
IMU predictions and visual odometry estimates. Algorithms such
as keyframe-based methods, inertial measurement pre-integration,
and machine-learning approaches have been explored to address
these. Pre-integrating IMU measurements into relative motion
constraints within keyframes improves precision and
computational efficiency, enhancing accuracy while reducing
complexity [40].

On the other hand, the nonlinear optimization approach can
attain highly accurate state estimation [41]. Nonetheless, real-time
optimization becomes increasingly challenging as the trajectory
expands over time due to the high rate of incoming inertial
measurements [40]. DeepVIO, an innovative approach, explores
the potential VIO applications in various fields and highlights
future research directions, including the utilization of deep
learning techniques to enhance performance [42]. Nevertheless,
when employing VINS, time drifting continues to be a notable
cause of uncertainty.

In summary, Figure 1 highlights the integration of various
technologies to enhance location accuracy. Radio-based methods
such as Wi-Fi and Bluetooth leverage signal strength indicators
for positioning. Sensor-based techniques including IMUs, VIO,
and LiDAR integrated with SLAM aid navigation in complex
environments. GNSS-based systems, including 3DMA GNSS and
Doppler velocity integration, are optimized using FGO. The
integration of GNSS and VINS addresses challenges such as
signal loss and computational complexity, particularly in urban
and indoor settings. Advanced optimization techniques, including
nonlinear algorithms and machine learning, refine accuracy.
Comparing the extended Kalman filter (EKF) and FGO
underscores advantages in nonlinear systems.

2.3. Review of GNSS/VINS integration in
pedestrian positioning

The EKF has been widely utilized for sensor fusion [43–45];
however, its linear approximation of system dynamics
compromises accuracy when applied to nonlinear systems.
Computational demands of the EKF surge quadratically as the
number of 3D landmarks grows, imposing restrictions on its
scalability [10]. In densely populated urban regions, the EKF falls
short of attaining peak performance because of the accumulation
of Gaussian errors [46]. To overcome these limitations, nonlinear
optimization methods are proposed as alternatives.

Another promising method for pedestrian positioning is FGO
[47], which models the relationships between observed
measurements and unknown system states, resulting in high
accuracy and efficiency. FGO is superior at managing noisy or
incomplete data-changing dynamics than EKF. FGO is better
suited for nonlinear problems, using iterative solvers like Gauss-
Newton or Levenberg-Marquardt to refine the solution which
shows that FGO is a more appropriate method than the EKF.
FGO may necessitate greater computational resources, and precise
system dynamics modeling is critical. The environmental
conditions and specific applications ultimately determine the
choice of the positioning system. FGO-based methods show a
superior capacity for achieving dependable and uniform state
estimation than traditional filter-based techniques due to FGO’s
adeptness at tackling nonlinear optimization challenges through
iterative processes and relinearization [39]. FGO is better
equipped to handle the inherent nonlinearities in the pedestrian
positioning problem compared to filter-based techniques like EKF.
Additionally, FGO adeptly exploits time correlation, which
significantly improves accuracy and robustness. This global
optimization approach is a key advantage over EKF. The entire
graph optimizes simultaneously, leading to a globally consistent
solution.

Standalone GNSS and VINS have complementary strengths
and limitations. GNSS offers global positioning but struggles with
errors in urban and indoor settings, while VINS provides accurate
relative positioning but suffers from drift over time. Integrating

Figure 1
Literature mapping
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VINS with 3DMA GNSS through FGO enhances accuracy,
robustness, and reliability. This combination, along with an IO
switch to detect indoor or outdoor environments, allows for more
precise and reliable positioning by adjusting algorithms
accordingly, offering a robust solution for pedestrian positioning.

2.4. Our contributions

Three problems and key objectives were identified:
Contribution 1: Development of a machine-learning-based

method for IO detection using GNSS measurements as features. It
facilitates the selection of the most reliable sensor during fusion to
maximize smartphone positioning.

Contribution 2: Loosely integrate smartphone-based solutions
of VINS and 3DMA GNSS in a batch using FGO and a switching
factor to provide complete robustness.

Contribution 3: Validate 3DMA GNSS/VINS performance
using FGO and an IO switching factor via actual smartphone
experiments in an urban canyon. The code is also open source on
https://github.com/queenie-ho/3DMAGNSSVINS-IOFGO.

Our study proposes a comprehensive framework for
smartphone-level pedestrian positioning to significantly enhance
robustness, efficiency, and accuracy in urban and indoor
environments. Existing techniques encounter various challenges,
including signal obstructions, drift, and multipath, which hinder
their effectiveness. To overcome these challenges, our framework
focuses on the integration of VINS and 3DMA GNSS using FGO,
aiming to achieve substantial improvements in reliability, accuracy,
and robustness, particularly in complicated and demanding
environments. It emphasizes IO detection, leveraging machine
learning with SVM to accurately differentiate IO conditions.

Our methods directly enhance smartphone navigation accuracy,
particularly in urban areas prone to signal obstruction and multipath
effects. Reliable indoor positioning is crucial for applications,
including wayfinding in large buildings such as shopping malls
and airports, asset tracking, and emergency response. VIO and
improved indoor navigation systems enhanced positioning
accuracy for AR applications, which rely on precise location data
to overlay digital information onto the real world. Leveraging
smartphone sensors and existing GNSS infrastructure makes the
solution cost-effective and widely accessible.

3. Definition and Notation

3.1. Definition

Local frame: A local world frame is an unchanging reference
frame employed to represent the orientation and position of
objects in the visual-inertial system.

Global frame: A reference frame utilized to represent the
orientation and position of objects in an ECEF frame where all
axes are fixed with respect to the Earth.

IO (Indoor/Outdoor): The term “indoor” pertains to physically
confined areas, while “outdoor” refers to spaces lacking complete
confinement [8].

3.2. Notations

A superscript or subscript of the system state and transformation
representing a frame, it can be w in the local world frame, b in the
body frame, c in the camera frame, and i in the IMU frame. A sub-
script t of the frame refers to the frame at a specific time. Table 1
stated the notations.

4. Research Methodology

4.1. Overview

Figure 2 illustrates the positioning framework from this study,
featuring an SVM-based machine-learning approach for IO
classification. It uses GNSS measurement features, such as
satellite numbers received and elevation angle, for categorization.
This research combines advanced 3DMA GNSS algorithms
involving likelihood-based ranging [5] and shadow matching [34]
for improved GNSS performance in a loosely coupled approach [6].

To address GNSS-denied areas and ensure reliable indoor
positioning, VIO is used to fill GNSS gaps. The system processes
images, pre-integrated angular velocities, and accelerations,
avoiding repeated IMU reintegration. A pose graph is defined by
selectively pre-integrating IMU measurements between keyframes
and skipping frames, resulting in a manageable representation of
IMU data. The pre-integrated IMU measurements, combined with
visual measurements, generate VIO estimates that provide

Table 1.
Notations of frame transformation

Symbol Explanation

Rbt
w A rotational transformation from the local world frame

to the body frame
pw
btk

The position of the body frame with respect to the local
world frame at time k (tk)

vwbtk
The velocity of the body frame with respect to the local
world frame at tk

qw
btk

The orientation of the body frame with respect to the
local world frame at tk

Figure 2
System flowchart of the proposed 3DMA GNSSVINS-IO FGO
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timestamps, position, orientation, and velocity. These estimates are
then loosely fused with GNSS measurements and refined through
global optimization using nonlinear techniques. It necessitates that
the switch factor handles attenuated or scattered signals that may
not be received indoors. A loosely coupled integration of GNSS
and VINS achieves pedestrian positioning by leveraging the
strengths of GNSS, IMU, and monocular camera sensors.

This research aims to deliver reliable sensor fusion: 1) selecting
the most reliable sensor for integration and 2) ensuring robustness
integration. Consequently, a reliable smartphone-level ubiquitous
pedestrian positioning solution can be achieved. The study
developed a machine-learning-based IO transition method based
on the GNSS feature to select the reliable sensor during
incorporation, maximizing the performance of the positioning
system. It coordinated frame alignment between the GNSS
measurement in a global frame and VINS positioning in a local
frame. This alignment ensures consistent and accurate positioning
information across different coordinate systems. It loosely
integrated VINS and GNSS solutions as a batch using FGO,
enhancing the overall robustness of the system for smartphones.
FGO enables the fusion of VINS and GNSS measurements,
leading to improved positioning accuracy and reliability. Finally,
the system’s performance was validated through experiments in
urban canyons.

4.2. SVM for IO classification

To classify IO conditions, we adopt SVM with GNSS features,
including satellite numbers, elevation angle, and average carrier-to-
noise ratio (C/N0). SVM [48] is a supervised learning approach that
enables binary classification by identifying a hyperplane to separate
different types of data. SVMs are widely utilized in classification,
regression, and outlier detection tasks. Using support vectors,
SVMs achieve memory efficiency. The flexibility of SVMs allows
different kernel functions in the decision function. SVMs for IO
classification using GNSS measurements offer a promising
solution to the challenges of positioning pedestrians with
smartphones in urban areas and where GNSS signals are not
available, including indoor areas.

We collected data from The Hong Kong Polytechnic University
encompassing both indoor and outdoor environments, suitable for
smartphone use. Figure 3 shows the algorithm structure for IO
detection, which relies on GNSS data and predefined relationships
among elements like elevation angle, average C/N0, and the used
and received satellite numbers. These elements are categorized as

indoor or outdoor based on their expression patterns, which
indicate their belonging to the indoor or non-indoor category.

The framework comprises two main stages. In the training
stage, the SVM is trained with labeled sample data. IO
classification (presumptive data) and the measurements from
GNSS are utilized to create a series of weights, then utilized in
the next stage. IO conditions are manually labeled as the training
data at the training phase.

In the classification stage, the trained SVM assigns scores to
new data points based on their similarity to the training data. It
employs weights from the previous stage and new GNSS
measurements to classify results. Therefore, SVM can classify the
new inputs based on their scores. SVM has been widely used in
various classification tasks due to its effectiveness in handling
high-dimensional data. SVM distinguishes between indoor and
outdoor environments by analyzing signal strengths from received
satellites or other relevant parameters. This method is both
computationally efficient and easy to implement.

Convolutional neural networks (CNNs) have demonstrated
success in image-related tasks like object recognition and scene
understanding. With labeled indoor and outdoor images, CNN can
learn intricate patterns and capture the visual characteristic
features that discriminate between these environments [49].
Comparing CNNs with SVMs in this study evaluates the
performance of deep learning-based techniques against
conventional machine-learning approaches. SVMs have been
widely used for various classification tasks, including indoor-
outdoor detection; they often rely on handcrafted features
manually designed and selected, which can limit their ability to
capture the full complexity of visual information. In contrast,
CNNs learn relevant visual representations directly from image
data, without the need for extensive feature engineering [50]. This
study compares CNN’s sophisticated feature learning capabilities
with conventional techniques, such as SVMs, in indoor-outdoor
classification. This comparative evaluation assesses whether visual
information improves indoor-outdoor detection accuracy,
leveraging the rich visual information present in images, for more
accurate and robust detection performance. The classification
method is Places365 CNN developed by researchers from the
Massachusetts Institute of Technology [49]. The model is trained
on a large-scale dataset named Places365, which contains millions
of labeled images across a wide range of scene categories,
including both indoor and outdoor environments. With the
Places365 CNN model, an image is passed through the network to
analyze the output probabilities across different scene categories.
Examining probabilities tied to indoor and outdoor scene labels,
the decision rule classifies the input image as either indoor or
outdoor.

4.3. Loosely coupled 3DMA GNSS using FGO

Although VINS is integrated to help outdoor positioning and
recovery when GNSS is unavailable, it still relies on GNSS to
provide reliable positioning in an absolute coordinate frame. As a
result, improving GNSS performance can positively influence the
overall performance of the proposed positioning framework.
3DMA GNSS provides a huge potential for improving positioning
performance in urban canyons [32]. It is a software-based
approach that aids in positioning with 3D building models. Unlike
approaches such as the consistency check [51], to exclude the
NLOS unhealthy measurement, 3DMA GNSS also uses NLOS
measurements as features for positioning.

Figure 3
SVM flowchart for IO classification
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The cutting-edge 3DMA GNSS algorithms on shadow
matching [34] and likelihood-based ranging 3DMA GNSS [5] are
combined in this study. To increase the robustness, the 3DMA
GNSS solution incorporates Doppler measurements through FGO
in a loosely coupled manner. Details are available in Ng et al. [6].

3DMA GNSS spreads out potential positioning candidates
around the initial position. It simulates measurements for each
candidate and compares them with actual measurements. This
research combines shadow matching and likelihood-based ranging
for 3DMA GNSS, denoted as xk;3DMA, in the context of FGO.

Shadow matching [34] uses LOS and NLOS satellite visibility
as the feature for positioning. Non-received satellites in the
ephemeris are assumed to be NLOS satellites, while the received
satellites are evaluated in their LOS probability based on the C/N0

value, as p LOSjC=N0ð Þi, to mitigate the NLOS reception effect.
The LOS probability is then compared with the predicted visibility
at each distributed candidate, with the elevation angle of the building
boundary at the corresponding azimuth angle, as p LOSjBBð Þij. The
consistency of the satellite at the candidate can be formed,

Pi
j ¼ p LOSjC=N0ð Þip LOSjBBð Þijþ

1� p LOSjC=N0ð Þi½ � 1� p LOSjBBð Þij
h i

(1)

Shadow matching likelihood score for the candidate j is then calcu-
lated by the geometrical mean of the visibility consistency of all sat-
ellites’ i ¼ 1 . . . I, Pi

j ,

Sj;SDM ¼
Y

i
Pi
j

� �1=I (2)

The candidate with the highest similarity is determined as the
receiver’s location. The detailed implementation of shadow
matching follows in Wang et al. [34].

Likelihood-based ranging 3DMA GNSS [5] determines the
user’s location by comparing the modeled pseudo-range at each
distributed candidate with the measurements. The implementation
of likelihood-based ranging 3DMA GNSS follows in pseudo-
range, bρij, obtains the smallest difference between the measured,
ρ̃ i. This forms the pseudo-range innovation of satellite i at candidate
j, as Δρij,

Δρij ¼ ρ̃i � bρij (3)

For the satellite that predicted NLOS at a corresponding candidate,
the pseudo-range innovation, Δρij, is inputted to a skewed distribu-
tion and then remapped to the normal distribution to eliminate the
NLOS delay error. While the predicted LOS satellite at candidate
keeps the pseudo-range innovation remains unchanged, such that,

Δρij;LBR ¼

Δρij LOS

Remapping Δρij;C=N0
i

� �
NLOS

(
(4)

where C=N0
i is the C=N0 measurements of satellite i. This study

selects the highest elevation angle satellite as the reference satellite.
Remapping �ð Þ is the function to remap the pseudo-range innovation
using a skewed distribution to a normal distribution and become
NLOS delay-free pseudo-range innovation, the full implementation
can be found in Zhong andGroves [5]. Therefore, an array consists of

all pseudo-range innovations of available satellites, from 1 to i, as

Δρj;LBR ¼ Δρ1j;LBR . . .Δρij;LBR

h i
T
, can be used to calculate the score

based on their consistency,

Sj;LBR ¼ exp � 1P
Q

ΔρTj;LBRQ
�1
Δρj;LBR

� �� �1=I !
(5)

where Q is the weighting matrix. Diagonal elements are the uncer-
tainty of each satellite, such that

P
Q is the summation of the uncer-

tainty of all satellites.
The scores from shadow matching and likelihood-based

ranging 3DMA GNSS are then taken from the square root
of their product as the integrated score, such as
Sj;3DMA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sj;SDM � Sj;LBR
p

. As a result, the 3DMA GNSS solution,
pk;3DMA, can be obtained by weighted averaging of all distributed
candidates, pj¼1...J , with their score, Sj¼1...J;3DMA,

pk;3DMA ¼
PJ

j¼1 pjSj;3DMAPJ
j¼1 Sj;3DMA

(6)

To increase the robustness of positioning, this study integrates
3DMA GNSS with Doppler measurements using FGO. Receiver’s
velocity and clock drift, vk, and cδ̇tk, respectively, are estimated
by i-th satellite’s Doppler measurements at epoch k,
dk ¼ d1k ; . . . ; d

i
k

� �
, via the least-squares method [52]. The FGO

framework includes three components. The initial error component
limits the Euclidean distance between the 3DMAGNSS solution and
the optimized state, denoted as xk;3DMA and xk, respectively. The
error function can be expressed as,

ek;3DMA

		 		2
σ2
3DMA

¼ pk � pk;3DMA

		 		2
σ2
3DMA

(7)

where σ2
3DMA is a diagonal variance matrix of the 3DMA GNSS

at x-, y-, and z-axis, respectively.
Two factors are introduced to constraint consecutive epochs,

utilizing both the motion propagation model and the constant
velocity motion model [53], expressed with error functions,
ek;v
		 		2

σ2
v;k

and ek;v̄
		 		2

σ2
v̄
, respectively. They are given by,

ek;v
		 		2

σ2v;k
¼ vk �

1
Δt

pkþ1 � pkð Þ
				 				2

σ2v;k

(8)

ek;v̄
		 		2

σ2
v̄
¼ 1

2
vk þ vkþ1ð Þ � 1

Δt
pkþ1 � pkð Þ

				 				2
σ2
v;k

(9)

whereΔt represents the time gap between epoch k and kþ 1. σ2
v is a

diagonal covariance matrix of velocity vt ,while σ2
v̄ is the averaged

diagonal covariance matrix at epoch k and kþ 1. As a result,
FGO aims to minimize the collective error of three cost functions
related to the loosely coupled 3DMA GNSS as,

χ� ¼ argminχ

P
k ek;3DMA

		 		2
σ2
3DMA

þ ek;v
		 		2

σ2
v;t
þ ek;v̄
		 		2

σ2
v̄

(10)

where χ ¼ p1; . . . ;pk½ � is the state set of the receiver, while χ� rep-
resents the optimal set of states. The optimal set of 3DMA GNSS is
then integrated with the VINS results.
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4.4. GNSS/VINS integration

Establishing a visual trajectory involves detecting and tracking
camera image features, matching images. SLAM techniques
construct a visual trajectory using structure-from-motion principles
[54]. IMU data help estimate scale, velocity, and IMU deviation [55].
Updating every state with every IMUmeasurement at high frequency
is impractical. Therefore, a pose graph consolidates the majority of
IMU measurements into a single pose constraint. Pose graph
integration with keyframes and pose constraints improves
scalability and computational efficiency.

IMU pre-integrations use a continuous-time quaternion-based
approach, building upon previous work, and incorporating IMU
[53]. Measurements from the IMU include force and platform
dynamics with gravity. These measurements include additive
noise na, acceleration bias bw, and gyroscope bias ba. The additional
noise in the acceleration and gyroscope measurements follows a
Gaussian white noise distribution. The biases follow a random walk
and their derivatives are Gaussian white noise. The raw gyroscope
and accelerometer measurements are bω and ba, expressed in
Equation (11).

bat ¼ at þ bat þ Rbt
wgw þ nabωt ¼ ωt þ bwt

þ nw

(11)

where at represents the expected accelerometer measurements, gw

represents the gravity in the world frame, na represents the additive
noise, ωt represents the expected accelerometer measurements gyro-

scope,Rbt
w represents a rotation matrix of the transformation from the

local world frame to the body frame bk at time t, and both na and nw

are the additive noise, calculated according to IMU specification.
Gaussian white noise distributions the measurement errors of

acceleration and gyroscope. A random walk process to model the
biases of acceleration and gyroscope, using Gaussian white noise.
To transmit the covariance of the orientation angles α, β, and γ:

αbk
bkþ1

¼
ðð

t2 tk;tkþ1½ �
Rbk

t bat � bat


 �
dt2 (12)

βbkbkþ1
¼
ð
t2 tk;tkþ1½ �

Rbk
t bat � bat


 �
dt (13)

γ
bk
bkþ1

¼
ð
t2 tk;tkþ1½ �

1
2
Ω bωt � bwt


 �
γ
bk
t dt (14)

Ω ωð Þ ¼
0 �ωz ωy ωx

ωz 0 �ωx ωy

�ωy ωx 0 ωz

ωx ωy ωz 0

2664
3775 (15)

The equations apply to ½tk; tkþ1] of two consecutive frames between

bk and bkþ1, where bk denoted the reference frame with the bias, Rbk
t

represents the rotation matrix of the transformation from the body
frame to the reference frame bk at time t, and ωx, ωy; and
ωz represents the angular velocities in the body frame.

4.5. Probabilistic framework formulation

4.5.1. Inertial factor
In this context, btk refers to the body frame at time tk, and the set

α;β; γf g denotes the relative position, velocity, and rotational infor-
mation of btk and btkþ1

.

Lastly, the residual that establishes the relationship between the
system states and pre-integrated IMU [53] measurements is
expressed as

rB z̃
btk
btkþ1

;X
� �

¼

δα
btk
btkþ1

δβ
btk
btkþ1

δ θ
btk
btkþ1

δba

δbg

266666666666666664

377777777777777775

¼

R
btk
w pw

btkþ1
� pw

btk
þ 1

2g
w
Δt2k � vwbtk

Δtk
� �

� bαbtk
btkþ1

R
btk
w vwbtkþ1

þ gw
Δtk � vwbtk

� �
� bβbtk

btkþ1

2 qw�1

btk
� qw

btkþ1
� bγbtkbtkþ1

� ��1
h i

xyz

babtkþ1
� babtk

bwbtkþ1
� bwbtk

2666666666666664

3777777777777775

(16)

where pw
btk
, vwbtk

, qw
btk

are the position, velocity, and orientation,
respectively, of the body frame with respect to the local world frame

at tk; R
btk
w transforms from the body frame to local world frame at tk;

δ θ
btk
btkþ1

denotes the error in the relative rotation within the 3-D Euclid-

ean space. The operator qw�1

btk
� qw

btkþ1
� bγbtkbtkþ1

� ��1
h i

xyz
extracts the

imaginary component of a quaternion.

4.5.2. Visual factor
In our system, the visual measurement use of sparse feature

points extracted from image frames. These points are identified as
strong corners [56] and are tracked using the iterative Lucas-
Kanade method [57]. After applying distortion correction [58], the
projection process is modeled as P̃ ¼ u; v½ �T

P̃ ¼ πc Rc
b Rb

wxw þ pb
w


 �þ pc
b


 �þ nc (17)

where P̃ denotes the feature coordinates in the image plane, xw rep-
resents the corresponding 3-D landmark position in the local world
frame, πc :ð Þ denotes the camera projection function in the camera
frame, and ncrepresents the measurement noise.

rC z̃l;Xð Þ ¼ P̃
aj
l � πe bxΘj

l

� �
(18)

bxcj
l ¼ Rc

b R
bj
w Rw

bi
Rb

c
1
ρl
π�1
c
ePci
l


 �þ pb
c

� 
þ pw

bi

� 
þ pbw

w

� 
þ pc

b

(19)

To link the observations of a feature point l with inverse depth Pl in
two frames i and j, we use the residual fRc

b, t
b
cg, which represents the

transformation between the IMU and the camera. This residual is
expressed as the difference between the projected feature point in
frame j and the estimated feature point in frame i. The estimated
feature point is obtained by applying a sequence of rotation and
translation transformations to the projected feature point in frame
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j. These transformations relate the camera frame to the IMU frame
and the local world frame to the IMU frame.

4.5.3. GNSS VINS alignment
Since VINS completes gravitational acceleration alignment,

only the yaw angle offset between the coordinate systems of
VINS and GNSS remains estimated before integration. This study
optimizes the positioning solution in the world frame. The
alignment process uses the motion of the GNSS antenna and
VINS. Velocity, vk, estimated by Doppler measurements facilitates
the alignment process once Doppler measurements are less noisy
than pseudo-range measurements.

The relative position from VINS, vVIO, rotates over the yaw, ψ,
axis using the rotational matrices from local frame to global frame in
ENU and ENU to ECEF, RENU

ECEFR
local
ENU ψð Þ , aligning VINS with

GNSS. An objective function is formulated to minimize the differ-
ence between the relative motion of GNSS velocity and VINS by
changing the yaw angle, ψ, expressed as,

ψ� ¼ argmin
ψ

vk � RENU
ECEFR

local
ENU ψð ÞvVIO 2k		 (20)

As a result, the transformation between the local frame and the global
frame is completely calibrated. The estimated yaw angle, ψ, is used
in the optimization process for VINS to rotate to the global frame and
integrate with GNSS.

4.5.4. FGO
FGO integrates multiple sensors in the GNSS/VINS system,

using a loosely coupled approach. It employs nonlinear
optimization via factor graphs to capture interdependencies and
enhance accuracy, reducing challenges related to drift and error
accumulation. Following the alignment of the global and local
frames, the obtained results undergo further optimization. The
VINS estimates become factors in the graph, with GNSS
measurements incorporated as constraints to refine these estimates.

The problem is constructed by setting up the parameter blocks
and residual blocks. The Ceres Solver [59] is employed as the
optimization solver for this study, and the system structure is
illustrated in Figure 4.

X ¼ x0; x1; x2; . . . ; xt½ � (21)

x0;t ¼ p0;t; v0;t;q0;t


 �
T (22)

Figure 4 showcases the system state representation, where X
represents system states in Equation (21). The system states at
each epoch t, as xt, are composed of position (p), velocity (v),

and orientation (q) parameters denoted as p0;t; v0;t; q0;t in
Equation (22).

				f VINSt

				2
ΣVINS

t

¼ ql
t�1

�1R pl
t � pl

t�1


 �
ql
t�1

�1 � ql
t

� �
� qw

t�1
�1R pw

t � pw
t�1ð Þ

qw
t�1

�1 � qw
t

� �				2
ΣVINS

t

					 (23)

				f 3DMA GNSS
t

				2
Σ3DMA GNSS

t

¼
				p3DMA GNSS

t � pt

				2
Σ3DMA GNSS

t

(24)

f SWt

				2
□

¼ st ft;3DMA GNSS þ 1� stð Þft;VINS

 �				2

□

					
					 (25)

where Σ�
t is the covariance matrix of the corresponding methods,

�, at epoch t.

The term f VINSt
2
ΣVINS

t

						 in Equation (23) represents the VINS fac-

tor, which computes the difference between the estimated orientation
using the local frame ql

t�1 and the relative rotation obtained from the
position difference pl

t � pl
t�1


 �
, and the global frame qw

t�1

and pw
t � pw

t�1ð Þ.
The term

			f 3DMA GNSS
t

			2
Σ3DMA GNSS

t

in Equation (24) represents the

GNSS factor, which measures the position difference between the
loosely coupled FGO 3DMA GNSS-derived position pGNSS

t and
the estimated position pt .

The term
			f SWt 			2

□
in Equation (25) represents the switching fac-

tor, which combines the 3DMA GNSS and VINS factors based on a
switching variable st . The term st ft;GNSS corresponds to the 3DMA
GNSS factor contribution, while 1� stð Þft;VINS corresponds to the
VINS factor contribution.

X� ¼ argmin
X

X
t

			f VINSt

			2
ΣVINS

t

þ
			f 3DMA GNSS

t

			2
Σ3DMA GNSS

t

þ
			f SWt 			2

□

(26)

This estimate of the system states X by minimizing the objective
function in Equation (26), which comprises the VINS factors,
3DMA GNSS factors, and switching factors. The optimal system
state X� is obtained by solving the estimation problem and minimiz-
ing the costs associated with each measurement type. The FGO
framework integrates measurements from VINS, 3DMA GNSS,
and switching IO to accurately estimate pedestrian position. The
optimization process achieves the maximum a posteriori estimation
by jointly optimizing all states and minimizing the costs from mea-
surements.

Figure 4
FGO structure on loosely coupling GNSS and VINS with IO switching factor
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5. Experiment

Experiments were conducted in the urban city of Hong Kong.
Trajectories A and B were conducted at The Hong Kong Polytechnic
University and C in Tsim Sha Tsui. Trajectory A contained both
outdoor and indoor environments, with outdoor areas surrounded
by trees and indoor areas with sufficient light. Trajectory B
includes both open and confined areas outdoors and in a narrow
corridor indoors. Trajectory C includes urban outdoor and indoor
environments, taking place in the bus terminal, with many people,
buses, and insufficient indoor lighting.

All three experiments involved two scenarios to evaluate
performance with different positioning. Trajectory A, B, and
C were tested under Scenario 1 (starting from indoors,
transitioning to outdoors, and returning to indoors) and
Scenario 2 (starting from outdoors, transitioning to indoors, and
returning to outdoors. We compared the root mean square error
(RMSE) of absolute positioning error, standard deviation (std),
and SVM accuracy of VINSMONO, 3DMA GNSS, 3DMA
GNSSVINS FGO, and 3DMA GNSSVINS-IO FGO in all
experiments. The ground truth (GT) of trajectories A, B, and C,
accordingly, presented in Google Earth can be seen in Figure 5,
respectively. This section presents a comparison of the
following methods:

• VINSMONO [53]: A monocular visual-inertial state estimator.
• 3DMA GNSS [6]: Loosely coupled 3DMA GNSS and velocity
estimated by weighted least squares.

• 3DMA GNSSVINS FGO: The proposed method without IO
switching factor in FGO.

• 3DMA GNSSVINS-IO FGO: The proposed method utilizes
VINS, 3DMA GNSS, and FGO in a loosely coupled way,
incorporating the IO switching factor.

5.1. Experiment setup

In this experiment, we utilized the Xiaomi Mi8 smartphone, to
acquire the GNSS measurements as well as inertial and visual data.
The smartphone is equipped with a Triple-axis MEMS-IMU (TDK-
InvenSense ICM-20690) operating at 100Hz. Additionally, it features
GNSS receivers with a Broadcom BCM47755 chip, receiving the
signals from GPS (L1+L5), Galileo (E1+E5a), GLONASS (L1), and
Beidou (B1) at 1 Hz during the experiments. The smartphone also
incorporates a monocular camera with a resolution of 1280 × 640
pixels and a pixel size of 1.4 μm, operating at 30 frames per second.
The output rate after integrating with IMU and GNSS is 10 Hz. To
ensure accurate data acquisition, we performed calibration of the
extrinsic and intrinsic parameters of the IMU and camera of the
Xiaomi Mi8. A window size of 10 was employed, consistent with
VINS-Mono. However, the loop closure function was not enabled.
For optimization purposes, the Ceres library was selected. A desktop
personal computer that had an Intel i9-9900K processor operating at
3.6 GHz and 31.2 GB of memory was used.

5.2. Experimental validation

LiDAR technology is employed as the GT reference in our
investigation to attain precise centimeter-level positioning.

Figure 5
(a) Trajectory A, (b) Trajectory B, and (c) Trajectory C

Figure 6
Ground truth (GT) generated by LIO-SAM: (a) Trajectory A, (b) Trajectory B, and (c) Trajectory C
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Specifically, we utilized the HDL 32EVelodyne LiDAR, with a 360-
degree horizontal field of view and a vertical field of view spanning
from +10° to -30°, with an 80-meter range, recorded at 10Hz. In
addition, the Xsens Mti 10 AHRS IMU model, operating at a
frequency of 5.0 Hz, was employed. Figure 6 presents the LiDAR
GT data generated by the LIO-SAM algorithm for three distinct
trajectories, denoted as A, B, and C. By leveraging the
information from the LiDAR point cloud map, the IO flag can be
accurately labeled, indicating whether the pedestrian is indoors or
outdoors as GT for validation.

Table 2 presents the SVM and CNN classification accuracy for
six scenarios: A1, A2, B1, B2, C1, and C2. It includes the accuracy
percentage for the SVM and CNN algorithms. SVM achieved better
accuracy with 92.8% than CNN with 72.3% on average. SVM is
better suited for classifying indoor and outdoor environments.

Trajectory A in SVM IO detection shows lower accuracy
compared to trajectories B & C. This discrepancy stems from the
complexity of the environment in trajectory A, which poses
greater challenges than trajectories B & C.

In contrast, the CNN IO detection results reveal that trajectory A
has better accuracy compared to trajectories B &C. This is due to the
complexity of the environment in trajectory A, which poses more
features for the CNN classification than trajectories B & C.

Overall, SVM performs better than CNN. SVM primarily relies
on manually engineered features, which can capture information
beyond what is visible in the image. CNNs rely heavily on visual
patterns to make classifications. If an outdoor environment is
partially covered or occluded, the CNN may not have access to
the complete visual information necessary to accurately classify it
as outdoor. In such cases, SVM’s reliance on manually engineered
features is an advantage.

Abrupt changes in light conditions can pose significant
challenges for CNNs. If the camera encounters low light or
overexposure, the image may be too dark or too bright, reducing
CNN accuracy.

Furthermore, GNSS may not function properly for short
periods. Accurate IO classification is critical in these scenarios to
choose the right sensor to trust, and SVM’s robustness makes it
more suitable.

By comparing SVM and CNN accuracies, we conclude that
SVM is more suitable for IO classification in environments where
visual features may be inconsistent or occluded, and where
robustness to lighting conditions is crucial. This makes SVM a
more reliable choice for accurate indoor-outdoor classification in
complex and varying environments.

5.3. Experiment result

Table 3 presents the results of six scenarios for VINSMONO,
3DMA GNSS, 3DMA GNSSVINS FGO, and 3DMA GNSSVINS-
IO FGO across trajectories A, B, and C in two different scenarios.
The std represents the variability or spread of the positioning
errors. The RMSE values indicate the error between the estimated
and actual positions, providing an overall measure of accuracy.

The 3DMA GNSSVINS-IO FGO algorithm demonstrates
improved performance. The RMSE results indicate 3DMA
GNSSVINS-IO FGO improvement of 4.53 meters in A1, 18.84
meters in A2, 4.56 meters in B1, 4.29 meters in B2, 2.93 meters
in C1, and 6.47 meters in C2. It achieves lower std, showing more
consistent positioning accuracy.

Table 3
The RMSE of absolute positioning error and the standard

deviation

Experiment Algorithm Std (m) RMSE

Trajectory A
Scenario 1 (A1)

VINSMONO 2.47 11.94
3DMA GNSS NA 8.80
3DMA GNSSVINS
FGO

4.42 12.87

3DMA GNSSVINS-IO
FGO

5.29 8.34

Trajectory A
Scenario 2 (A2)

VINSMONO 26.01 13.00
3DMA GNSS NA 37.47
3DMA GNSSVINS
FGO

12.55 44.60

3DMA GNSSVINS-IO
FGO

6.56 18.63

Trajectory B
Scenario 1 (B1)

VINSMONO 13.24 7.29
3DMA GNSS 1.73 10.29
3DMA GNSSVINS
FGO

4.65 6.80

3DMA GNSSVINS-IO
FGO

NA 5.73

Trajectory B
Scenario 2 (B2)

VINSMONO 3.93 8.20
3DMA GNSS NA 13.86
3DMA GNSSVINS
FGO

3.93 18.35

3DMA GNSSVINS-IO
FGO

2.75 3.91

Trajectory C
Scenario 1 (C1)

VINSMONO 2.36 5.31
3DMA GNSS NA 5.48
3DMA GNSSVINS
FGO

2.31 3.68

3DMA GNSSVINS-IO
FGO

1.89 2.93

Trajectory C
Scenario 2 (C2)

VINSMONO 13.57 13.00
3DMA GNSS NA 9.29
3DMA GNSSVINS
FGO

3.28 7.61

3DMA GNSSVINS-IO
FGO

2.49 6.47

Table 2.
Classification accuracy (%)

Trajectory (Scenario)
A
(1)

A
(2)

B
(1)

B
(2)

C
(1)

C
(2)

SVM classification
accuracy

84 77 94 97 94 99

CNN classification
accuracy [45]

91 76 88 63 66 50
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The integration of the IO detection switch in the 3DMA
GNSSVINS-IO FGO algorithm significantly contributes to its
improved performance. The IO switch helps mitigate challenges
related to global drift and enhances the algorithm’s ability to
accurately estimate local poses, improving positioning accuracy.

In summary, trajectory A demonstrates lower accuracy in IO
detection compared to trajectory B and trajectory C, due to the
complexity of the environment. Additionally, the 3DMA
GNSSVINS-IO FGO algorithm generally performs well with
relatively low std, indicating consistent positioning accuracy. This
improvement is due to the integration of the IO switching factor.
VINSMONO shows lower std in some scenarios. Additionally,
the std is not applicable for the 3DMA GNSS algorithm since the
GNSS was not available all the time.

Table 4 highlights the huge 3DMA GNSS Std which 3DMA
GNSS might not be throughout the entire period, including
indoors and the transition time. IO detection mainly helps during
transitions, in that time it is more difficult for GNSS to perform
well due to reflections and diffraction.

The IO detection can prevent large errors of GNSS. The IO
trusts VINS first indoors, the error and std are small and once the
IO detected it as outdoor, the IO trusts GNSS more, and the error
may increase during this transition period. When no IO switching
factor, it is based on the weighting of the std of GNSS, the GNSS
affects the positioning performance even if the error is high. It
mistrusted the GNSS position, and the performance got worse
while the std of the positioning error remained lower than having
IO detection. Therefore, our proposed method effectively
addresses this issue, enhancing the overall positioning
performance and reliability.

Table 3 shows that the 3DMA GNSSVINS-IO FGO has the
highest std and lowest RMSE with values of 5.29 meters and 8.34
meters, respectively, which indicates a greater variability of
positioning errors and higher accuracy compared to other
algorithms. However, the incorporation of the IO switching factor
may introduce additional complexity or noise into the positioning
solution, leading to increased variability. The proposed method
contributes to reduced variability by incorporating VINS
measurements.

Figure 7 presents the absolute positioning error observed in
Experiment A1. The integration of VINSGNSS-IO effectively
reduces the overall positioning error. It is important to note that
erroneous covariance in the 3DMA GNSS module can
compromise the optimization outcomes, particularly during epochs
spanning 80–100, where the covariance fails to accurately bound
the actual positioning error. Consequently, FGO mistakenly relies
on inaccurate 3DMA GNSS data, leading to performance
degradation. Significant GNSS error with a small covariance
around epoch 75 substantially affects the performance of
VINSGNSS FGO, resulting in distorted optimized results. The IO
detection mechanism effectively identifies the epochs with the
highest GNSS errors, mitigating the impact of large positioning
errors.

Figure 8 presents the trajectories observed in Experiment A1.
We observe that the proposed method’s trajectory is closest to
the GT.

Table 3 shows that the 3DMA GNSSVINS-IO FGO algorithm
exhibits a low std and low RMSE with values of 6.56 meters and
18.63 meters, respectively, suggesting improved accuracy
compared to the previous algorithm due to adding the IO factor.
3DMA GNSSVINS-IO FGO demonstrated its capability to
recover orientation errors from VINS when IO is indicated as
outdoor and the positioning with no GNSS signals in Figure 9. It
also shows an increase of 3DMA GNSSVINS FGO error in time
25 to time 55, while there is a loss of GNSS signal and an
accumulating error of VINS MONO. The 3DMA GNSS VINS-IO
FGO solution maintains better positioning accuracy during
transitions from outdoor to indoor environments compared to the
standard 3DMA GNSSVINS FGO method. The standard method

Table 4.
3DMA GNSS Estimated Std(m)

Trajectory (Scenario) A (1) A (2) B (1) B (2) C (1) C (2)

3DMA GNSS
estimated std

48.19 35.91 28.52 17.89 38.07 34.95

Figure 7
TheA1 absolute positioning error comparisonwith the estimated

3DMA GNSS standard deviation (STD) and IO indicator

Figure 8
The A1 trajectory comparison
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struggles with the loss of GNSS signals and not trusting the VIO
sufficiently. 3DMA GNSS uncertainties lead to mistrust in the
system and degrade the overall performance when transitioning
indoors.

Figure 10 shows that 3DMA GNSS gets the closest epochs
when it is available, and our proposed method 3DMA
GNSSVINS-IO FGO gets the smooth closest trajectory among
these methods to the GT. VINSMONO has an orientation error
and affects the 3DMA GNSSVINS FGO method. Our proposed
method recovered orientation errors from VINS MONO.

Table 3 shows that the highest std comes from 3DMA
GNSSVINS FGO, with a value of 13.24 meters and the lowest
RMSE of 6.80 meters, indicating relatively high variability but
good accuracy. Meanwhile, the algorithm with the lowest std and
RMSE comes from 3DMA GNSSVINS-IO FGO, with a value of
1.73 meters, indicating more consistent performance. The

integration of the IO switching factor contributes to this improved
performance. The absolute positioning error graph, as shown in
Figure 11, shows how the integration of VINS and 3DMA GNSS
effectively mitigates the drift from the VINS system, resulting in
significantly improved positioning performance. Integrating IO
detection further improves positioning performance compared to
not using IO detection. Overall, the positioning performance was
consistently better when IO detection was employed.

In addition, Figure 12 presents the trajectories of our proposed
method, which gets the smoothest trajectory among these methods
while getting a close trajectory with the GT.

Table 3 shows that 3DMA GNSSVINS-IO FGO has the lowest
std with a value of 2.75 meters, integrating with the IO switching
factor contributes to this improved performance. Figure 13 shows
a smoother transition into indoor environments for the 3DMA
GNSS VINS-IO FGO method despite large GNSS uncertainty

Figure 9
TheA2 absolute positioning error comparisonwith the estimated

3DMA GNSS standard deviation (std) and IO indicator

Figure 10
The A2 trajectory comparison

Figure 11
The B1 absolute positioning error comparison

Figure 12
The B1 trajectory comparison
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during the transition from time 40 to 80. Despite the large 3DMA
GNSS std, a system without IO remains affected by inaccurate
3DMA GNSS performance. In contrast, the 3DMA GNSS VINS-
IO FGO method effectively balances the transition. Particularly,
when IO detection is applied, the overall positioning performance
is notably improved, especially during epochs 50s to 70s, where
the peak positioning error is successfully suppressed. 3DMA
GNSSVINS-IO FGO enhances the device’s correct heading and
significantly reduces the overall positioning error of 3DMA
GNSS/VINS-IO FGO compared to not using IO.

Figure 14 shows that our proposed method gets a smooth and
closest trajectory among these methods with the GT while 3DMA
GNSS gets the closest epochs depending on its available and the

3DMA GNSSVINS FGO method has a wrong device heading
which is affected by the VINSMONO error. Our proposed method
3DMA GNSSVINS-IO FGO recovered the heading error and
resulted in the closest trajectory.

Table 3 shows that both 3DMA GNSSVINS FGO and
VINSMONO have the highest std, with a value of 2.31 and 2.36
meters, respectively. Meanwhile, the algorithm with the lowest std
and RMSE is 3DMA GNSSVINS-IO FGO, with a value of 1.89
meters and 2.93 meters, respectively.

There was a large positioning error between times 20s and 70s
presented in Figure 15. However, this error was successfully
suppressed by integrating GNSS and VINSMONO. The
integration of these two systems effectively improved the
accuracy and stability of the positioning results during that period.
Also, Figure 16 shows that the proposed method achieves the
closest trajectory to the GT.

Figure 13
The B2 absolute positioning error comparisonwith the estimated

3DMA GNSS standard deviation (std) and IO indicator

Figure 14
The B2 trajectory comparison

Figure 15
The C1 absolute positioning error comparison

Figure 16
The C1 trajectory comparison
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Table 3 presents the lowest std and RMSE from 3DMA
GNSSVINS-IO FGO, with a value of 2.49 meters and 6.47
meters, respectively.

Furthermore, the analysis reveals that the 3DMA GNSSVINS-
IO FGO algorithm significantly reduced a positioning error during an
IO transition from 55s to 100s as shown in Figure 17. This integration
successfully mitigated the error stemming from both VINS and
GNSS, indicating that the IO switching factor had a profound
impact on the smoothness and accuracy of the positioning results.
By effectively managing the IO transition, the algorithm
demonstrated improved performance and minimized the adverse
effects of the error during that period.

Moreover, a substantial positioning error was observed between
times 20s and 90s in Experiment C1. However, this error was
effectively suppressed by integrating the GNSS and VINS

systems. Notedly, the trajectory of the 3DMA GNSSVINS-IO
FGO affected by the 3DMA GNSS outliner deviates from the GT,
as shown in Figure 18.

6. Conclusion

In this study, an FGO framework was developed to integrate
local pose estimates from previous 3DMA GNSS and VIO
research, with an IO detection switch. The proposed system
tackles the challenges of global drift and enables accurate local
pose estimation. Real-world experiments evaluated the system’s
performance, yielding promising results. The 3DMA GNSSVINS-
IO FGO algorithm, incorporating the IO detection switch,
demonstrates superior performance, with lower RMSE values and
more consistent positioning accuracy. Combining 3DMA and
VINS systems using FGO enhanced the accuracy and stability of
the positioning results. By leveraging the complementary
strengths of GNSS and VINS, the algorithm successfully
mitigated the impact of the error and improved reliability and
consistency positioning performance. Adding the IO detection
switch significantly mitigated global drift challenges, improving
performance with an average error of under 3 meters.

Real-life experiments validate the system’s effectiveness,
surpassing other methods. However, certain limitations exist. The
training model is specific to the smartphone used in the
experiment, and its applicability to other devices may be limited.
Future work should focus on enhancing sensor self-robustness,
especially when a camera or GNSS cannot be used, allowing the
IMU propagation to take over further advancements should target
the complexities in dynamic urban canyons and better manage
environmental factors.

To address device specificity, future efforts should include
cross-device training by using data from various devices,
enhancing generalizability across different hardware
configurations and manufacturers. This approach will create a
larger model that is more robust and applicable to a wider range
of devices. The goal is to achieve consistent performance and
accuracy, regardless of device, thus extending the proposed
system’s usability and reliability.
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