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Abstract: Combating climate change has emerged as a global concern recently, and meteorological data remain an important measure for
analyzing and predicting climate trends. However, ground weather stations and sensors can be impacted by faults due to accidents and
unreliability, often resulting in, for example, missing data and lowering the overall quality of the data. This paper explores the impact of
using satellite data as an input feature for machine learning algorithms. In particular, temperature, pressure, wind speed, and global
horizontal radiation data are imputed using various machine learning algorithms to overcome potential data quality issues resulting from
the ground stations. The results from two experiments highlight that the performance of the algorithms significantly increases by using
satellite data as input features. For instance, the incorporation of satellite data improved theR2 values for temperature prediction using Random
Forest and XGBoost to 0.86 and 0.84, respectively, demonstrating a notable enhancement compared to models without satellite data. The
paper discusses several implications of these findings and outlines future research directions to further enhance the predictive accuracy of
meteorological data imputation using satellite inputs.
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1. Introduction

In response to the growing challenges posed by climate change,
countries around the world are increasingly investing in renewable
energy and enhancing the quality of meteorological data.
Recognizing the critical role of reliable weather and solar data in
transitioning to sustainable energy sources, 159 countries signed a
declaration at the 2023 United Nations climate change conference
[1]. This declaration emphasizes the importance of ensuring
robust climate control, advancing renewable energy technologies,
and developing sustainable energy systems. Meteorological data
or weather data have been widely used to study various impacts
of climate change, including economic impacts [2, 3] and
hydrological impacts [4]. Besides climate change, weather data
are also used for weather forecasting [5] and urban resource
management and planning [6]. Transitioning to renewable energy
has been proposed by experts as an important tool to mitigate
climate change [7], and solar energy is among the most utilized
source of renewable energy [8]. In-depth planning and assessment
of solar resources are required to integrate solar energy into the
grid for reliable services. Countries in the solar belt region
(between latitudes of 40°N and 40°S) receive a large amount of
solar radiation, making them optimum for large-scale solar energy
production. To fully leverage the benefits of meteorological and
solar data, it is necessary to ensure the reliability and the quality
of the captured data.

The reliability of groundweather stations and solar data can be, in
practice, compromised in various forms. For instance, the sensors may
not be detecting the observations accurately or may not be functional
due to a lack of power [9]. Moreover, faulty data can be generated in
data storage, transmission, and processing. Extreme weather events,
including high heat and storms, can also decrease the reliability of
ground sensors [10]. In addition to unreliable data, some of these
extreme events may also cause the ground stations to not be
operational for a certain period of time, resulting in missing time-
series data. Therefore, both inaccurate data and missing data must
be handled to ensure the reliability of ground weather data. The
process of replacing missing data with substituted values is known
as data imputation [11]. In essence, rectifying inaccurate data can
also be considered a data imputation problem. This is because
inaccurate values will first be removed from the dataset, resulting in
missing values which will then be imputed.

Meteorological data and solar data are time-series data, that is, the
measurements are associated with a timestamp specifying when the
measurement is recorded. There are various approaches to time-
series data imputation, for example, ARIMA [12]. Researchers
have also utilized statistical approaches, including Monte Carlo
Markov chains for imputing meteorological data [13]. Other
approaches include mathematical modeling [14] and simulation
[15]. Recently, machine learning-based approaches have gained
popularity for time-series data imputation. To this end, researchers
have utilized supervised learning [16], unsupervised learning [17],
and deep learning [18]. These algorithms are data-driven and rely
on input features, including historical data and other meteorological*Corresponding author: Sakib Shahriar, College of Technological Innovation,
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measures [16], for model training. In this work, we explore the impact
of using satellite weather data as an input feature to several machine
learning models. To the best of our knowledge, existing works have
not investigated the performance of machine learning imputation for
meteorological data using satellite data as input features.

Generally, ground weather stations provide more accurate
measurements than satellite data. Mendelsohn et al. [19]
investigated the accuracy of satellite data in comparison to ground
stations for various locations. The study concluded that satellite
measurements for phenomenon such as precipitation may not be
as accurate as ground stations, but measurements such as
temperature are promising for satellite data. It can be safe to
assume that there would be a correlation between the ground and
satellite data, irrespective of the level of accuracy. Consequently,
machine learning algorithms can learn the trend from satellite data
to better predict and impute the missing ground station data. In
this work, we will formulate two training approaches for machine
learning algorithms. In the first approach, the machine learning
algorithms will not have any satellite information as input
features. In the second approach, we will add the corresponding
satellite data for the measurement to be imputed. For instance, the
temperature from the satellite will be an input feature when
imputing ground temperature data. Following are the main
contributions of this paper:

1) It proposes a novel approach for meteorological and solar data
imputation using satellite measurements as input features.

2) It provides a comparison of several machine learning algorithms
in imputing various meteorological data, including temperature
and solar irradiation.

3) It discusses the implications of using satellite data for imputation
and outlines future research directions.

The rest of the paper is organized as follows. Section 2 provides a
concise literature review covering the existing works in weather
and solar data imputation and forecasting. Section 3 describes the
methodology, including data collection and experimental setup.
Section 4 summarizes the results and Section 5 discusses the
implications and future work. Finally, Section 6 concludes the paper.

2. Literature Review

Chivers et al. [20] proposed a machine learning approach for
imputing precipitation data of UK weather stations. In addition to
predicting the absolute values (regression), a classification model
for predicting rain or no rain was also developed. XGBoost and
random forest (RF) provided the best performance for
classification, whereas neural network was more effective for
regression. In Boomgard-Zagrodnik and Brown [21], the authors
focused on the imputation of air temperature data using machine
learning for weather stations in Washington state. A RF model
trained with historical temperature and humidity features was
effective for imputation, with a reported mean absolute error
(MAE) of 0:43 �C. Doreswamy et al. [16] utilized various machine
learning algorithms, including RF and support vector machines, to
impute missing weather data. The data from National Climatic Data
Center (NCDC), containing weather data from different sources
around the globe, were used for their experiment. In terms of R2,
linear regression performed the best for imputing mean dew point
and minimum temperature with R2 values of 0.896 and 0.919,
respectively. However, the models were not effective in predicting
other weather parameters, such as wind speed and mean visibility.
Similarly, Gad et al. [22] employed a deep learning-based approach
to impute missing values in the NCDC dataset. The model was

trained using data from neighboring weather stations that do not have
missing values. The proposed convolutional neural network model
obtained the best performance using a stochastic gradient descent
optimizer with root mean squared error (RMSE) scores of 0.123
and 0.046 for dew point and minimum temperature, respectively.
Kiani and Saleem [23] proposed a K-Nearest Neighbor (K-NN) algo-
rithm for imputing missing surface temperature data. For their
experiment, the authors use temperature data from 38 weather
stations located in Pakistan. The proposed hybrid approach first
identified a cluster of K years to obtain the nearest temperature trend
to the missing value. The missing temperature was then imputed by
taking the average value for the same date from theK years identified
in the previous step.

The process of weather and solar forecasting is relevant to
imputation. This is because a forecasting model is able to predict
trends based on historical data. The same model can therefore be
used to predict any missing data. Recently with the advances of
Neural Networks, there has been increasing interest in applying
deep networks to solar radiation forecasting. To predict the
average daily solar radiation in Kuwait, Bou-Rabee et al. [24]
used artificial neural networks (ANN) and achieved a 94:75%
efficiency. Similarly, Hussain and AlAlili [25] proposed a hybrid
modeling with ANN to estimate solar radiation in the UAE. Utilizing
parameters such as temperature, humidity, wind speed, and sunshine
duration, the study obtained a minimum RMSE of 2:78%. Kazem
et al. [26] deployed machine learning models, including support
vector machines, to predict the output current of photovoltaic
systems. The input parameters included solar radiation and ambient
temperature, and the reported mean squared error was 2:6%. Under
clear-sky conditions, the solar output can be simply calculated based
on the solar panel’s position with respect to the sun, but the challenge
arises with the presence of clouds and dust [27]. Most numerical
methods that model solar radiation do not consider information about
cloud presence. Therefore, Tuohy et al. [27] point out that for short-
term forecasting, numerical weather prediction techniques are not as
effective as sky imaging and satellite data. To emphasize the impor-
tance of renewable energy forecasting, particularly solar and wind,
Notton et al. [28] present an in-depth review. Some of the main
benefits of forecasting include a reduction in integration costs, a
decrease in average annual costs, a decrease in reserve shortfalls,
and an increase of percentage reduction in curtailments of PV sys-
tems. A review of data-driven approaches for weather forecasting
presented by Fathi et al. [29] and Chantry et al. [30] discuss the chal-
lenges in the context of machine learning-based weather forecasting.
Table 1 presents a comparison of the existing works in weather and
solar data forecasting.

As shown in Table 1, existing works have effectively used
machine learning algorithms for weather and solar data imputation
and forecasting. However, the implications of using satellite data
as input features for training the models were not studied by
existing works to the best of our knowledge. Hence, the proposed
work aims to investigate the effectiveness of satellite data as input
features for training machine learning models for meteorological
data imputation.

3. Methodology

3.1. Data collection

In this paper, two independentmeteorological data sources were
used. The first step was obtaining a reliable ground weather station
dataset containing various meteorological and solar measurements.
To this end, the Canadian Weather Energy and Engineering
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Datasets (CWEEDS) [31] containing data from 492 Canadian
locations with at least ten years of data between 1998 and 2014
were utilized. Specifically, the historical data for Toronto
International Airport for the year 2014 were obtained for the
proposed experiment. The dataset contained hourly measurements
of various weather variables. For simplification, four
measurements were included in this study, namely temperature,
pressure, wind speed, and global horizontal radiation.

To obtain the satellite data, NASA’s Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-2) [32],
was used. MERRA-2 provides various satellite meteorological
measurements for any given coordinates. Therefore, the coordinates
for the Toronto International Airport weather station (Latitude
43.68, Longitude −79.63) were used to obtain the corresponding
satellite measurements. The temperature was recorded at 2 meters
above ground, and the wind speed was recorded at 10 meters above
the ground. The pressure was recorded at ground level, and
radiation was the surface incoming shortwave irradiation.

3.2. Data processing

The CWEEDS data are only provided in WY3 (.wy3) data
format, which is not compatible with most applications.
Consequently, the methodology proposed by Siu and Liao [33]

was employed to convert the data files into EnergyPlus Weather
File (.epw) format, which was then converted to CSV format
using the open-source EnergyPlus software1. Information such as
leap year observed and the number of holidays were not needed
for the experiment and were removed. The dataset did not contain
any missing values.

The satellite data were timestamped using universal time.
Consequently, the pytz library in Python [34] was used to convert
the data into the local (Toronto) time zone. Pandas library [35]
was used to concatenate the date and time columns and merge the
two datasets. The satellite temperature was recorded in Kelvin and
was converted to degree Celsius to match the ground station data.
Moreover, the pressure measured in satellite data was in
hectopascal, which was converted to pascals to match the ground
station unit. In addition to the temperature and pressure, the wind
speed was measured in m/s and global horizontal radiation was
measured in Wh=m2.

To obtain temporal features, hour, day, andmonth features were
extracted from the timestamp columns. These features are however
cyclic ordinal features. For instance, the value of 12 representing
December is close to the value of 1 representing January. This
information is not provided to the models explicitly. Therefore,

Table 1
Comparison of related works

Study Variable, data Method Key metrics Key findings

Chivers et al. [20] Precipitation, UK weather
stations

XGBoost, Random
Forest, Neural
Networks

R2= 0.35 and F1
score= 0.92

Effective in predicting rain occurrence
and precipitation.

Boomgard-Zagrodnik
and Brown [21]

Air temperature, Weather
stations in Washington
state

Random Forest MAE of 0.43 °C. Effective in imputing air temperature.

Doreswamy et al. [16] Various weather, NCDC
global weather data

Random Forest,
SVM, Linear
Regression

R2= 0.896, 0.919 Effective for mean dew point and
temperature; less effective for wind
speed and visibility.

Gad et al. [22] Various weather, NCDC
global weather data

Convolutional Neural
Network

RMSE= 0.123,
0.046

Effective in imputing dew point and
temperature using neighboring
station.

Kiani and Saleem [23] Surface temperature,
Stations in Pakistan

K-Nearest Neighbors RMSE= 2.2 Utilized temperature trends over years
to impute missing surface
temperature.

Bou-Rabee et al. [24] Solar radiation data in
Kuwait

Artificial Neural
Networks

94.75% efficiency High efficiency in predicting daily solar
radiation.

Hussain and AlAlili
[25]

Solar radiation data in the
UAE

Hybrid ANN model Minimum
RMSE= 2.78%

Effective in estimating solar radiation
using various climatic parameters.

Kazem et al. [26] Photovoltaic current,
Research Lab in Sohar
University, Oman.

Support Vector
Machines

MSE= 2.6% Effective in predicting photovoltaic
system output using solar radiation
and temperature.

Tuohy et al. [27] Solar radiation
forecasting

Review of Numerical
methods, sky
imaging, satellite

N/A Discusses challenges in solar radiation
forecasting under varying sky
conditions.

Notton et al. [28] Renewable energy
forecasting

Review N/A Highlights the benefits of forecasting in
reducing costs and operational
challenges in PV systems.

Fathi et al. [29] Weather forecasting Review of data-
driven approaches

N/A Highlighted various data-driven
techniques for weather forecasting.

Chantry et al. [30] Weather forecasting Review N/A Discusses challenges in applying
machine learning to weather
forecasting.

1https://energyplus.net/downloads
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trigonometric transformation was utilized [36]. The final dataset
contained eleven attributes: three temporal features and eight
weather measures (four from each of the two weather sources).

3.3. Algorithms

Machine learning algorithms can be used to train computer
systems to learn from data without explicit programming. In this
work, the algorithms will be trained to model a specific weather
phenomenon. Given that we have the measured values, this is a
supervised learning problem. Since all the values to be predicted
(weather and solar measurements) are numerical, the problem is
specifically a supervised regression problem. Four popular
supervised machine learning algorithms were experimented with
to provide a comprehensive assessment.

K-NN [37] is a lazy learning algorithm that does not require a
dedicated training phase. Tomake a prediction for a given data point,
a distance measure such as Euclidean or Manhattan is employed to
identify its K-NNs from the dataset. In the context of regression
tasks, the average value of these k neighbors is calculated and
used as the prediction for the target data point. For our
experiments, we specifically chose a value of k equal to 4,
allowing us to balance the trade-off between noise reduction and
the accuracy of the predictions.

RF is an ensemble learning technique that combines predictions
of multiple decision trees. Each decision tree in the ensemble
functions akin to a flow chart, systematically breaking down
complex decisions into a series of simpler decisions based on split
points derived from the input features [38]. This process of
decision-making in trees is based on selecting the best split at
each node to maximize the homogeneity of the resultant
subgroups. The RF algorithm improves on the decision tree model
by creating an ensemble of trees, each trained on a random subset
of the data and features. This randomness helps in reducing the
model’s susceptibility to overfitting on the training data. The
aggregation, or “voting,” across these multiple decision trees is
typically performed by taking the average value of the predictions
for regression tasks or the majority vote for classification tasks [39].

A gradient boosting algorithm such as XGBoost [40] also uses
multiple decision trees to make predictions. However, unlike RF,
which embodies a bagging approach to ensemble learning where
decision trees are constructed in parallel, boosting algorithms such as
XGBoost deploy trees in a sequential manner. This sequential
construction is pivotal because each new tree in the sequence
specifically addresses the errors committed by the preceding trees.
Consequently, subsequent trees in the sequence incrementally
improve the model’s performance by focusing on the harder-to-
predict instances that earlier trees struggled with [38]. This
methodical focus on correcting previous errors allows gradient
boosting algorithms to often achieve higher accuracy than bagging
techniques, albeit potentially at the cost of increased computational
complexity.

The finalmodelwe experimentedwithwas amultilayer perceptron
(MLP), a sophisticated type of ANN that falls under the broader
category of deep learning algorithms. An MLP is composed of
multiple layers: it starts with an input layer, followed by one or more
hidden layers, and concludes with an output layer. Each layer is
made up of neurons that use non-linear activation functions, allowing
the network to capture complex patterns and relationships in the data
[38]. In our specific application, the MLP regressor was configured
with 5 hidden layers, enabling it to perform non-linear regression
with enhanced depth and complexity. For simplicity and clarity in
further discussions, we will refer to the MLP as ANN.

3.4. Experimental setup

The research framework in this work is displayed in Figure 1.
The data collection and pre-processing steps were explained in the
previous sections. To compare the effectiveness of using satellite
data for imputation, two different machine learning experiments
were conducted.

The first experiment trains independent models to predict the
different weather attributes with and without satellite data as input
features. In this context, K-fold cross-validation was used to
measure the performance across the dataset. The value of K was
set to 10, implying that the algorithms are repeatedly trained ten
times with a fraction of 1/10 training examples left out for testing.
This approach provides a more general evaluation of the dataset
without bias in selecting a test subset. After training all the
algorithms, it is possible to compare any difference in
performance as a result of using satellite data as input features.

In the second experiment, the objective is to conduct a more
in-depth analysis of the performance. Consequently, three weeks
across the dataset were identified as test cases, including one
week each from February, June, and October. The models were
trained using the same algorithms in the first experiment.
However, the training process did not include these three weeks
of test cases. After training, the algorithms predicted all weather
attributes for these three weeks. The difference in performance
using satellite data was then analyzed for these three weeks in
terms of evaluation metrics and visualization.

For each model building, the hourly, monthly, and daily values
were used as inputs to the model. In addition, the experiments were
repeated using satellite data to observe performance improvements
(if any) for the specific weather variable. For instance, when
imputing temperature values, the machine learning models were
only trained using the temporal variables (six features for the
hour, month, and day obtained by trigonometric transformation).
After this, the variable of interest from the satellite was added for
each experiment, bringing the total feature to seven. For example,
we used the satellite temperature along with the six temporal
features for temperature imputation in the second set of experiments.

3.5. Evaluation

To quantify the performance of each experiment, three popular
regression metrics were used. The metrics are MAE, RMSE, and
coefficient of determination (R2). The metrics are defined in
Equations (1)–(3).

MAE ¼ 1
n

Xn
i¼1

yi � bYi

��� ��� (1)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
i¼1 yi � bYi

� �
2

n

vuut
(2)

R2 ¼ 1�
P

n
i¼1 yi � bYi

� �
2

P
n
i¼1 yi � µð Þ2 (3)

where n represents all values in the dataset, Yi represents the real

value, bY represents the predicted value, and µ represents the mean
of the real values. A lower value of MAE and RMSE indicates lower
error rate, and hence better performance. On the other hand, a higher
value for R2 indicates better model performance.
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4. Results

In this section, the results from the experiments are presented.
First, the results using 10-fold cross-validation are presented to study
the overall impacts of using satellite data as input features. Next,
three case scenarios are developed to analyze the results in terms
of visualization.

4.1. Overall results

In the first part of the experiment, all four machine learning
models were trained without any satellite information. Next, the
experiments were repeated with each model trained with an
additional feature, representing the satellite data for the specific
weather phenomenon that was being predicted. The average
results across the 10-fold cross-validation for both experiments in
predicting temperature are summarized in Table 2.

The results indicate that across all models, using satellite
information provides better performance for predicting
temperature values. The best performance was obtained using RF
and XGBoost with R2 values of 0.86 and 0.84, respectively. Next,
the performance for predicting pressure is presented in Table 3.

In terms of predicting atmospheric pressure, the models perform
worse than predicting temperature. Overall, the results indicate that
across all models, using satellite information provides better
performance. The best performance was obtained using RF and
XGBoost with R2 values of 0.44 and 0.45, respectively. Next, the
performance for predicting wind speed is presented in Table 4.

The models perform worse in predicting wind speed than both
temperature and pressure. Overall, using satellite information
provides better performance. The best performance was obtained
using MLP and XGBoost with R2 values of 0.33 and 0.32, respec-
tively. The performance for predicting global horizontal radiation
is compared in Table 5.

The models perform reasonably well for predicting global
horizontal radiation. Three of the four models performed best with
satellite as input features with the best performance coming from
RF and XGBoost with R2 scores of 0.80 and 0.79, respectively.

The only model that performed better without satellite information
is K-NN.

4.2. Case study scenarios

In this experiment, we isolated three weeks from the dataset to
be used as the test set. All four algorithms were trained using the
entire dataset except for these three weeks. The first test case
scenario was between February 7 and February 13, 2014. Table 6

Figure 1
Proposed research framework

Table 2
Imputation of temperature results

MAE RMSE R2

K-NN 6.10 8.60 0.21
K-NN (With Satellite) 5.43 8.55 0.24
RF 5.56 7.42 0.35
RF (With Satellite) 2.53 3.48 0.86
XGBoost 4.64 5.84 0.64
XGBoost (With Satellite) 2.78 3.75 0.84
MLP 6.15 7.75 0.36
MLP (With Satellite) 4.51 6.01 0.62

Table 3
Imputation of pressure results

MAE RMSE R2

K-NN 613.9 771.6 −0.13
K-NN (With Satellite) 466.2 688.0 0.11
RF 651.9 820.0 −0.28
RF (With Satellite) 328.1 536.2 0.44
XGBoost 590.6 730.4 0.04
XGBoost (With Satellite) 340.3 537.8 0.45
MLP 386.3 699.5 0.06
MLP (With Satellite) 99172.0 99175.0 −19015.5
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presents the performance comparison for the first test case. For
simplicity, only R2 is reported for each weather parameter.

The best results were obtained using XGBoost with satellite
information. The imputation of pressure and wind speed were
considered the most challenging, with many negative R2 values.
In Figure 2, the results for the first week for imputing global horizon-
tal radiation are presented. Each plot presents the imputation using
one model with and without satellite data along with the actual radi-
ation values for that week.

The graphs highlight that XGBoost and RF are able to capture
the global horizontal radiation trend best for this week using satellite
information. ANN tends to underestimate the radiation trend with
and without satellite information.

The second test case scenario was between June 15 and June 21,
2014. Table 7 compares the R2 for imputing each of the weather
parameters for this week using machine learning models.

The best performance for all weather attributes is obtained using
satellite information. ANN performed the best for pressure and RF

performed the best for temperature, wind speed, and radiation.
The visualization for all four models in predicting temperature for
this week is presented in Figure 3.

Table 4
Imputation of wind speed results

MAE RMSE R2

K-NN 2.07 2.70 −0.14
K-NN (With Satellite) 1.80 2.37 0.11
RF 2.18 2.82 −0.23
RF (With Satellite) 1.65 2.16 0.26
XGBoost 1.99 2.54 −0.00
XGBoost (With Satellite) 1.58 2.07 0.32
MLP 1.92 2.48 0.05
MLP (With Satellite) 1.57 2.06 0.33

Table 5
Imputation of global radiation results

MAE RMSE R2

K-NN 65.3 123.3 0.70
K-NN (With Satellite) 75.4 137.2 0.63
RF 63.2 123.2 0.69
RF (With Satellite) 52.6 100.5 0.80
XGBoost 70.0 111.3 0.75
XGBoost (With Satellite) 61.5 102.5 0.79
MLP 96.8 145.4 0.57
MLP (With Satellite) 74.8 132.2 0.65

Table 6
Test case 1 R2 comparison

Temperature Pressure Wind Radiation

K-NN 0.82 −1.12 −0.27 0.67
K-NN (With Satellite) 0.68 0.21 −0.16 0.55
RF 0.92 0.26 −0.28 0.76
RF (With Satellite) 0.91 0.39 0.00 0.81
XGBoost 0.87 −0.12 −0.16 0.77
XGBoost (With
Satellite)

0.93 0.47 0.16 0.81

MLP 0.50 −16000 −0.36 0.60
MLP (With Satellite) 0.73 0.16 0.01 0.55

Figure 2
Comparison of actual and machine learning imputed radiation

with and without satellite information
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The predictions made by K-NN, RF, and ANN overestimate the
temperature without satellite information. On the other hand, the
predictions made by XGBoost without satellite information
slightly overestimate the temperature. The graphs indicate that
XGB was able to predict the temperature most accurately for this
week using satellite information.

The third test case scenario was between October 23 and October
29, 2014. The R2 scores for all the models are summarized in Table 8.

The best performance for all weather parameters is obtained
using satellite information. RF provided the best performance for
temperature, wind speed, and radiation. The best performance for
pressure was obtained using XGBoost. The visualization for
predicting wind speed for this week is provided in Figure 4.

The graphs show that without using satellite information, the
models tend to underpredict the wind speed. Moreover, the
performance of RF, XGB, and ANN with satellite information is
very close to the actual wind speed for this week.

5. Discussion

The results from both experiments indicate that machine
learning algorithms are more effective in imputing meteorological
and solar data using satellite information as input features.
Furthermore, the imputation performance for temperature and
global radiation is overall better as compared to pressure and wind

speed. The results also indicate that the ensemble machine
learning models, RF and XGBoost, perform better than ANN and
K-NN. Next, some of the implications of the proposed work and
future work are outlined.

Figure 2
(Continued)

Table 7
Test case 2 R2 comparison

Temperature Pressure Wind Radiation

K-NN −0.84 −1.08 −0.43 0.84
K-NN (With Satellite) 0.59 0.37 0.09 0.82
RF 0.29 −1.87 −0.29 0.81
RF (With Satellite) 0.73 −4.79 0.71 0.91
XGBoost 0.45 −0.04 −0.19 0.77
XGBoost (With
Satellite)

0.61 0.66 0.26 0.86

MLP −0.69 −91000 −0.12 0.67
MLP (With Satellite) 0.57 0.79 0.23 0.79

Figure 3
Comparison of actual and machine learning imputed
temperature with and without satellite information
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5.1. Implications

Despite being important measures for various applications,
meteorological data from ground stations are prone to
unreliability. Consequently, the proposed work highlights the
effectiveness of utilizing satellite information for replacing
unreliable data. The proposed work has several implications.
Firstly, it demonstrates the effectiveness of using machine
learning for weather data imputation. This will likely encourage
organizations and researchers to utilize machine learning
approaches for cleaning historical weather data. Second, the paper
highlighted the usefulness of satellite information for imputing
weather data. This will further draw the attention of organizations
and researchers to utilize satellite data for cleaning historical
weather data. Moreover, it will also facilitate research interest in
using satellite data for other applications in conjunction with
machine learning algorithms like smart grid monitoring [41].
Finally, it is hoped that the proposed work draws more research
attention to the need for reliable meteorological and solar data,
particularly in light of the global climate change concern.

5.2. Future research directions

Utilizing data from neighboring weather stations has been shown
to be effective in weather data imputation [42, 43]. Although this

approach may not be feasible for weather stations without any
surrounding stations and due to the complexity of collaboration,
future research should explore a combination of surrounding
weather stations and satellite data as input features.

Figure 3
(Continued)

Table 8
Test case 3 R2 comparison

Temperature Pressure Wind Radiation

K-NN −1.01 −1.39 −0.26 0.83
K-NN (With Satellite) 0.54 0.41 0.20 0.60
RF −0.01 −2.75 −0.23 0.74
RF (With Satellite) 0.75 0.13 0.90 0.94
XGBoost −0.51 −0.16 0.04 0.60
XGBoost (With
Satellite)

0.38 0.87 0.54 0.67

MLP −0.90 −37000 0.06 0.53
MLP (With Satellite) 0.34 0.86 0.48 0.67

Figure 4
Comparison of actual andmachine learning imputed wind speed

with and without satellite information
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A combination of nearby weather stations and satellites will likely
provide a more accurate imputation performance. In this work,
extensive hyperparameter tuning was not performed because the
objective was to simply compare the difference in performance.
Therefore, future research should consider hyperparameter tuning to
study the impact on model performance with and without satellite
information. Also, the proposed research did not utilize more
complex deep learning models, including convolutional and
recurrent neural networks. These advanced networks may be able to
provide a better imputation for wind speed and pressure data,
which was not as effective using the models in the proposed work.
Finally, the potential of large language models like ChatGPT and
BARD [44] to provide better imputation in future research using
weather data should be explored.

6. Conclusion

Reliable meteorological and solar data are necessary for
studying climate change trends and renewable energy
production. Missing values and inaccurate readings need to be
replaced or imputed. This research investigated the use of
machine learning algorithms and the impacts of using satellite
information for weather data imputation. Results from two
experiments demonstrate that machine learning algorithms are
more effective for imputation using satellite information.
Overall, ensemble machine learning models performed better
than K-NN and ANN. Additionally, the imputation of
temperature and solar radiation was more effective than pressure
and wind speed. The implications and future research directions
were also highlighted.
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