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Abstract: Electroencephalogram (EEG) signal is one of the important bio-signals that can characterize different states of action. These
signals are often contaminated with different artifacts. Dominant artifacts are baseline wandering, power lines, and eye blink noise. The
frequencies of these artifacts overlap with the frequencies of the EEG sub-bands and create a major challenge for analysis. In the present
paper, a computationally simple, robust-to-noise, and accurate EEG segmentation algorithm is developed for all dominant noise
elimination from the EEG signal. The proposed method uses moving average and discrete wavelet transform (DWT) filtering
techniques. The novelty of the present work lies in the use of a moving average and DWT filter that eliminates the major noises
without affecting the properties of the signal and subsequent sub-band segmentation without additional signal processing. The choice
of db4 as the mother wavelet reduces the computational time and complexity. The method has been tested on real-time signals
acquired from 30 individuals of varying age groups. The comparative plot of acquired and clean EEG justifies the applicability and
potentiality of the method for various applications including brain–computer interface. The relative root mean square error (RRMSE)
between the acquired and filtered signal is only 0.14 ± 0.03, which reveals that the filtering stage did not have any loss to the vital
signature properties. The earlier reported literatures have the best possible value of RRMSE to be 0.42 ± 0.00, which is quite a
distance apart from the present result. The proposed algorithm can be a suitable option for major artifact elimination and EEG
segmentation in low-cost single-channel EEG systems because of its (a) computational efficiency; (b) filtering of contaminated EEG
signals; (c) automatic operation, requiring no human intervention; (d) noninvasive nature, preserving unaltered EEG sub bands and
(e) low complexity, requiring no artifact reference.

Keywords: baseline wandering artifact, electroencephalogram, eye blink signal, discrete wavelet transform, moving average filter, power line
interference artifact

1. Introduction

The aging of the population and the devastating effects of many
chronic illnesses are currently the main factors contributing to the
rise in disability in our society. Technology intervention in the
healthcare sector has now become necessary to battle the results
on a daily basis [1]. Over two billion individuals worldwide will
require at least one assistive technology product by 2030,
according to recent World Health Organization (WHO) reports.
As a result, the development of various brain–computer interfaces
(BCIs) has received a great deal of scholarly interest in recent
years. In order to help patients with neurological or physical
disorders, modern BCIs can now process human-defined
instructions that are communicated via standard bio-signals and
other human reactions [2]. However, the most practical method of

interacting with BCIs for treating illnesses and other applications
associated with acute muscular movement is to analyze the
patient’s brain signal [3].

EEG or electroencephalogram is an important bio-signal that
can be recorded from the surface of the human body for
estimation of the physical as well as mental condition. EEG is
applied to detect abnormalities in the activity and operation of the
brain that can be related to some brain-related disorders. The
measurements from EEG signals can be applied to rule out or
confirm various mental conditions, mental stress, seizures, brain
tumors, head injury, encephalitis, stroke, encephalopathy, memory
problems, and sleep disorders along with alcohol or drug abuse.
While a person is in a coma, the level of brain activity can be
judged from EEG signals. The most significant characteristic of
this signal is its signature property that varies from individual to
individual even in the same physical or mental state. The EEG-
based analysis is gaining importance in the present world because
it has the potential of an emerging technique to control several
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devices such as wheelchairs for disabled persons and also for normal
healthy individuals in driving an automated vehicle and controlling
robots. It has a diverse application in BCI applications and for
gaming consoles. In all these applications, tracking of eye blink
movements is an important aspect. The accuracy of the above
applications depends upon the effectiveness of artifact elimination
and detecting the eye blink movements. The eye blink movements
contain a rich source of information that might be applied for
other applications, but these are considered to be additional
artifacts for the present study. Hence, these eye blink signals are
essential to be removed in addition to the power line and baseline
noises from the acquired EEG data. The clean EEG signal will
have various signature properties which can be a valuable source
for real-time BCI-based applications. This inherent property
makes it superior than the other bio-signals, and hence modern-
day researchers are focusing on EEG signals.

2. Literature Review

Motionartifacts that create abnormalities in theEEGsignal can be
causedbyanumberof things, including incorrectelectrodecontactwith
the scalp and head movements [4]. For a number of EEG signal-based
pattern classification tasks, including BCI [5, 6], seizure detection [7],
Alzheimer’s disease detection [8], biometrics, health monitoring [9],
emotion recognition, and stress detection [10], the motion artifact
must be removed. The existing methods for the study of BCI and
human emotions involve the analysis of EEG signals acquired from
the human scalp. EEG signals are contaminated by the artifacts
arising from the power line and baseline interferences, eye blinks,
cardiac activity, and muscle activity during recordings. Baseline
noise mainly arises due to the respiration signal of the subject [11].
Eye blink artifact arises due to the closing and opening of the
eyeball, which is beyond the control of the acquisition setup.
Artifacts related to cardiac and muscular movements are also present
in almost all the recorded data strips. It is very much essential to
remove the blink artifacts since these noises can lead to faulty analysis.

Power line noise is a common noise component that is present in
all the records. Power line artifact arises due to power line connection
to the acquisition setup and is normally having a fixed frequency.
The use of the median filter to eliminate power lines and baseline
artifacts from the Electrocardiogram (ECG) signal has also been
reported in the literature by Paul et al. [12]. Although the median
filter can be used to eliminate the power line noise from the
recorded signal, the filter introduces an additional delay in the
processing cycle. Moreover, the use of a higher-order Butterworth
filter is available in the literature by Paul et al. [13]. But this filter
gives the best result for the EEG signal. On the other hand, some
researchers have applied the technique of moving average filtering
for eliminating power line noise from the physiological signals.
This method is relatively faster than other filtering methods and is
thus suitable for real-time applications.

Researchers have also tried to filter out the artifact caused due to
eye blinks using linear filters having the cutoff frequency chosen
according to the noise signal. However, this method does not
satisfactorily perform because of the fact that the EEG signal is
nonstationary in nature along with the non-periodicity of the
noises. The overlapping of the different waveforms of EEG with
that of the eye blink signal is the major challenge with regard to
its elimination. One of the normal methods to eliminate ocular
artifacts is the regression-based method. However, there is a need
of recording the Electrooculogram (EOG). Several time domain
techniques and filtering provide substantial loss of valuable data
pertaining to the condition of the brain which might lead to faulty

conclusions. The use of principal component analysis (PCA),
independent component analysis (ICA), wavelet denoising, and
automated denoising [14] for the elimination of artifacts have
been reported in the literature. ICA is considered to be a very
accurate method of eye movement noise removal, but the method
requires manual intervention for the identification of the
independent components. The method of ICA can be applicable
only if the preprocessing of the signal is properly executed.
Component identification can be done using linear trends, spectral
temporal maps, data improbability, and kurtosis, but these
methods require an additional electrooculogram (EOG) signal
record for reference. Thus, it becomes a time-consuming and
unsuitable process. Some researchers have used the Laplacian
filtering technique for removing the artifacts. These filters are
used to enhance the electric activities that are located closer to an
electrode while suppressing the components having an origin
outside the skull. But overall, the common EEG component gets
attenuated from the recording channels so as to enhance the
quality of the signal [15]. Researchers have used the joint-
resolution feature of wavelet transform (WT). The multi-resolution
property of WT in the time-frequency plane is required for the
extraction of detail and approximation coefficients of the signal.
This decomposition is not possible using transforms like fast
Fourier transform and short-time Fourier transform. Different
mother wavelet functions have been used in the literature for
extraction of different approximate and detail coefficients using
discrete wavelet transform (DWT), and it has been observed that
the Daubechies family generates the best possible results with
EEG signal [16]. Kurtosis and modified entropy-based methods
have been reported to detect the independent eye blink
components and subsequent denoising of the components using a
wavelet transform-based technique [17].

Although activity related to eyeball movements can be directly
measured from the EEG by placing leads near the eyes, these
measurements can give the estimation of eyeball movements but
are often corrupted due to the presence of EOG signals. Thus, the
method of subtraction of the EOG is, therefore, not a viable
solution. The use of regression-based methods has been reported
for eliminating eye blink artifacts. The disadvantage of using this
method lies in the requirement of a good reference EOG channel.
PCA is not capable enough to separate out EOG artifacts
completely from the EEG records if both amplitudes are
comparable. The application of PCA requires the condition that
the components should be spatially orthogonal. In reality, the
artifacts will never be orthogonal to the EEG source spatially.
Therefore, it is not possible to separate the mixed signals into
EEG and EOG components using PCA. It is reported in the
literature that joint application of PCA along with source
modeling provides a better result for artifact removal. Still, there
is a requirement for calibration data and inverse source solutions
of EOG and EEG for improving the accuracy of this method. The
automatic method of EOG artifact elimination using blind
component analysis and separation was also used along with the
help of one additional EOG electrode. However, the use of a
median filter does not give equally good results for EEG signals
because of the nonstationary and feeble nature of EEG signals. In
view of the above literatures, it is clear that the choice of filtering
technique is very crucial for the proper elimination of major
artifacts from EEG before further analysis. The above methods
either introduce nonlinearity in the output or distort the signal
component to a certain degree, while the other techniques
involved cause a loss of few data points near the cutoff
frequencies, which becomes a challenge from the viewpoint of
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clinical information content. This initiates the use of such a filtering
technique that does not distort the signal components and retain the
vital signature properties of the original signal. This leads to the use
of moving average and DWT-based filtering techniques for the
present work.

However, the present authors feel that although the EOG signal
embedded in the EEG signal is a valuable source of information
regarding the eye movements, it can be removed from EEG using
a composite filter. In the present work, the EEG signal is
extracted from the recorded signal, and the EOG signal is treated
as one of the artifacts. The present work focuses on the following
steps:

1) Recording of EEG signal using six electrodes.
2) Elimination of power line artifact.
3) Elimination of high-frequency artifact.
4) Elimination of baseline wandering artifact.
5) Elimination of eye blink artifact.
6) Selection and reconstruction of coefficients for obtaining

clean EEG.

Therefore, this study, which is the first of its kind, attempts to
eliminate all major artifacts using a composite filter and segments the
clean EEG into its constituent sub-bands in order to fill the literature
gap left by previous studies. The novelty of the present work lies in
the application of a moving average filter along with DWT filtering
for noise elimination and signal segmentation of the raw EEG. Most
of the available literatures use DWT to segment the EEG signal along
with other higher-order filters for power line and baseline artifact
removal. This introduces signal loss and additional delay in the
filtering process. On the other hand, few of the reported literature
use higher-order Butterworth and Chebyshev filters for noise
elimination, but they do introduce a loss of vital signature
properties of the clinical signal. The use of the unique averaging
technique for the removal of eye blink artifacts is the added
novelty for the present work, which, to the best of our knowledge,
is not available in the literature.

3. Methodology

The proposed algorithm mainly comprises three different
sections, which are the denoising of acquired EEG signal,
selection of specific sub-bands of EEG using composite filters,
and identification of different EEG sub-bands along with their
reconstruction for application in BCI applications. In the signal
denoising stage, power line artifact and baseline wandering
artifact are eliminated by using DWT and moving average filter-
based techniques. The same filtering method is used to eliminate
the eye blink signal along with selecting the different sub-bands

of the EEG wave from a clean signal. A simple and robust
method using db4 as the mother wavelet is adopted for the
selection of the sub-bands of the EEG signal. The proposed
methodology is represented in a block diagram form in Figure 1.

3.1. EEG signal

This EEG signal was recorded using a noninvasive method of
measurement by placing six numbers of electrodes on the human
scalp following an international 10–20 electrode system. All the
recordings were carried out at the “Biomedical Laboratory” at the
University of Calcutta, India. EEG recording was done using
BIOPAC Systems, Inc. MP150 having six separate channels that
can be configured individually. For the present work, the gain of
the amplifier was selected to be 20,000. EEG data were recorded
from 30 individuals in their normal healthy physical condition.
Each subject was requested to be in idle and relaxed condition
keeping their eyes closed for almost 10 min before recording. At
first, they were asked to see straight toward a mark on the wall at
the same level with their eye, and the acquisition was started after
1 min at this condition. Then they were asked to focus on the
same type of mark positioned at the same level but at about an
angle of 30° to the right and left of the first mark (central),
respectively. Similarly, recordings were carried out for the marks
kept about 30° above and below the central mark. For each case,
data were recorded for an interval of 5 min. The data recorded
were saved in.csv file format and.txt file format for further
processing. All volunteers had filled out the form for their consent
and approval for their participation in this work. The volunteers
were explained about the use of the data and were assured that
their personal information would be kept confidential. Before the
experimental procedure, a signed informed consent form was
collected from each of the participants as per the institutional and
international protocol. One such representative EEG record is
shown in Figure 2.

3.2. Elimination of power line artifact

During the recording of the EEG signal, there was a power line
noise interference effect on the recorded signal. This noise removal
was carried out before further processing. As the sampling rate of the
recorded EEG signal was 1 KHz and the power line frequency
component was 50 Hz, the size of the sliding window (N) was
calculated using Equation (1), where fs and f represent sampling
frequency and power line noise frequency, respectively. The
method of moving average filtering technique is efficient to
eliminate artifacts from biomedical signals [13]. The power line
noise was removed using the “method of 20-point moving
average.” The method of 20-point moving average selects a

Figure 1
Block diagram of the proposed methodology for elimination of different artifacts and selection of specific sub-bands of EEG signal
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window size of 20 samples at a time and computes the average
amplitude value from these amplitudes of 20 samples. The average
values thus obtained are substituted in the position of the starting
point sample value of the chosen window. This process is iterated
for the entire data array under consideration, and every point of the
array is replaced by the average amplitude values obtained during
every iteration. The new array obtained after replacing all the
sample values gives a clean data array that is free from power line
artifact. One such power line affected the acquired EEG signal, and
the corresponding filtered signal is shown in Figure 3.

N ¼ fS
f
¼ 20 (1)

3.3. Elimination of high-frequency artifact

Since the sampling rate was chosen to be 1 KHz, the highest
possible signal frequency component was 500 Hz. As the
theoretical range of EEG signals were in between 0.5 Hz and
about 65 Hz, as shown in Table 1, the frequency components
above 62.5 Hz were eliminated using the filter bank effect of
DWT. The DWT-based technique is a suitable and effective
solution for denoising EEG signals [18]. DWT is carried out using
“db4” as the mother wavelet for ten successive stages in order to
extract the frequency components below 0.5 Hz. The iterative
levels of DWT along with the respective frequency ranges are
shown in Figure 4.

3.4. Elimination of baseline wandering artifact

The baseline wandering noise signal frequency component was
very low (<0.5 Hz) and was removed from the acquired data, which
is actually the approximation coefficient of the tenth stage of iterative
DWT analysis. The delta wave had the frequency range closest to that
of the baseline noise and hence was affected the most due to the
presence of this artifact. One such plot of delta wave, which

contains baseline noise signal superimposed on EEG sub-band,
extracted baseline noise, and baseline removed signal, is shown in
Figure 5.

3.5. Elimination of eye blink artifact

The most prominent artifact, which can be identified from the
filtered signal with a normal eye, was the eye blink artifact. The
most distinguishable feature of the eye blink signal lies in its high
amplitude and low-frequency characteristics. Eye blink signal can
be easily detected by the use of slope detection technique. One
such instance of an eye blink signal, which can be identified
from all the EEG sub-bands, is shown in Figure 6, where the
presence of eye blink noise can be seen affecting all the bands.
These instances of eye blinks were identified from the entire
coefficient array from the delta sub-band, where the eye blink
is the most prominent as compared to all other bands. The
starting and ending instants of eye blink signals were detected
using the slope detection technique. One such EEG sub-band
signal is depicted in Figure 7, where the detected eye blink
pulse is highlighted using a contrasting color marker. In a
similar way, all the positions of eye blinks were detected from
each band using the same instant values as the occurrence of
eye blinks was the same for all the bands. A sliding window
was chosen accordingly, and it was shifted starting from the
occurring instant of an eye blink to the ending instant. For each
of these instants, the values of the original signal were replaced
by the calculated average value of the same band signal chosen
one second before and after the given instant. This method of
eye blink noise removal is unique and has not been reported in
the literature till date. Thus, a new data array was obtained,
which was free from the eye blink artifacts. The filtered signal
was stored in a separate array. One such comparison plot of a
representative EEG sub-band signal having an eye blink signal
and the corresponding filtered signal is shown in Figure 8. The
proposed method of eye blink noise elimination is unique and
not available in the literature till date to the best of our
knowledge. The slope detection technique used in the method
yields accurate results for signals that are having low- and
high-frequency artifacts. The method is highly accurate and is
effective for even highly noise-corrupted signals. One
representative plot of extremely noisy corrupted EEG band and
its corresponding filtered signal is shown in Figure 9. The

Figure 2
Acquired EEG signal using six electrodes/leads

Figure 3
Representative plot of acquired EEG signal and the power line

noise filtered EEG signal

Table 1
EEG sub-band frequency components

EEG sub-bands Theoretical range

Delta 0.5–4 Hz
Theta 4–7 Hz
Alpha 8–13 Hz
Beta 13–30 Hz
Gamma 30–65 Hz
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figure depicts the effectiveness of the proposed method for low
and highly noise-corrupted EEG signals.

3.6. Selection of coefficients for obtaining clean
EEG

The coefficients corresponding to the sub-bands of the delta,
theta, alpha, beta, and gamma are selected from the detail and
approximation coefficients, and inverse DWT is performed to get

back the filtered EEG signal. The selected EEG sub-bands are free
from all the abovementioned artifacts, and the clean EEG
sub-bands are represented in Figure 10 alongside their counterpart
having an eye blink artifact. The clinical information of the EEG
signal is retained even after the filtering stage, which is essential
for further feature extraction processes.

4. Results

The above figures demonstrate the appropriateness and
applicability of the proposed method of artifact elimination from
recorded EEG signals. At each stage, the noise components were
selectively eliminated, and the frequency components of the EEG
sub-bands were kept unaltered as much as possible. The proposed
algorithm had been tested on real-time data recorded from 30
individuals, and the result showed satisfactory performance. The
clean sub-bands can be used separately for studying the
generation of the different waves for different excitation of the
brain. Moreover, the reconstructed signal using the inverse
discrete transform can be used to study the variation of spectral
power and frequency variation for application in brain-computer
interfacing applications. The artifact-free EEG sub-bands were
combined together in order to compare with the acquired signal
and for visual satisfaction. One such representative comparison
plot of the acquired EEG signal having the artifacts and its
corresponding filtered signal is shown in Figure 11. The figure
depicts that the overall EEG signal is not distorted due to the
filtering process and the clean signal contains all the clinical
features of the original waveform. This property of information

Figure 4
DWT iterative levels along with respective frequency ranges

Figure 5
Representative plot of (a) delta wave having baseline noise

component, (b) extracted baseline wandering noise, and (c) the
filtered signal

Figure 6
Representative plot of five EEG sub-bands signals containing eye blink artifact
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retention in filtered signals is essential for biomedical signal
processing and analysis. Thus, it is further established that the
proposed method can be implemented for future real-time EEG
signal processing modules.

The filtering performance of the proposed algorithm is
evaluated in the time domain by computing the relative root mean
square error (RRMSE) between the acquired and filtered EEG
signals. The RRMSE measures the amplitude distortion of the
filtered EEG signals following Equation (2).

RRMSE ¼ RMS x nð Þ � y nð Þð Þ
RMS x nð Þð Þ (2)

where x(n) represents the acquired signal and y(n) represents the
filtered signal. The result obtained for the proposed algorithm is
compared in terms of the evaluation parameter with other similar
reported literatures and is summarized in Table 2. The RRMSE
value of the proposed algorithm is much lower than the other
methods that justify the effectiveness of the current work.

5. Discussion

In this current work, six numbers of electrodes were used, which
were implanted following the international 10–20 electrode
placement system. The data acquisition system had six separate
channels, which can be configured separately for its gain and
sampling rate. For the present work, we selected a sampling rate
of 1,000 samples per second for each channel, while the gain was
selected to be 20,000. The number of electrodes could have been
increased in order to get more number of channels for further
accurate interpretation of EEG signal frequency components and
artifact removal. The sampling rate could be set even higher than
1,000 in order to get more number of data for each channel. There
might be a few artifacts present in the filtered signal, which might
had come from some slight muscle movement during recording,
although care was taken so that the subject did not move. One can
use this method for the removal of eye blink artifacts and other
noises for a data length of several minutes or more. Although we
have eliminated the eye blink artifact as one of the important
noise components from our data, it should be kept in mind that
this eye blink signal can also be used as a signature property in
some application areas, where this signal might indicate some
mental states such as hypertension and sleep disorders along
with physical conditions like restlessness and palpitation;
brain-computer interfacing applications; and many more. From the
above results, it can be easily stated that the novel method or
approach presented in this paper has the potential to stand alone
in its field proving its existence by virtue of the ability to
eliminate all possible major artifacts that might occur during the
acquisition of EEG signal from an individual. Identification and
elimination of eye blink peaks from the coefficients corresponding
to all the channels have been executed successfully and can be
visible from the comparison plots of the coefficients before and
after noise elimination. The composite filter bank effect was

Figure 7
Representative plot of detected eye blink signal from a sub-band
of acquired EEG signal, which is highlighted with red color

marker

Figure 8
Comparison plot of a representative EEG sub-bands with and without eye blink artifact

Figure 9
Representative plot of (a) extremely noisy EEG band and (b) corresponding filtered EEG band
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achieved by the use of moving average and DWT-based filtering
techniques. Both the filters were adequate enough to operate
simultaneously without introducing any appreciable delay. The
novelty of the proposed method lies in the use of a
computationally simple and effective technique for all possible
major artifact elimination without any loss of clinical information.
The reconstructed coefficients after eye blink elimination revealed
continuity and similarity in nature with the preceding and
succeeding instants and hence justify the technique. The use of
DWT for artifact elimination is very popular among the
researchers due to its inherent filter bank effect. Effective choice
of mother wavelet results in specific segregation of the different

frequency bands and thereby successful cancellation of noise
components. The advantage of these filters lies in the fact that the
originality of the signal in terms of its diagnostic capability is
unaltered in the filtering process. The method also uses less
computational time as compared to other conventional higher-
order filters. The degree of complexity introduced due to the use
of DWT for high-frequency artifact and aye blink artifact is not of
much concern because of the fact that their accurate identification
and removal are of much more significance for the present
application. A delay of a few milliseconds will not cause any
appreciable effect on the application of BCI, but any noise
component, which might be present due to improper filtering, will
cause a faulty outcome and subsequent malfunctioning. Keeping
this in mind, the authors have used the abovementioned filtering
techniques. The computational complexity arises due to the filter
bank effect of DWT during the generation of several coefficients
at successive stages. Once the artifacts are removed, the selected
coefficients need to be combined together, and inverse transform
is carried out in order to obtain the reconstructed clean EEG
signal. The challenge for the present work was the data size and
the electrode positions for EEG recordings. For ease of operation,
only six channels have been considered, which can be a limitation
for the current study. The sampling rate was selected to be 1,000
in order to have adequate data for processing. For better and more
accurate applications of BCI, the sampling rate may be increased

Figure 10
Representative plot of EEG sub-band (a, c, e) with and (b, d, f) without eye blink artifact

Figure 11
Comparison plot of acquired signal and clean EEG signal

Table 2
Comparison of RRMSE (mean ± SD) values between acquired

and filtered EEG signals

Reported literature Method RRMSE value

Cho et al. [19] DWT 0.84 ± 0.18
Kaya et al. [20] DWT 0.96 ± 0.03
Torkamani-Azar et al. [21] DWT 0.76 ± 0.23
Reichert et al. [22] DWT 0.94 ± 0.34
Shahbakhti et al. [23] VME-DWT 0.42 ± 0.00
Proposed method Composite filter 0.14 ± 0.03

Journal of Data Science and Intelligent Systems Vol. 4 Iss. 1 2026

121



to double its value, but the large size of data has to be taken into
account. Moreover, the size of the data increases the overall
computational time.

Although the suggested approach performs satisfactorily, it is
important to take into account its drawbacks and possible fixes.
First, the DWT’s ability to accurately detect eye blinks may be
hampered by the existence of additional low-frequency aberrations
like electrode drift. Therefore, before executing the suggested
algorithm, a high-pass filter with a cutoff frequency of 0.2 Hz
should be utilized. Second, the suggested technique does not
identify and remove additional abnormalities like eye saccades
and muscle contractions; it only detects and eliminates artifacts
related to blinks. However, it can be used in combination with
additional filtering techniques. Third, further research may be
necessary to achieve more precise performance for the suggested
technique for the eye blink occurrence, which was developed
through experimentation. However, these recommendations for
addressing the aforementioned issues are merely conjectures that
need more research.

The detailed comparison of the proposed method in terms of its
performance assessment with other state-of-the-art literature is
summarized in Table 3. Some of the previously reported methods
are not automatic in nature, while few of them are not suitable to
be applied in online measurement and denoising applications.
Many of the reported works are not capable of eliminating all the
possible artifacts present in the EEG records.

The proposed method not only eliminates the major artifacts
from the records but also can be applied for online processes and
thereby widens the applicability and accuracy in the domain of
EEG denoising. Clearly, the comparisons given in Table 3 are
reflective of the fact that the proposed algorithm shows high
efficiency in terms of its performance and robustness when
compared to other related literatures.

6. Conclusion

An efficient, robust, and computationally simple algorithm for
EEG signal denoising and selection of sub-bands using a composite
filter is reported in this paper. The application of a single moving
average filter and DWT is powerful enough for power line and
baseline and eye blink artifact removal along with the selection of
specific sub-bands of clean EEG signal. The present method is
able to eliminate three major artifacts along with identifying the
different eye movements in an offline process. However, the same
techniques can be applied to an online process with a small delay
of a few seconds, which might not cause any significant delay in

the regular application area. The delay of a few seconds is a proof
of the computational simplicity of the algorithm and can be
applied for real-time applications in the domain of BCI. The
present algorithm is tested on a variety of data collected during
different external conditions for testing the robustness of the
method. The algorithm is able to perform equally well for less
noisy and highly noisy data strips. The major challenge lies in the
nature and variability of EEG signals. In spite of this, the
proposed method holds for real-life applications. In the future, the
authors intend to design a system, which will use only a single
electrode for better comfort to the user and simplicity in
processing stages and minimize the time delay for online process.
Further, wireless connectivity may be added for portability and
user-friendly operations. The results confirm that the proposed
method is capable of making a mark of itself in this domain and
can be at par with other reported literatures. Moreover, this
method can be implemented in real-time systems because of the
negligible computational time owing to the use of a simple technique.
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