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Abstract: Nuclear magnetic resonance (NMR) and its derivatives play a pivotal role in molecular analysis across research and clinical
domains. However, the intricate nature of NMR data preprocessing, which is integral for accurate analysis, is not easily understood
despite the availability of numerous software tools. This comprehensive review aims to unravel the complexities of preprocessing
algorithms in both the time and frequency domains. It covers essential steps such as direct current offset removal, eddy current
correction, shift and linear prediction, weighting, zero filling, domain transformation, phase error correction, baseline correction, solvent
filtering, calibration and alignment, reference deconvolution, binning/bucketing, peak picking, peak fitting/deconvolution, compound
identification, integration and quantification, normalization, and transformation. The review uses plain language to enhance accessibility
and understanding. By demystifying the algorithms behind these preprocessing steps, we seek to help researchers and practitioners in
navigating the nuances of NMR data preprocessing, ultimately fostering better understanding and practical application in molecular analysis.
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1. Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a
highly effective analytical tool for providing intricate details about
the molecular structure, composition, and dynamics of a sample.
It has also given rise to many new techniques, including
multinuclear magnetic resonance, quantitative nuclear magnetic
resonance, nuclear magnetic resonance imaging (MRI), functional
MRI (fMRI), diffusion MRI, and diffusion tensor imaging [1-8].
These NMR techniques find widespread applications in various
fields such as chemistry, biology, agriculture, and medicine
[9-14]. Due to their ability to analyze metabolites, detect the
structures of DNA, RNA, and proteins, and visualize human
internal organs/serum without ionizing radiation, these techniques
have proved to be versatile and valuable [15-19].

NMR spectroscopy utilizes powerful magnetic fields to analyze
samples. When exposed to the radiofrequency radiation produced by
an NMR spectrometer, the nuclei in molecules absorb the energy and
transition to higher energy levels when possible. This phenomenon is
known as excitation. After the radiofrequency pulses are turned off, the
nuclei undergo relaxation, releasing the absorbed energy and returning
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to their original energy levels. The decaying signal resulting from this
relaxation process is captured by a receiver coil surrounding the
sample tube. The weak, energy-varying currents induced by the
relaxation are detected as raw signals from the molecules.

Figure 1 uses a proton as an example nucleus to illustrate how a
proton signal is generated.

Before becoming raw NMR data, these signals undergo
amplification and digitization. Raw NMR data, as depicted in
Figure 1’s middle section, vividly illustrate signal changes over time,
capturing dynamic variations and thus are termed time domain NMR
data. When multiple signals are present, they diminish over time,
mix together, and become difficult to analyze. Therefore, these raw
data must undergo a series of preprocessing steps to prepare them for
examination in the frequency domain, where signals are separated
into distinct peaks. Domain transformation is just one unavoidable
preprocessing step among many.

In addition to domain transformation, preprocessing addresses
various other issues inherent in raw NMR data. The presence of
noise, baseline distortions, and other artifacts necessitates
preprocessing to ensure an accurate interpretation of the data.
Furthermore, for tasks such as peak-based molecule identification
and quantification, it becomes imperative to enhance peak resolution
and employ intelligent peak definition and deconvolution methods.
Moreover, to facilitate meaningful data comparison across spectra,
calibration, alignment, normalization, and transformation steps are
often indispensable.
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Figure 1
Ilustration of the process of generating a proton signal in NMR
spectroscopy
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Many commercial and open-source software tools are available
for NMR data preprocessing. Notable commercial software includes
TopSpin, ACD/Labs, Mnova, Chenomx, and iNMR (see the
Appendix). On the open-source front, there are options like
NMRbox, NMRPipe, AlpsNMR, NMRphasing, nmrrr, PepsNMR,
RnmrlD, speaq, nmrespy, dnpLab, Protomix, peakipy, ssnmr,
metabolabpy, nmrglue, spike-py, klassez, nmrpy, and pynmr (see
the Appendix).

While a plethora of software options are available, this review
article does not focus on delineating the functionalities of each tool.
Instead, our examination delves into the algorithms employed for
common NMR preprocessing steps.

To conduct this review, pertinent literature was identified using
targeted keywords such as “NMR,” “preprocess” or “pre-process,”
and the names of specific preprocessing steps. Searches were
executed across databases including PubMed, IEEE, Google Scholar,
Copilot, and other relevant platforms, with screening methods
involving the assessment of titles, abstracts, and full-text articles.

We categorize preprocessing steps based on common practice,
starting with the time domain, where NMR raw data originate, and
then proceeding to the frequency domain, where NMR data analysis
is conducted on. Within each domain, we arrange the steps by their
typical order of application, providing a structured framework for
analysis.

2. NMR Preprocessing Steps in the Time Domain

2.1. Direct current (DC) offset removal

The initial step in NMR data preprocessing involves converting
raw NMR time domain files, referred to as free induction decay (FID)
data, from a binary format to text. After reading in the FID, the first
issue we need to address is the removal of the direct current (DC)
offset, which is a constant voltage added to the NMR signal due
to various factors like instrument imperfections or interference.

In Figure 2(a), the signal, centered at zero with 10 cycles per
second (10 Hz), is converted from the time domain to the
frequency domain to distinguish signals (Figure 2(b)).

However, if a signal detector in an NMR spectrometer has a DC
voltage offset, it shifts the signal’s center away from zero in the time
domain plot (Figure 2(c)), causing an unexpected non-signal line on
the left in the frequency domain plot (Figure 2(d)). To tackle this,
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removing the DC offset in the time domain is necessary. Three
methods are available:

1) Last data point method: Subtract the last data point’s value from
all data points.

2) Tail points method: Average the last quarter, 20%, or 10% of data
points, and subtract this average from all data points (http://ano
rganik.uni-tuebingen.de/klaus/nmr/processing/index.php?p=dco
ffset/dcoffset). This method is generally more reliable than the
last point method [20].

3) Phase cycling method: Typically, only one detector is used to
detect NMR signals. However, an additional detector
positioned 180 degrees apart can be utilized. In this case, clean
signals without DC offset can be obtained by subtracting the
data of the additional detector from the original data. Note that
signal amplitudes are doubled by this method. In this context,
“phase” refers to the angular displacement of the NMR signal.
To illustrate, considering the signal in Figure 2(a), the extra
signal detector begins recording the same signal when it
reaches its first local minimum. While this idea may not be
applicable to most 1D NMR data due to the absence of extra
data, it is easily applied to MRI imaging sequences and
extended to other phase cycling angles [21].

The most reliable approach to handling DC offset is phase cycling
when an extra detector is available. In cases with sufficiently long
FID recording times, estimating DC offset using the tail points
can be considered. Unfortunately, no optimal solution exists for
handling DC offset in other situations.

2.2. Eddy current (EC) correction

Eddy currents (EC) are induced by the interaction of changing
magnetic fields with conductive elements in both the NMR sample
and machine [22]. These currents create their own magnetic fields,
which subsequently affect the designed magnetic field in the
NMR system. As a result, these currents lead to variations in
observed frequencies, fluctuations in signal amplitude, and phase
distortions in acquired NMR signals.

In Figure 3(a), the absence of EC results in a consistent cyclic
signal in the time domain (Figure 3(b)), producing a single
symmetric peak in the frequency domain (Figure 3(c)). The
presence of EC (Figure 3(d)) leads to irregular time domain signals
(Figure 3(e)) and multiple peaks, including negative ones, in the
frequency domain (Figure 3(f)), causing significant signal distortion.

To correct EC effects, we discuss two NMR methods and one
MRI method:

1) Phase correction with reference FID: Assuming that a reference-
only FID is available and has the exact settings as an experimental
FID without the reference, we can subtract the phase vector of the
reference FID from that of the experimental FID, resulting in an
EC-corrected phase vector. This corrected phase vector is then
used to reconstruct a new FID file. The term “reference” here
does not refer to a spike-in internal reference for signal
quantification; instead, it pertains to a solvent, like water. In
practice, utilizing a water-unsuppressed FID as a pseudo-
reference-only FID and a water-suppressed FID as our
experimental FID for EC correction is cost-effective because
we just need to run the same sample twice with two different
conditions, and water has significantly higher concentration,
allowing us to disregard metabolite [23].

2) Phase error correction with opposite induction directions:
Employing a two-step approach with positive and negative
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Figure 2
Effect of direct current (DC) voltage on a signal
(a) Signal without DC offset (time domain) (b) Signal without DC offset (frequency domain)
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(a) Time domain signal without DC offset.

(b) Frequency domain signal without DC offset.

(c) Time domain signal with DC offset.

(d) Frequency domain signal with DC offset, indicating a “glitch” (unexpected non-signal line)

Figure 3
Illustration depicting the eddy current effect in time and frequency domains
(a) Magnetic induction without EC (b) Signal without EC (time domain) Signal without EC (frequency domain)
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(a) Magnetic induction without eddy currents.

(b) NMR signal without eddy currents (time domain).

(c) NMR signal without eddy currents (frequency domain).

(d) Magnetic induction affected by eddy currents.

(e) NMR signal with eddy currents (time domain). (f) NMR signal with eddy currents (frequency domain)
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magnetic inductions effectively eliminates EC-induced phase
errors, resulting in mitigated and even phase corrections [23,
24]. This is better than “Phase correction with reference FID”
especially when a pseudo-reference-only FID is used.

3) EC-induced magnetic model: This model, more applicable to
MRI, establishes the relationship between the EC-induced
magnetic field and spatial coordinates. An iterative optimization
process, facilitated by specialized software such as “eddy”
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy), determines model
parameters to correct MRI data for EC effects. While low-order
polynomials (up to the second order) are commonly used to
model and correct EC-induced distortions, higher-order models
(quadratic and cubic) might also find applications [23, 25-28].

While EC correction is recommended, it may not be applicable when
additional data is unavailable. In such cases, alternative options can
be employed to partially mitigate EC effects in the subsequent steps,
including domain transformation, phase error correction, solvent
filtering, and chemical shift calibration.

2.3. FID shift and linear prediction

The beginning of the FID sequence is particularly prone to
distortion due to sudden radiofrequency shifts compared to the
rest of the data. To mitigate this distortion, we may implement
left shifts, moving points before time 0 beyond the FID, a
method suitable for fully recorded FIDs with minor
adjustments. Conversely, right shifts intentionally delay the
FID [29], which effectively addresses significant distortions at
the sequence start.

Whether using left or right shifts, data gaps inevitably occur. To
address these gaps, linear prediction (LP) methods are employed to
recover lost FID data caused by shifts. Backward LP focuses on
data missing at the sequence start due to right shifts [29], while
forward LP extends or fills missing segments at the sequence tail
due to left shifts.

Furthermore, concern the LP formulas [30]:

Ey=> F  CuFuim+ & (1)

F, = Zi«:l ConFrem + € ()

Here, m represents the base point index, P is the total number of base
points, F, is the predicted point, F,,,, and F,_,, are the base points
used for backward (1) and forward (2) LP, respectively, C,, stands for
the coefficient of a base point, and ¢, is the random error associated
with the predicted point. The prediction process involves an iterative
optimization utilizing a loss function, such as squared differences
between F, and >F | C,,F, ..

Careful attention is necessary for FID shifts and backward LP
due to potential data distortion [31]. A small left shift is generally
safer than a larger right shift, and a forward LP is considered safer
than a backward LP.

2.4. Weighting

Weighting involves multiplying the FID by nonlinear functions
like exponential, Gaussian, half-Gaussian, or sine bell functions, to
enhance sensitivity or resolution [32], commonly used in modern
methodologies [10, 33-38]. However, not all weighting functions
are appropriate for molecule quantitation [29].
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Figure 4(a) and (b) illustrates a simulated FID in the time and
frequency domains. Employing a decreasing exponential decay as a
weighting function notably attenuates the FID’s tail while preserving
its initial segment, as demonstrated in Figure 4(c). This enhances the
signal-to-noise ratio (SNR) but may potentially broaden peaks and
cause overlap in the frequency domain [17, 39]. When this
process reduces the tail values to zero, it is also referred to as
apodization [39]. Apodization can enhance visualization but is
cautioned against when preparing data for spectral analysis.
Applying apodization before such analysis may compromise the
statistical assumptions tied to the fitting model [27].

Conversely, using an increasing exponential function enhances
FID resolution (Figure 4(e)), resulting in a narrow peak in the
frequency domain (Figure 4(f)). However, it amplifies noise in the
FID tail, reducing SNR and potentially causing asymmetric
peaks [40].

Utilizing weighting functions involves a delicate balance
between sensitivity and resolution, where enhancement in one
aspect may come at the expense of the other and could potentially
introduce distortions, complicating data recovery. Applying these
functions without a comprehensive understanding of the data or a
specific sensitivity/resolution goal requires caution. Furthermore,
maintaining consistent application of these functions throughout
an experiment is vital to ensure comparability of the data.

Alternatively, for enhancing SNR without sacrificing
resolution, employing  singular-value  decomposition-based
approaches, such as Cadzow and principal component analysis
(PCA), alongside a new wavelet transform routine, proves
effective in efficiently enhancing SNR and robustly denoising 1D
and 2D NMR spectra [41]. However, these methods should be
applied after molecule identification and quantification, as they
could potentially distort quantification results.

2.5. Zero filling

Zero filling involves adding zeros to the end of an FID, creating
the illusion of higher digital resolution [20, 27]. For instance,
doubling the spectral length and improving digital resolution are
achieved by appending zeros equal to the number of experimental
points, while additional zero filling aids in data interpretation
through interpolation [29]. However, it’s crucial to note that zero
filling does not contribute to real signal data and may increase
noise due to the introduction of zeros.

When employing zero filling, maintaining near-zero endpoints
in the FID is crucial. Figure 5(a) and (b) illustrates a simulated FID
in both time and frequency domains. In Figure 5(c), utilizing only
half of the signal points from Figure 5(a), while preserving near-
zero endpoints produces a frequency domain (Figure 5(d))
resembling the original peak (Figure 5(b)). Failure can lead to
distorted peaks (Figure 5(e) and (f)). Techniques like forward LP
and apodization decay functions [20] may aid in such scenarios,
but their effectiveness varies.

Zero filling is generally safer with ample data and near-zero
endpoints, but it’s less beneficial with very few data points
(Figure 5(e) and (f)). Prioritizing extended recording over zero
filling is advisable. Consistency in zero filling across all FIDs
within an experiment ensures data comparability without
exception. Essentially, zero filling merely interpolates points in
the frequency domain data without adding new information.
Therefore, relying solely on zero filling is insufficient; extending
signal recording time is vital.
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Figure 4
Illustration depicting the effect of weighting functions. Only the real part is shown
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(a) Time domain plot of a simulated FID with a single peak.
(b) Frequency domain plot corresponding to (a).
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(c) Time domain plot of A times an exponential decay (e =250~ 1/N). Here,  is index of a given point, and N is the total number of data points in FID.

(d) Frequency domain plot corresponding to (c).
(e) Time domain plot of A times an exponential growth (e250—1/N),
(f) Frequency domain plot corresponding to (e)

2.6. Domain transformation

Domain transformation is pivotal in converting FID time
domain data into the frequency domain. The primary method
used for this transformation is the discrete Fourier transform,
which mathematically produces the frequency content of discrete
signals through the following formula (3):

N-1
n=0

—2nikn/N

X = xpe (3)
Here’s a breakdown of the formula components:

1) x; represents the kth complex number in the frequency domain.
2) x, represents the nth complex number in the time domain.

3) N is the total number of data points in the sequence.

4) k is the frequency bin index, ranging from 0 to N-1.

This transformation allows FID signals to manifest as single peaks in
the resulting spectrum [39].

There are several alternative methods for domain transformations.
The linear model, although good for complementing the Fourier
transform, is generally less accurate for independently analyzing

multiple signal FIDs [42]. Bayesian methods rely on prior
distributions [43, 44]. The wavelet transform is adept at handling
uneven frequencies [45].

In standard scenarios without EC issues, the Fourier
transformation is recommended for its reliability. However,
when addressing EC-induced frequency alterations, the
wavelet transform is preferable as it doesn’t require additional
data [46]. Post-wavelet transformation, it’s important to note
that the symmetry of frequency domain peaks might not be
perfect, risking information loss if forcibly shaped into
predetermined forms.

3. NMR Preprocessing Steps in the Frequency
Domain

3.1. Phase error correction

Raw NMR signals in the time domain are complex numbers
representing the nuclei’s energy changes along two orthogonal
directions. After being transformed into the frequency domain,
they remain complex numbers, with the real part referred to as
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Figure 5
Illustration of the impact on ending value, zero filling, and signal percentage. Only real part is shown
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(a) Original signal in the time domain.

(b) Frequency domain plot of the original signal.

(c) Half signal + half zeros in the time domain.

(d) Frequency domain plot of the half signal + half zeros.
(e) 5% signal + 95% zeros in the time domain.

(f) Frequency domain plot of the 5% signal + 95% zeros

absorption and the imaginary part as dispersion. Figure 6(a)
shows a simulated absorption spectrum with three sharp and
concentrated peaks. Correspondingly, Figure 6(b) displays the
simulated dispersion spectrum. The phase, calculated as
Phase = tan™! %, indicates the relationship between absorp-
tion and dispersion. Its corresponding plot is shown in Figure 6(c).
Figure 6(a)—(c) represents ideal signals with no phase errors; thus,
Figure 6(d) shows a phase error plot with all values at 0.

However, NMR data always contain phase errors, which can
significantly alter the absorption, dispersion, phase, and phase
error plots, as illustrated in Figure 6(e)—(h). Consequently, a naive
data analysis based on peak locations and areas under curves in
the absorption plot (Figure 6(e)), without considering phase errors,
is unreliable because the apparent peaks differ from true peaks
without phase errors (Figure 6(a)). Therefore, phase error
correction must be performed before any data analysis.

Real signal components are shown in a and e, while imaginary
signal components are shown in b and f. Phase plots are located
in ¢ and g, while phase error plots can be found in d and h.
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Unfortunately, phase error correction is one of the most
challenging preprocessing steps in the frequency domain. Current
NMR phase error correction approaches mainly rely on a simple
linear model applied to the entire spectrum [17]. This model searches
for the intercept (zero-order parameter) and slope (first-order
parameter) through an optimization process. Different algorithms
employ various optimization functions [27, 47-62]. However, this
simple linear model approach cannot effectively handle nonlinear
phase errors such as shown in Figure 6(h). Recent research continues
to rely on manual phase error correction [27, 29, 36, 38, 63, 64].
Unfortunately, manual phase error correction heavily depends on
individual experience, leading to inconsistencies and a lack of inter-
user reliability.

To address nonlinear phase errors, researchers incorporated
nonlinear terms into a linear model, surpassing the performance of a
simple linear model [47, 52, 65, 66]. In contrast to standard
simultaneous parameter correction, Jaroszewicz et al. [66] proposed
an iterative order-by-order search for a linear model extended with
quadratic terms. This involves optimizing the first-order parameter,
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Figure 6
Illustration of NMR phase errors
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Note: A frequency domain data example of three signals without phase error (a)—(d) and with errors (e)—(h). Real signal components are shown in
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followed by the zeroth order, and concluding with the second order in
each iteration. The phase range progressively narrows between
iterations. The method continues until reaching the maximum
iteration limit or observing no significant changes, aligning with
other optimization strategies. The authors stress the automatic nature
of the approach, requiring no prior knowledge. However, this
approach identifies phase values that maximize absorption and
minimize dispersion, respectively, and so it might overlook solutions
where both objectives are optimized simultaneously.

In addressing all types of phase errors, whether constant, linear, or
nonlinear, we have recently developed a new R package,
“NMRphasing”  (https://cran.r-project.org/web/packages/NMRphasi
ng/). One algorithm in “NMRphasing” starts with phase error-free
data, such as magnitude and power spectra, which theoretically
should not contain any phase errors. Subsequently, the algorithm
derives the phase error-free absorption spectrum, as illustrated in
Figure 6(a). Alternatively, we propose multiple linear models to
correct phase errors in different peak ranges. In addition, we
introduced a novel optimization function aimed at minimizing the
disparity between the absolute area under a curve and the net area
under the same curve. This approach seeks to maximize absorption
through net area while simultaneously minimizing dispersion via
absolute area. A smaller absolute area of absorption implies less
contamination of dispersion within the observed absorption,
consequently reducing the net area of dispersion. This is desirable, as
ideal dispersion should ideally exhibit zero net area.

Spatially varying phase errors can be effectively corrected using
adaptive phase correction (APC) in MRI. Unlike traditional phase
correction processes relying on regularization, APC utilizes MRI
noise information for complex-valued image regularization,
addressing noise bias and improving accuracy in diffusion MRI,
especially in regions with diverse noise characteristics. The method
involves applying a regularization operator and adjusting the phase
based on noise variance estimates, resulting in a final image that
accommodates noise characteristics in different regions [67].
However, phase-corrected images from this approach still contain
phase errors and negative intensities. It is recommended to

manually inspect these images and ensure their compatibility with
subsequent processing steps.

3.2. Baseline correction

Baseline distortion refers to a non-flat and nonzero baseline,
primarily caused by uncorrected DC (direct current) offsets and
phase errors. Baseline correction involves estimating the baseline
bias and subtracting it from the spectrum data. Various algorithms
exist for estimating baseline bias; here are some examples:

1) Iterative polynomial fitting [10, 14, 17, 63, 64, 68]

2) Robust estimation procedure [14, 68]

3) Locally weighted scatter plot smoothing [14]

4) Asymmetric least squares regression with penalized least square
approach [14, 68]

5) B-spline fixed or mixed model with or without penalization [14, 27]

6) Continuous wavelet transform [69]

Baseline bias estimation in all these algorithms is based on regions
without signals [17]. Of course, it might be challenging to distinguish
noise and signal regions when no prior information about signal
locations is available. One method is to classify individual points
as either signal or noise points and subsequently employ linear
interpolation between noise points to establish the baseline. After
the baseline is constructed, it is subtracted from the corresponding
spectrum. Most baseline correction methods are automated,
although semiautomatic or manual baseline correction methods
also exist [29, 70-73].

Regardless of the baseline correction method used, it is essential
to be aware that baseline correction itself can introduce distortion and
bias to the data, as it is intertwined with noise modeling [29].

3.3. Solvent filtering
As mentioned in Section 2.2 on EC correction, solvent filtering

becomes a viable alternative when EC correction is not possible due
to the unavailability of additional data, as intense solvent peaks often
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Figure 7
A partial segment of a real-world absorption spectrum illustrating the distorted water peak around 4.7-5.0 ppm in a urine sample
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capture most of the effects of EC, excluding the solvent signal range
in the frequency domain and minimizing the impact of EC [23].

When the solvent is water, as depicted in Figure 7 around
4.7-5.0 ppm, the common practice is to run samples with water
suppressed [74, 75].

If samples are run without solvent suppression and EC effects
persist uncorrected in the time domain, and if phase error correction
fails to rectify the distortion, solvent peaks can become severely
distorted. To address this issue, common methods for solvent
filtering include the following:

1) Subtract a solvent-only FID from the experimental FID of the
sample and transforming the solvent-filtered FID into the
frequency domain.

2) Create a pseudo-solvent-only FID by isolating data within the
solvent peak range from the frequency spectrum, setting other
data points to zero, and transforming it into the time domain.
Subsequently, subtract this pseudo-solvent-only FID from the
experimental FID of the sample and transform the resulting
data into the frequency domain.

3) Use specialized filters targeting the solvent’s frequency range to
eliminate the solvent signal [23].

4) Integrate solvent peak removal with baseline correction in the
frequency domain [23].

5) Zero out data points within the solvent peak range or set them to
baseline values to effectively remove the solvent peaks
[70-72, 76, 77].

6) Employ wavelet transformation to remove the solvent signal [78].

However, it is important to note that filtering solvent peaks may also
inadvertently remove some true signals from their neighboring
components.

3.4. Calibration and alignment
To ensure comparability of NMR spectra across different

spectrometers, frequencies are expressed in parts per million
(ppm) using the ratio of a signal’s frequency to the spectrometer’s

08

ppm

frequency. Calibration, also known as global alignment, sets the
internal reference signal’s ppm to zero by shifting the entire
spectrum [17, 63, 70, 72, 79]. On the other hand, (local)
alignment is to adjust each peak across a group of spectra to the
same ppm position [17, 68].

The following are example methods for alignment:

1) Fast Fourier transform cross-correlation [68, 80]

2) Correlation optimized warping [68, 81]

3) Peak alignment by beam search [82]

4) Fuzzy warping [83]

5) Hierarchical cluster-based peak alignment [82]

6) Local window peak alignment [68]

7) Selection of reference spectrum [68]

8) Recursive segment-wise peak alignment [68]

9) Spectral alignment via wavelet transform and clustering [69, 77]

More alignment methods can be found in the alignment review
article [82].

Regardless of the method chosen, during the alignment process,
the distance between two neighboring peaks might be increased or
decreased.

Figure 8 shows the effect of alignment. While alignment ensures
that the same peaks are matched across different spectra, improving
visual consistency, it can also alter the distances between peaks
within a single spectrum. This is evident in peaks within sample 2
and sample 3, where the intra-sample peak distances have changed.

The decrease in intra-sample peak distance could affect peak areas
and quantification [14]. Therefore, it has been suggested that
quantification should be processed on unaligned spectra to avoid this
potential issue [14]. Also, calibration can be applied without
alignment; however, alignment should not be applied before calibration.

3.5. Reference deconvolution

In reference deconvolution, the internal reference signal undergoes
a transformation into a Lorentzian line, defining an ideal peak shape.
This process then extends to all signals, eliminating lineshape
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Figure 8
Illustration of alignment in NMR spectra
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spectrum in a urine sample

distortion across the spectrum. FIDDLE (Free Induction Decay
Deconvolution for Lineshape Enhancement), a widely used reference
deconvolution method [29, 84-86], begins with the generation of a
pseudo-reference-only spectrum. The spectrum is then transformed
into the time domain to obtain the reference-only FID. Through
simulation, this FID is deconvolved to achieve an ideal FID with a
Lorentzian lineshape. Adjustments using this ideal FID are made to
the full FID, resulting in a corrected whole FID, which is then
finalized by transforming it back into the frequency domain.

For 2D NMR data, a combined approach integrates reference
deconvolution with peak alignment using a “reference spectrum”
(also known as the “average spectrum”) derived from PCA [87].
The calculation of the first principal component (PC1) for each
peak represents it in the “average spectrum,” aligning peaks
across spectra with matching phase values to those in the PCl
“average spectrum.” Despite not requiring a Lorentzian lineshape,
the PCA-based method’s alignment process may lead to
discontinuous baselines and distorted overlapping peaks [88].
Some researchers adopt a hybrid approach, integrating FIDDLE
and PCA, by replacing FIDDLE’s lineshape with the average
lineshape from PCA. While effective for groups of spectra in 2D
NMR, this method assumes aligned peaks share the same shape
and location, making it particularly suitable for DOSY (diffusion-
ordered spectroscopy) data but not universally applicable.

Reference deconvolution primarily addresses lineshape
distortion from phase errors [88], not corrected in the phase error
correction step. Given the strong assumptions inherent in all
reference methods, caution is advised against the indiscriminate
application of reference deconvolution.

3.6. Binning, peak picking, and intelligent binning

Binning, or bucketing, divides a spectrum into fixed-width
ranges [70, 76], while peak picking, also known as intelligent
binning, identifies peaks [70, 89].

Fixed-width binning might cause signals to be split or
combined, resulting in nonmeaningful bin summary data [14]. It
also struggles with overlapping peaks, and comparability is
hindered by alignment issues [39, 68].

Intelligent binning, employing artificial intelligence (Al)
approaches, overcomes these challenges, generating more
meaningful divided ranges [68, 89, 90]. Techniques such as
wavelet transformations, dynamic algorithms, and Gaussian or
exponential functions are used to detect peak edges [14, 69, 91]. Al
binning allows small ppm adjustments across spectra and can be
applied to each bin after fixed binning when complex computations
are involved [69, 92].

Challenges in Al binning include peak screening, necessitating
threshold definition considering factors like signal-to-noise ratio and
variance. Prior knowledge and manual intervention may also be
necessary for effective peak screening [90].

NMRNet, a deep learning approach for automated peak
picking [93], identifies peaks by locating points with higher
intensity in the spectrum, excluding those below the noise level.
The key challenge is distinguishing true peaks from noise,
treated as a binary classification problem. NMRNet addresses
this by inputting retained peaks into a convolutional neural
network, calculating probabilities for their significance. The final
step refines the peak list through rule-based filtering. This
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process involves normalizing resolution and intensity, aiding peak
identification. However, normalized data isn’t directly usable for
quantification.

Another novel algorithm, DEEP Picker, focuses on peak
picking and extends its functionality to include deconvolution.
Developed by Li et al. [89], DEEP Picker utilizes a deep neural
network-based approach, employing a sliding window and stacked
convolutional layers for point-by-point spectrum prediction. The
algorithm classifies each spectrum point into three categories
(Class 2 peaks, Class 1 peaks, and Class 0 non-peaks) using a
neural network architecture that includes seven 1D convolutional
layers, a max-pooling layer, and a SoftMax activation function for
classification. However, similar to other peak picking and
intelligent binning methods, the determination of low peak
amplitude cutoffs, which could vary from protein to protein and
from sample to sample for the same protein, relies on prior
knowledge [89].

There is no doubt that peak picking and intelligent binning are
much better than fixed-width binning, and while their existing
methods show promise and can be automated, human inspection
is necessary to train more accurate models and allow room for the
development of new methods in the future. Additionally, if the
peak picking process involves normalization, these normalized
data should not be used for further analysis especially quantification.

3.7. Peak fitting/deconvolution and compound
identification

In this step, our aim is to identify molecules from data signals or
“peaks” using peak fitting and deconvolution. Peak fitting precisely
defines peak characteristics, while deconvolution untangles
overlapping peaks, separating different molecule contributions.
Figure 9 illustrates the challenging preprocessing step of
deconvolution, which involves optimization using specific loss
functions, such as the sum of squared differences [90].

Multiple deconvolution methods have been presented in recent
years, including the following examples:

1) Inthe DEEP pipeline by Li et al. [94], a single convolutional layer
with a linear activation function is employed to forecast peak
characteristics, including position, amplitude, width, and the
Lorentzian fraction of the peak shape.

2) Hackl et al. [71] created a user-friendly R package for fully
automated deconvolution of overlapping signals using
Lorentzian lineshapes. The process involves constructing
individual Lorentz curves for each signal, requiring a peak
selection procedure and parameter approximation method. The
integral of the Lorentz curve is ultimately used as the area
under the curve for singlets or multiplets.

3) Prostko et al. [60] developed a customized and automated
deconvolution method for ssNMR mixture spectra, employing
linear combination modeling by integrating reference spectra
of pure solid-state components.

4) Schmid et al. [95] presented a robust deep learning-based
deconvolution algorithm for 1D experimental NMR spectra,
leveraging a neural network trained on synthetic spectra with
customized preprocessing and labeling for accurate estimation
of critical peak parameters.

The compound identification usually relies on libraries like the Human
Metabolome Database and Biological Magnetic Resonance Data
Bank. Lefort et al. [77] developed the R package ASICS, which
includes a metabolite library comprising 190 spectra. The
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Figure 9
An example of a partial simulated 1D NMR spectrum (in black)
and its three deconvolution peaks (color-coded)
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identification of metabolites is accomplished by fitting a mixture
model to the library spectra, employing a sparse penalty, and
quantifying the concentration of metabolites in a complex spectrum.
Wang et al. [96] developed NMRQNet, which aims to establish a
deep learning-based pipeline for the automatic identification and
quantification of predominant metabolite candidates in human
plasma samples.

Challenges arise due to potential data-library incompatibility
from different sources or handling methods. We must remain
vigilant about these issues during compound identification
[10, 97].

3.8. Integration and quantification

In the integration and quantification process, we employ
summation within specific ranges, facilitating the quantification
process. This involves determining the concentration of each
molecule in the sample based on the area under the curve of the
peaks [64].

Integration of signals is conceptually straightforward with raw
intensities, although some researchers prefer to integrate absolute
intensities [71]. The challenge lies in defining signal edges
intelligently, a task initiated in the peak picking and peak fitting/
deconvolution steps. A simple approach is to use a range of 24
times the signal width for integration, but caution is advised as
this may inadvertently include unintended signals [98]. A more
practical way is to set the integration range to be at least twice the
full width at half maximum. However, using a too-narrow range
may lead to challenges like overlapping peaks. Therefore, it is
advisable to restrict integration to datasets featuring sparse, well-
phased peaks and devoid of baseline or macromolecule
interference [27].

Quantification relies on factors such as the area of a signal, the
number of nuclei in the signal, the area of a reference signal, the
number of nuclei in the reference, and notably, the reference’s
concentration in the specimen. In the absence of an internal
reference concentration, alternative methods include external
references or electronic references [98]. While internal references
generally offer more accurate concentration estimations, care
should be taken if they interact with other signals [91]. In cases
where area determination is challenging, such as in 13C NMR
spectra, height may be used instead.
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When multiple signals contribute to the concentration
estimation of a compound, the choice is between selecting the
most stable and isolated peak or calculating the mean value from
multiple signals. In instances of multiple technical replicates,
concentration estimation should be based on the mean value
across these spectra [64].

Although quantification is typically based on a reference signal,
for comparative analysis, Canlet et al. [63] employed additional
methods in the metabolite quantification process. These methods
included determining concentrations from peak areas using a
regression model, a calibration curve, calibration-range solutions,
and a sum of Voigt pseudo-function shapes fitted through a
combination of Gaussian and Lorentzian functions with
optimization. Other researchers may also use peak fitting for
quantification [29, 87, 88].

While these fit lines contain fewer or no random errors, they
might deviate from observed spectrum data [34], leading to
inaccurate peak areas and compound concentrations. Additionally,
if the research goal is to identify significantly different peaks
between two groups of spectra, using “error-free” numbers can
potentially reduce or underestimate variance between groups and
increase the false positive rate.

3.9. Normalization and transformation

This step aims to make data comparable or suitable for the
assumptions needed in subsequent statistical analysis.

3.9.1. Normalization

Normalization is to make data comparable, which can be
classified into spectrum-wise and location-wise normalization and
can involve various approaches.

1) Spectrum-wise normalization

Spectrum-wise techniques, like dividing peak areas by total
spectrum area [74, 77, 90, 99], assume equal total signal
quantities, possibly impractical in diverse spectra. An alternative
is normalizing using an internal reference area [14, 76], adaptable
to binned NMR data.

Less common spectrum-wise techniques include distribution-
based strategies like quantile normalization [37, 100, 101],
histogram (matching) normalization [14], and spline normalization
to align data distributions. Quantile normalization orders and
transforms values across spectra to achieve uniform distributions.
Histogram normalization scales data based on minimum and
maximum values from a reference spectrum [102]. When a
reference spectrum is unavailable, the average or median spectrum
across a group of spectra can serve for histogram normalization.
Spline normalization fits quantiles from experimental and
reference spectra to a smooth cubic spline, which is then used to
generate normalized data for the experimental spectrum [101,
103]. Similarly, the cubic spline can be replaced by LOWESS
(locally weighted scatterplot smoothing) [104].

Among these techniques, reference-based normalization,
relying on a spike-in internal reference with a known
concentration, is widely regarded as the most robust choice.

2) Location-wise normalization

Location-wise normalization ensures the comparability of a
variable across different locations. While methods in this section
can be applied to spectrum-wise normalization (Section a), those
in Section a are generally not applicable here. The simplest
method is variable centering, which involves subtracting the mean

or median across spectra for the same location and adding a
constant [14].

Level scaling adjusts variables by dividing them by their mean
at the same location across spectra, promoting alignment and
facilitating comparative analysis [14, 17]. Unit variance scaling
(auto-scaling) standardizes variables by dividing each by its
standard deviation, ensuring all variables contribute equally to
analysis regardless of their initial scale. Vast scaling enhances
sensitivity to mean differences by multiplying unit variance-
scaled data by their coefficients of variation, highlighting
variations effectively [14, 105]. Pareto scaling mitigates the
impact of large variances while preserving data structure, making
it suitable for datasets with heterogeneous variance. Range
scaling adjusts variables based on their range, facilitating
comparisons across different scales by normalizing their values
relative to their spread [96].

Standardization, a traditional normalization method, involves
subtracting the mean and dividing by the standard deviation.
However, direct standardization is not applicable to NMR data
due to positivity concerns. A variation involves subtracting the
mean, adding a constant, and then dividing by the standard deviation.

Vignoli et al. [106] compiled a list of 23 state-of-the-art
normalization methods, recognizing the elusive consensus on
optimal normalization due to the contingent nature of method
choices based on available information and research goals.

The absence of consensus regarding the ideal normalization
method emphasizes the necessity for ongoing research and
evaluation in this field. Diverse methods may yield varying
interpretations regarding the data’s structure and variable significance
and impact results [105]. In current practice, it is essential to ensure
consistency by applying a specific normalization method consistently
throughout an entire experiment to maintain data comparability.
Additionally, regardless of the chosen normalization approach, there
is a risk of amplifying the noise range, potentially compromising the
integrity of the entire dataset if noise is misclassified as peaks during
the peak picking step. Lastly, it is crucial to note that location-wise
normalized data should not be utilized for quantification purposes, as
it obscures quantity differences among peaks.

3.9.2. Transformation

Transformation is applied to each variable in NMR data to align
the data with the assumptions required by a statistical method. The most
commonly used transformation is the log transformation, enhancing
normality and mitigating heteroscedasticity [14]. It’s important to
note that log transformation is unsuitable for nonpositive numbers,
and its nonlinear nature may lead to noise amplification. The G-log
transformation refers to a generalized log transformation or its
variants [107-109]. While high values are logarithmically
transformed similar to the regular log transformation, low values or
noise undergo specialized transformation to avoid noise amplification
issues. Implementing G-log requires prior knowledge of high- and
low-value thresholds [17, 90].

The Box-Cox transformation aims to find the optimal power
transformation for effective normalization, reducing non-normality
effects and eliminating heteroscedasticity [14, 110].

Regardless of the transformation method used, it is crucial to
note that while variable values can be transformed back to the
original scale, reverting variances and 95% confidence intervals to
the original scale poses challenges.

With the exception of internal reference-based area spectrum-
wise normalization, all other methods in Section 3.9 are tailored
for statistical analysis, not molecule quantification.
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4. Conclusion

In conclusion, this comprehensive review provides a detailed
exploration of NMR data preprocessing in both the time and
frequency domains. In the time domain, it carefully covers key
preprocessing steps, including DC offset removal through
methods like phase cycling, EC correction primarily addressing
phase errors, two directions of FID shift and LP, the impact of
weighting functions, zero-filling ratio, and choices in domain
transformation. Emphasizing the importance of each step for
reliable data analysis, the review discusses potential distortions
and provides guidelines for application.

Transitioning to the frequency domain, the article delves into the
intricacies of NMR data preprocessing, spotlighting critical steps.
Dealing with nonlinear phase errors can be challenging, but the
“NMRphasing” R package offers potential solutions. Baseline
correction methods and solvent filtering techniques are discussed with
attention to potential distortions. The review also covers alignment
methods and their impact on quantification. While reference
deconvolution aims to address lineshape distortion, the assumptions
behind it are often not practical. Additionally, the review discusses
binning strategies and emerging Al approaches, recognizing the need
for human intervention. Challenges in compound identification,
integration, quantification, and a comprehensive overview of
normalization and transformation techniques tailored for statistical
analysis are addressed, underscoring the careful selection of methods
to ensure accurate NMR data interpretation.

Among these preprocessing steps, nonlinear phase error
correction, peak picking, intelligent binning, and peak deconvolution
present notable challenges. While various methods exist, promising
avenues for improvement are offered by optimization processes,
particularly those aided by Al techniques and deep learning with
neural networks. However, adapting neural networks to NMR data
requires balancing complexity with practical application, which
poses a significant challenge similar to other deep learning
applications. Additionally, the size limitation of NMR datasets poses
a formidable obstacle to effectively training deep learning models.

Strategies to overcome this size limitation include aggregating
NMR spectra from various sources and implementing normalization
methods across datasets to create large, comparable training datasets.
However, as discussed earlier, normalized spectra cannot be used for
quantification, adding another layer of challenge compared to deep
learning in other fields such as natural language processing. A
potential solution is to apply a traceable normalization method
before deep learning on training datasets, maintaining consistency
with new spectra but reverting to non-normalized spectra after
intelligent binning and peak deconvolution.

Alternatively, incorporating various factors, such as source
differences, into deep learning models may enhance performance
and ease of application, albeit at the expense of increased complexity.

Ultimately, the pursuit of innovative approaches that strike a
balance between complexity and applicability will drive
advancements in NMR data preprocessing. These advancements
have the potential to not only improve the accuracy and reliability
of NMR data analysis but also facilitate broader utilization across
diverse research domains.

Looking ahead, an exciting future involves developing fully
automatic Al programs capable of generating comprehensive data,
including lists of components and quantities, immediately after
NMR analysis. Achieving this goal requires building a robust
training database from diverse samples and developing tailored
deep learning algorithms for NMR data. This approach aims to
simplify data analysis across scientific disciplines and enhance
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real-time clinical applications such as MRI and fMRI. By
focusing on practical usability, these advancements aim to support
researchers in various fields.
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APPENDIX

Websites for NMR data preprocessing software mentioned in the text

Software Website

TopSpin https://www.bruker.com/en/products-and-solutions/mr/nmr-software/topspin.html
ACD/Labs https://www.acdlabs.com/

Mnova https://mestrelab.com/software/mnova/

Chenomx https://www.chenomx.com/

iNMR https://www.inmr.net/

NMRbox https://nmrbox.nmrhub.org/

NMRPipe https://www.ibbr.umd.edu/nmrpipe/

AlpsNMR https://bioconductor.org/packages/release/bioc/html/AlpsNMR .html
NMRphasing https://cran.r-project.org/web/packages/NMRphasing/

nmrrr https://cran.r-project.org/web/packages/nmrrr/index.html

PepsNMR https://bioconductor.org/packages/release/bioc/html/PepsNMR.html
Rnmr1D https://cran.r-project.org/web/packages/Rnmr1D/index.html

speaq https://cran.r-project.org/web/packages/speaq/index.html

nmrespy https://pypi.org/project/nmrespy/

dnpLab https://pypi.org/project/dnplab/

Protomix https://pypi.org/project/Protomix/

peakipy https://pypi.org/project/peakipy/

ssnmr https://pypi.org/project/ssnmr/

metabolabpy https://pypi.org/project/metabolabpy/

nmrglue https://pypi.org/project/nmrglue/

spike-py https://pypi.org/project/spike-py/

klassez https://pypi.org/project/klassez/

nmrpy https://pypi.org/project/nmrpy/

pynmr https://pypi.org/project/pynmrt/
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