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Abstract: Relation classification is one of the important tasks in natural language processing, which aims to determine the relationship between
entities given a sentence and their respective positions. Most of the existing methods for relation classification are based on neural networks using
pre-trained models such as BERT. In recent years, models based on pre-trained models like BERT have achieved excellent results in relation
classification tasks in general domains. However, these methods often struggle when applied to specialized domains due to the limitations of
the corpora used for BERT pre-training. Most pre-trained models are trained on text corpora from general sources like Wikipedia, which
cover a wide range of domains. As a result, the content of these corpora in specific domains is limited and lacks the necessary expertise,
leading to subpar performance of relation classification models in specific domains. While providing a large number of domain-specific
corpora to pre-trained models could potentially address this issue, it comes with limitations such as increased computational requirements and
insufficient training of specialized vocabulary. This paper proposes a method inspired by the K-BERT pre-training model to incorporate triplet
knowledge from domain knowledge graphs into sentence sequences. The triplets are transformed into sentence trees and then fed into the
BERT pre-trained model using absolute and relative indices. Our model has achieved an accuracy of 93.06%, which is markedly higher than
that of any other baseline approach. This approach allows the incorporation of domain knowledge without significantly increasing the
computational complexity. Additionally, the paper introduces a partial input method that enables the computer to understand input sentences
from multiple dimensions and hierarchical levels. Experimental results on a medical domain dataset for relation classification, which includes

type labels, demonstrate significant advantages over other relation classification models in terms of Accuracy.

Keywords: domain knowledge graph, pre-trained model, relation classification

1. Introduction

Extracting entities from unstructured text, identifying relationships
between entities, and forming (e,, r, e,) triplets are fundamental prob-
lems in knowledge extraction and important steps in building a knowl-
edge graph. This task can be divided into two sub-problems: named
entity recognition [1, 2] and entity relation extraction models [3].
Among them, the main task of entity relation extraction is to identify
the semantic relationship between entity pairs.

During the construction of a general knowledge graph, existing
pre-trained models for entity relation extraction have become
relatively comprehensive and mature, achieving good results in most
general relation classification tasks. However, these models often
perform poorly in specific domains. This is because pre-trained
models based on BERT [4] are trained on large-scale publicly
available corpora to obtain general word embeddings, and they
acquire domain knowledge only through parameter fine-tuning in
specific downstream tasks. As a result, the models struggle to adapt
to specific domains, such as entity relation extraction tasks in
domains like healthcare and finance.
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In domain knowledge extraction tasks, pre-trained models such as
BERT, GPT [5], and XLNet [6] can only infer the meaning of
specialized terms based on the context of the input corpus data and
cannot directly incorporate domain knowledge into their
embeddings. To address this issue, existing research primarily relies
on training pre-trained models based on BERT using domain-
specific corpora to adapt them for specific domain entity relation
extraction tasks. For example, Lee et al. [7] pre-trained a BERT
model using a biomedical dataset and achieved excellent results in
downstream tasks in the biomedical domain. Similarly, Sci-BERT
[8] pre-trained on computer science and biomedical literature corpora
and demonstrated good performance in the respective downstream
domains. However, these pre-trained models require a substantial
number of domain-specific corpora, which are often scarce or
difficult to obtain publicly compared to general domain corpora.
Consequently, this training approach incurs high costs and may
result in lower accuracy.

In specialized domain pre-trained language models, the higher the
frequency and wider the distribution of specialized terms in the corpus,
the better the model’s recognition performance, as shown in Figure 1.
However, domain-specific corpora often exhibit characteristics such as
imbalanced distribution of specialized terms, making it challenging to
ensure the effectiveness of model training with limited domain corpora.
By introducing domain knowledge graphs as auxiliary information for
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entity classification, it becomes possible to accurately identify domain-
specific relationship features without relying solely on domain corpora,
as shown in Figure 2. Currently, representation learning for knowledge
graph embedding is mostly based on the combination of word2vec [9]
and transE [10], transforming relationships and entities in the
knowledge graph into vectors. On the other hand, BERT-based
embedding methods primarily construct vector spaces based on text.
Simply combining these two representation approaches does not
fully leverage their respective strengths. The main challenge lies in
the fact that incorporating a set of triplets into the input text may
weaken the semantic expression of the original input text. Therefore,
this paper introduces a mask matrix to constrain the attention
calculation for each token, avoiding semantic drift when integrating
the triplet set into the original text. Experimental results validate the
effectiveness of using the mask matrix. Furthermore, to address the
input mismatch issue, this paper combines the triplets from the
knowledge graph with the text and original input text, enabling them
to collectively participate in model training to obtain unified word
embedding vectors.

Figure 1
Pre-training models require the occurrence of a specialized
terminology multiple times in the text for effective learning
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Figure 2
Incorporating triples to assist the pre-training model in
understanding specialized terminology
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Currently, a significant amount of work has been done to structure
corpora and generate domain knowledge graphs, such as SNOMED-CT
[11] in the medical field. These domain graphs contain a large number
of specialized knowledge triplets that can be used for model training,
greatly improving the performance of models in specific domains
and reducing the computational cost of pre-training on large-scale
corpora. Additionally, the incorporation of manually verified triplet
knowledge enhances the interpretability of the trained models.

To enhance the training effectiveness of our model and emphasize
the entities in the text, we employ a multi-level, multidimensional
representation approach by separately inputting the text and entities
into the model during training. We construct a BiLSTM network
[12] and incorporate a fully connected layer, designing a model that
is more suitable for domain relation classification tasks. The
functions of each module are illustrated in Figure 3.
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Figure 3
Functions of each module
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Our contributions are as follows: (1) The method of step-by-step
input, combined with the introduction of entity type labels at the text
level, emphasizes and allows the model to understand domain-specific
terms from multiple dimensions. (2) We apply domain knowledge
graphs to entity relation extraction tasks and design an end-to-end
framework for entity relation extraction.

2. Related Work

2.1. Relation extraction

Various deep learning-based entity relation extraction models
have been proposed thus far. Prior to these methods based on deep
learning, most approaches were based on statistical machine
learning, where the performance heavily relied on the quality of
extracted text features. Text features were typically obtained using
existing natural language processing tools. However, this approach
often led to the problem of error propagation, as incorrect feature
extraction would limit the overall model performance. Zeng et al.
[13] introduced a model that does not require complex preprocessing
and obtains word-level features from given nouns. They used a
convolutional neural network to extract sentence-level features and
then concatenated the two to feedback them into a softmax layer for
predicting the relationship between two entities. Experimental results
demonstrated that this deep learning-based feature extraction method
outperformed the feature extraction based on existing natural
language processing tools. Socher et al. [14] addressed the problem
of models being unable to capture information composed of long
and short phrases, which hindered a deep understanding of textual
meaning. The authors introduced a recursive neural network [15]
model that could learn arbitrary syntactic types, lengths, and phrase
and sentence vector representations. This model assigned a matrix or
vector to each node in the parse tree, with the matrix capturing
changes in the meaning of nearby words and phrases, while the
vector captured the inherent meaning of the sentence composition.
This allowed the proposed matrix-vector RNN model to encode a
complete sentence representation from the bottom up based on the



Journal of Data Science and Intelligent Systems

Vol.

00 Iss.00 2024

tree structure. Experimental results demonstrated that this model
performed well on large and noisy datasets. Yu et al. [16] proposed
Factor-based Compositional Embedding Models, which construct
sentence-level and substructure word embeddings using dependency
trees and named entities, allowing for better handling of global
information in text. dos Santos et al. [17] introduced the CR-CNN
convolutional neural network model, which solves relation
classification tasks by ranking the loss function. Experimental results
demonstrated that this approach outperforms the CNN model
with a softmax layer. Shen and Huang [18] utilized a CNN encoder
combined with attention on target entities and words in the sentence
to weight the words, enabling better identification of the
most influential parts of the sentence for the two entities. Lee
et al. [19] argued that attention-based neural network models did not
fully leverage entity-related information, which could be crucial in
relation classification tasks. To address this issue, they proposed
an end-to-end recursive neural model that integrates entity-aware
attention mechanisms and entity types. This model effectively
utilizes entities and their potential types as features and also
constructs word representations based on the sentence’s symmetric
similarity using self-attention. Wu and He [20] were the first to
propose applying the pre-trained BERT model to relation extraction
tasks. They added independent markers to target entities, transmitted
information through the pre-trained architecture, and combined the
encodings corresponding to the two entities.

2.2. Joint entity and relation extraction

Joint entity and relation extraction refers to the task of extracting
both entities and their relationships from text simultaneously.
Traditionally, these tasks were treated as separate sequential steps,
where entity recognition was performed first, followed by relation
extraction. However, joint entity and relation extraction models
aim to tackle both tasks concurrently, leveraging the inherent
dependencies between entities and their relationships.

Miwa and Bansal [21] proposed a method for joint entity and
relation recognition, where the loss functions of entity recognition and
relation extraction tasks are backpropagated and updated
simultaneously. This approach reduces the problem of error
propagation in pipeline models and addresses the issue of disjointed
subtasks in relation extraction within pipeline models. Zheng et al.
[22] achieved joint entity and relation extraction by transforming the
tasks of named entity recognition and relation extraction into sequence
labeling tasks, using pattern labeling for joint decoding of entity
relations. However, this model cannot handle the issue of entity
overlap. Dai et al. [23] introduced a position-attention mechanism that
allows the model to generate different sentence representations for
each query position, effectively solving the problem of overlapping
relations. Shang et al. [24] generated candidate entities by enumerating
word token sequences and designed a linking matrix for each relation
to detect whether two candidate entities could form a triplet. They
transformed the triplet extraction task into a relation-specific bipartite
graph linking problem. Experimental results demonstrated that this
method performed well in complex scenarios with different
overlapping patterns.

2.3. Pre-training model

Since Google Inc. launched BERT in 2018, many endeavors have
been made for further optimization. Baidu-ERNIE [25] and RoBERTa-
wwm-ext [26] adopted a strategy of whole-word masking instead of the
traditional BERT’s single-character masking in their Chinese corpus

BERT pre-training. This strategy enables better capturing of
semantic information in Chinese vocabulary. SpanBERT [27], built
upon BERT, masks continuous random segments and introduces
segment boundary objectives. This method allows the model to learn
the relationships between different segments, leading to a better
understanding of sentence structure and semantics. RoOBERTa [28] is
an optimized model that further improves the pre-training process of
BERT. It incorporates three strategies: removing the next sentence
prediction task, dynamically changing the masking strategy, and
training with more and longer sentences. The combination of these
strategies allows RoBERTa to better capture contextual information
during pre-training. Regarding the encoder aspect of BERT, Yang
et al. [6] introduced Transformer-XL [29], which is more suitable for
handling long sentences, as a replacement for the Transformer in
BERT. This enhances the model’s ability to comprehend long texts.
THU-ERNIE modified the encoder of BERT and attempted to
incorporate knowledge graph information into entities, making it an
aggregator that integrates vocabulary and entities mutually.
However, it did not consider the relationship information between
entities. COMET [30] directly utilizes triples from the knowledge
graph as the training corpus for the GPT [5] model to facilitate
commonsense learning. However, this method is highly inefficient.

3. Methodology

3.1. Notation

The input consists of a sentence X = {x,%,,%3,...,%,}
composed of n  word tokens and all entities
5= {xSTART(i),xSTART(i) EET 7xE,\,D(,-)} along with their corresponding

entity types y,(s;) € &. Here, S = {s,5,,53,...,5,,} represents all pos-
sible contiguous spans in X with a length not exceeding L. START (i) and
END(i) indicate the starting and ending positions of s; respectively. €
denotes the predefined set of entity types, and R represents the predefined
set of relation types. Each word token x; is included in the vocabulary V.
The knowledge graph is denoted as K and consists of triples
e = {x;, 1, }, where x; and x; are entity names, and r; € V represents
the relation between entities. All triples exist in the knowledge graph K,
ie., ¢ € K. Given each entity pairs; € Sands; € S, the task is to predict
the relationship y, (si, sj) € R between the entity pairs. The output of the

task is Y, = {(s;,7,5,) : 5,5, € S,r € R}.

3.2. Model architecture

To make the model more suitable for the Chinese context, we
employed the RoBERTa-wwm-ext [26] pre-trained embeddings
when loading the pre-trained model. To enhance the model’s
attention to the crucial parts of the text, we input the text and two
entities separately into the model. The model can capture the
important part of the text and comprehend it from multiple
perspectives.

This paper proposes a method that incorporates domain
knowledge into pre-training, inspired by the idea of K-BERT [31].
The word embeddings are enriched with domain knowledge to
improve the accuracy of information extraction in specialized
domains. Following the approach of the PURE model, entity
position and type information labels are added. Each word in the
sentence is scanned and matched with entities in the domain
knowledge graph. The triples contained in the domain knowledge
graph are integrated into the input sentence in a tree structure and
unfolded into sequential inputs for the encoding layer. The model
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framework is illustrated in Figure 4. The symbol “@” denotes element-
wise addition, and “®” represents vector concatenation operation.

Figure 4
Model architecture
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3.3. Input layer

In order to independently handle each entity pair (s;,s;), it is
necessary to extract the entity positions and provide entity type infor-
mation. Therefore, the approach of inserting labels at the input layer
is chosen. Given the input sentence X and entities s; and s; with entity
types e; and e; respectively, the text labels are defined as < §: ¢; >,
</S:e;>, <O:¢ >, and < /O:¢ >, and they are inserted
before and after the two entities as shown in Figure 5. The inserted
input with labels denoted as X and is represented by

X:xl,...,<S:e,- >7xSTART(i)7"'7xEND(i)7</S:ei >,

< O:e]- >7xsTART(]')...7xEND(j)7< /O:ej >, X,

3.4. Knowledge layer

For the input sentence X, we first use a Chinese word segmenta-
tion tool enhanced with domain knowledge to tokenize the sentence,
improving the accuracy of domain-specific segmentation. After toke-
nization, we incorporate the triples ¢ from the domain knowledge
graph K into the original sentence X. This transforms X into a sentence
tree that contains domain knowledge, which is then fed into the
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Figure 5
Example of inserting label
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embedding layer to generate a mask matrix. The mask matrix is used
to control the selective attention mechanism of the word token
sequence, preventing the model from distorting the original meaning
of the sentence due to the injection of excessive knowledge.

Knowledge Integration serves two purposes: incorporating the
triple knowledge from the domain knowledge graph into
the sentence to enrich the domain information and unfolding
the sentence tree structure into a sequence for the subsequent
attention mechanism layer. Specifically, given the sentence
X = {x,%,,x3,...,x,} with indices sorted according to word tokens
and the domain knowledge graph K, after passing through the
knowledge integration layer, which includes knowledge querying
and knowledge injection steps, the output is the sentence
tree T = {x1,%, ..., %:{(Tio, Xi0)s -+, (Tt Xik) } - - X }-

In the knowledge querying step, all entity names involved in the
sentence X are queried against the domain knowledge graph K to
retrieve the corresponding triples. This can be represented by the for-

mula E = K_Query ()A(, ]K)

Next, in the knowledge injection step, the triples from E are con-
catenated at the corresponding positions of the sentence sequence X
to form the sentence tree T. The sentence tree can have multiple

branches, but entities within a branch will not further iterate to create
new branches, meaning the depth of the tree is 1. This can be repre-

sented by the formula T = K_Inject ()?,E)

The function of the embedding layer is to transform the tree-
structured sentence T into computationally understandable vectors
through embedding representations. Drawing inspiration from the
BERT model, the sentence tree T is embedded as a sum of text
embeddings, position embeddings, and segment embeddings. In
the BERT model, the input is a sequence of word tokens rather than
a sentence tree. Therefore, the key challenge lies in how to convert
the sentence tree T into the required sequence structure for word
embeddings without losing the tree structure information.

In the text embedding part, the RoOBERTa-wwm-ext pre-trained
model, which is more suitable for Chinese classification tasks, is
employed to generate word embedding vectors. Each word token
in the sentence tree is transformed into a trainable embedding
vector of dimension H. Similar to BERT, the [CLS] token is added
at the beginning of the input sentence to represent the classification
task, and the [MASK] token is used to mask word tokens. To convert
the tree structure into the sequence structure required by the attention
layer, the K-BERT approach is applied here. Each word token is
assigned an absolute index and a relative index. The absolute index
performs a depth-first traversal of the sentence tree starting from the
root node [CLS] (indexed as x,) to convert it into a sequence. The
relative index represents the distance of each word token node from
the root node [CLS]. The specific process is illustrated in Figure 6.
By sorting the sentence tree based on the absolute index, the tree
structure of the sentence is transformed into a sequential structure.
However, this transformation also poses a challenge of unreadable
sentences, which will be addressed in the position embedding layer.
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Figure 6
Absolute and relative index
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In the position embedding part, the attention mechanism does not
capture the structural order information of the text sequence. For the
BERT model, all the positional structural information of the sentence
is encoded in the position embeddings. In the sentence sequence, the
absolute indices “flatten” the sentence tree, making it unreadable.
However, the relative indices retain the structural information of the
tree. Therefore, the information of the relative indices is inputted to
the position embedding layer, achieving the goal of preserving the
sentence tree structure while inputting the sentence sequence. The
embedding vectors are consistent with the Transformer model, and
the specific calculation methods are shown in Formulas (1) and (2),

index
PE (index 2i) = m<10000%> (1)
index
PE(index.2i+1) = Cos 10000% (2)

where PE represents the position embedding vector, index corresponds
to the relative index of the word token, i denotes the i-th dimension of
the vector, and H represents the total dimensionality of the vectors.
This encoding method effectively captures the relative distances
between word tokens, preserving the structural information of the
input sentence while avoiding limitations imposed by sentence length.
The segment embedding part is the same as in BERT, aiming
to enable the model to recognize multiple input sentences. For
example, given two sentences X = {xj,x;,%3,...,%,} and
Y = {91, ¥3,---sVn}, @ [SEP] label is added as a separator
in the input layer, resulting in a sequence
{[CLS], x1,%5,%3, -, %, [SEP], ¥1,¥2,¥3,---» ¥u}- To differentiate
between different input sequences, the segment embedding for sentence
X is defined as A, and for sentence Y as B. Therefore, the segment embed-
ding sequence becomes {A, A, A, A,...,A,B,B,B,B,...,B}.
Incorporating domain knowledge into the input of the relation
extraction task undoubtedly helps the model’s understanding.
However, it also introduces the problem of knowledge noise.
When too much domain knowledge is injected into a sentence, it
may dilute the focus of the original sentence or even distort its
intended meaning. To alleviate this issue, a mask matrix is
introduced in the attention mechanism to prevent the excessive
influence of the added triplet tokens on the original sentence’s
meaning. Without this mitigation, the sentence may suffer from
issues such as cluttered knowledge information, diluted emphasis,
and distorted original meaning. To prevent such situations, we
generate a mask matrix M from the sentence tree T, which ensures
that the words in branch positions do not undergo attention

calculations with other words in the main trunk positions. The mask
matrix M is defined as shown in Formula (3),

[0 X © X;

where the symbol © represents word tokens within the same branch,
and © denotes word tokens that are not in the same branch. The indi-
ces i and j refer to the absolute index positions.

The attention mechanism incorporates a mask matrix into the
self-attention part of the Transformer model [32]. The specific
formula is shown as (4), (5) and (6),

QH»I’ I<i+17 Vi+1 — hthP hiWk, hiWV, (4)

) i+l git1" L p
Sitl — softmax <Q\/ﬁ+) , (5)
hH»l — Si+l Vi+l (6)

where W,, W and Wy represent trainable model parameters, K
denotes the hidden layer of the i-th masked self-attention module,
H represents the dimensionality of the embedding vectors, and M
represents the mask matrix. From the formulas, it can be visually
observed that when calculating the word tokens x; and x; situated
in different branches, M;; = —oo. After applying the softmax func-
tion, Sfj“ becomes 0. This implies that the hidden state of x; has no
influence on x;, reducing the risk of distorting the original sentence
meaning due to excessive injection of knowledge.

By employing the attention mechanism, along with the BILSTM
network, we enhance the contextual modeling of the sentences. The
output is denoted as T = {ti, b, t3,..., t,} € R™H where H repre-
sents the dimensionality of the embedding vectors.

3.5. Decoder layer

After the encoding layer, the output goes through fully
connected and activation layers before being passed through a
softmax layer for relationship classification. The specific formula
is shown as (7),

T = W (tanh(7)) + b @)

where W € RE*H | b is the bias vector, and L is the number of rela-
tionship types. To decode the input sentences in a multidimensional
and hierarchical manner, we propose a partial input approach. We
extract the two entities separately from the sentence and feed them
back into the model, resulting in T} and T,. The outputs of the three
inputs are concatenated and passed through a softmax layer to obtain
the final output. The specific formula is shown as (8),

p = softmax([T' : Ty : T5]) (8)

4. Experiments

4.1. Dataset and evaluation metric

The pre-training corpus used in this study consists of the Chinese
Wikipedia corpus, WikiZh, and a large-scale, high-quality Chinese
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question and answer (Q&A) corpus, WebtextZh. WikiZh has a size
of 1.2 GB and includes one million well-formatted Chinese articles
and 120 million sentences, which are used for pre-training the
Chinese BERT model. WebtextZh, with a size of 3.7 GB,
comprises 4.1 million articles covering 28,000 topics. For
injecting knowledge, we utilized the domain knowledge graph
called MedicalKG [31] specifically designed for the domain of
Traditional Chinese Medicine. MedicalKG consists of four
types of hypernyms (symptoms, diseases, parts, treatments)
and contains a total of 13,864 triplets. These triplets were
used for both word segmentation and knowledge incorporation
purposes.

The dataset used in this study is a medical domain relation
classification dataset, with text content sourced from Baidu
encyclopedia. It consists of 5,500 sentences, encompassing 13
different relationship types, namely clinical symptoms, related
diseases, applicable symptoms, causes of diseases, commonly
used medications, applicable diseases, major causes, medical
treatment symptoms, symptoms caused by, departments for
medical consultation, diseases treated by, applicable departments,
and examination items. Each sentence contains two entity nouns
(e, and e,) along with their corresponding entity types, including dis-
eases, symptoms, bacteria, medical specialties, and others. The data-
set was divided into about 3,500 training samples, 1,000 validation
samples, and 1,000 test samples.

In multi-class tasks, there are two calculation methods for the
Fl-score: Micro-F1 and Macro-F1. The formulas for calculating
the Recall and Precision are as follows:

n_TPp.
Recall = # 9)
Y11 (TP + EN;)
n_TP.
Precision = ==L "1 ___ (10)
i, (TP; + FP;)

In the formulas, TP; represents the true positives for class i, which
means a positive class is correctly predicted as positive. FN; repre-
sents the false negatives for class i, which means a positive class
is incorrectly predicted as negative. FP; represents the false positives
for class i, which means a negative class is incorrectly predicted as
positive. n represents the number of classes. The calculation formula
for Micro-F1 is as follows:

Recall x Precision

Micro — F1 =2 x (11)

Recall + Precision

This method assigns equal weights to each sample, making it suitable
for datasets with relatively balanced classification samples.

Macro-F1 assigns equal weights to each class, making it
unaffected by data imbalance in multi-class problems. However, it
can be influenced by classes with high precision and recall rates.
The calculation method involves first calculating the F1-score for
each class and then taking the average of the F1-scores across all
classes. The specific formula is as follows:

Recall; x Precision;

F1 — Score; = 2 X (12)

Recall; + Precision;

_ >0, F1 — Score;

Macro — F1 = (13)

n

In this formula, Recall; and Precision; represent the recall and precision
of class i, respectively. In this study, we used the Accuracy provided by
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the sklearn package. The calculation method for Accuracy is to divide
the number of correctly predicted samples by the total number of sam-
ples. The formula for Accuracy is as follows:

n TP,

i=1

Accuracy = otal
ota

(14)

In this formula, TP; stands for “True Positives” of the i* sample. In
classification tasks, a “True Positive” refers to an instance where
the model correctly predicts a positive class sample as positive. The
subscript i ranges from 1 to n, indicating an iteration over all samples,
where n is the total number of samples. Total represents the total num-
ber of samples, which is the count of all the samples in the dataset.

4.2. Parameter settings

In order to conduct a fair comparison in our experiments, we
configured the model in the pre-training phase with the same
parameters as Google BERT. This includes using a self-attention
layer with L = 12, a multi-head count of A = 12, a learning rate
of Lr =0.00005, and embedded vector hidden dimensions of
H = 768. Our model has the same number of trainable parameters
as BERT, which is 110 million, making our method and BERT com-
patible with each other in terms of parameters. We named our method
R-KBERT.

We add dropout before each add-on layer, as shown in Figure 7.
From the parameter analysis experiments, it can be observed that
appropriate dropout, which randomly sets some neuron output
values to zero, reduces the complex interactions between neurons,
mitigates the risk of overfitting in the network, and improves the
robustness and generalization ability of the network. However,
when the dropout rate is too high, it may result in the model
discarding useful textual features and increasing the risk of
underfitting. Therefore, we set the dropout rate to 0.1.

Figure 7
Parameter analysis
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4.3. Comparison with other methods

The baseline models include an SVM [33], which uses a support
vector machine classifier to capture the context-entity relationships.
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There is also an RNN [14] with short-term memory capabilities.
Building upon the RNN model, we introduced the Matrix-Valued
RNN (MVRNN) that alters the contextual semantics. The CNN and
softmax [13] take word embeddings and positional features as
input, concatenating them with lexical features. The FCM [16]
constructs sentence-level and substructure word embeddings based
on dependency trees and named entities. The CR-CNN [17] ranks
the loss function. The Attention-CNN [18] utilizes CNN encoders
combined with attention weights that are based on the target entities
and words in the sentence. The Entity Attention BiLSTM [19]
model integrates entity-aware attention mechanisms and entity
types into an end-to-end recursive neural network. For the first
time, we employ the BERT pre-training model for relation
classification tasks, known as R-BERT [20]. Additionally, we
incorporate fixed and floating markers, labeled as PL-Marker [34],
to indicate the subject and object entities in the sentence. The
results are presented in Table 1.

Table 1
Comparison with results in the literature

Method Accuracy (%)
SVM [33] 82.26
MVRNN [14] 83.85
CNN + Softmax [13] 84.54
FCM [16] 85.23
CR-CNN [17] 87.31
Attention-CNN [18] 88.80
Entity Attention BiLSTM [19] 88.21
R-BERT [20] 90.78
PURE [35] 91.77
PL-Marker [34] 92.27
GDA [36] 92.47
R-KBERT 93.06

From Table 1, it can be observed that our Accuracy is 93.06%,
which is significantly superior to all other baseline methods.

4.4. Ablation studies

To understand the contributions of each module to
relation classification, we denote the absence of the BILSTM layer
as “NoLSTM,” the absence of inserted type label information as
“NoLabel,” the absence of the entities input method as “NoEntity,”
using the absolute index as position embedding as “Nolndex,” and
all tokens make attention to each other as “NoMatrix.” For specific
details, refer to Table 2.

Table 2

Ablation experiment labels
Label Detail
NoLSTM Absence of the BILSTM layer
NoLabel Without inserting type label in text
NoEntity Without additional input of two entities
Nolndex Use absolute index as position embedding
NoMatrix All tokens make attention to each other

Table 3 reports the results of the ablation study with the above
configurations. We observed that the methods in the ablation
experiments performed worse than our method. This demonstrates
the effectiveness of each module in our model. These modules
alleviate or address the corresponding problems. The BiLSTM
layer addresses the issue of long-term dependencies in text. It is
crucial to integrate entity boundaries and type information at the
input layer, and by combining the approach of separately
inputting entities, the key content in the text is explicitly
identified. The position embedding utilizes relative indexes for
computation, resolving the problem of text disorganization after
incorporating knowledge. The performance of the model declined
after removing the Mask Matrix, which demonstrates the necessity
of constraining the computation of the attention.

Table 3
Comparison with the absence of different components

Methods Pre-training model Accuracy (%)
R-KBERT (NoLSTM) BERT 91.38
R-KBERT (NoLabel) BERT 91.28
R-KBERT (NoEntity) BERT 91.67
R-KBERT (Nolndex) BERT 91.38
R-KBERT (NoMatrix) ~ BERT 90.98
R-KBERT BERT 92.67
R-KBERT (NoLSTM) RoBERTa 91.58
R-KBERT (NoLabel) RoBERTa 91.67
R-KBERT (NoEntity) RoBERTa 92.17
R-KBERT (Nolndex) RoBERTa 91.87
R-KBERT (NoMatrix) RoBERTa 91.48
R-KBERT RoBERTa 93.06

5. Conclusion

In this paper, we propose the application of domain knowledge
graphs to relation classification tasks, aiming to enhance the model’s
understanding of domain-specific knowledge. Firstly, we inject
domain knowledge into sentences, transforming them into
knowledge-enriched sentence trees. Secondly, we utilize relative
indices and a mask matrix to control the scope of knowledge
attention, preventing the sentences from deviating from their original
meaning due to an overwhelming amount of knowledge.
Additionally, we employ a partial input approach to enable the
model to comprehend input sentences from multiple angles and at
multiple levels, achieving a more comprehensive understanding. We
have achieved an improvement of 0.64% in accuracy on the medical
domain dataset. Our method is applicable to domain-specific relation
extraction tasks and improves accuracy without significantly
increasing time complexity. As for future work, we are committed to
expanding this method to achieve similarly good performance on
distantly supervised datasets.
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