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Abstract: Brain tumor is a life-threatening disease, and its early diagnosis can save human life. Computer-aided brain tumor segmentation and
localization in magnetic resonance imaging (MRI) images have emerged as pivotal approaches for expediting the disease diagnosis process. In the
past few decades, various researchers combined the strengths of convolutional networks and transformer to perform brain tumor segmentation.
However, these models require a large number of trainable weights parameters, and there is still scope for performance improvement in them.
To bridge these research gaps, this paper proposes a novel hybrid model named “CT-γ-Net” for effective and efficient brain tumor
localization. The proposed CT-γ-Net model follows an encoder-decoder structure in which the convolutional encoder (CE) and transformer
encoder (TE) are used for encoding, whereas the convolutional decoder (CD) is utilized for decoding the combined output of CE and TE to
generate the segmentation masks. In CE and CD components of the CT-γ-Net model, conventional convolutional layers are replaced by
depth-wise separable convolutional layers, as these layers significantly reduce trainable weights parameters. The proposed model achieves
95.5% MeanIoU, 94.82% Dice score, and 99.24% pixel accuracy on a publicly available dataset named the Cancer Imaging Archive. These
experimental results demonstrate that the CT-γ-Net model outperformed other state-of-the-art research works, despite using roughly 28%
fewer trainable weights parameters. Hence, the proposed model’s lightweight nature and its high performance make it a suitable candidate for
deployment on mobile devices, facilitating the precise localization of brain tumor regions in MRI images.
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1. Introduction

A brain tumor is a mass of lumps in the brain caused by abnormal
brain tissue that develops rapidly.According to theAmericanAssociation
of Neurological Surgeons, more than 150 different types of brain tumor
have been documented, which are either benign or malignant. In the
survey conducted by central nervous system (CNS) in 2020, tumor
occurrence in India lies between 5 and 10 per 100,000 population;
moreover, there has been a rapid increase in the number of tumor
patient [1]. Therefore, concerning the growing number of brain tumor
patients and its threat to life, it is important to get diagnosed and
undergo treatment in the early stage to improve the chances of
successful treatment and prolong life expectancy.

While diagnosing brain tumors, medical experts use imaging tests
such as magnetic resonance imaging (MRI) to identify the suspected
tumor region and its probable chance of spreading to other CNS [2].
Diagnosing a brain tumor is laborious and requires careful
examination, which can lead to failure of timely diagnosis before
complications arise. Therefore, numerous researchers have developed

various artificial intelligence models to support professional medical
practitioners and aid less experienced doctors in diagnosing brain
tumors accurately and efficiently [3]. Initially, researchers tried to
utilize machine learning (ML) algorithms to diagnose brain tumors
from MRI scans [4, 5]. However, ML techniques have two major
shortcomings: first, they require manual features extraction, which is
a laborious task, and second, they are unable to take advantage of
modern graphics processing units (GPUs), as they are not
implemented in that manner. Therefore, researchers have used deep
learning (DL) techniques for segmenting brain tumors, as these
techniques conquer the aforementioned limitations of ML models
[6–10]. DL methods comprise multiple layers which can
automatically extract various important features from raw data.
Convolutional neural network (CNN) is a DL model that is
extensively utilized to address many computer vision tasks like
image classification, object detection, etc. [11]. They can
automatically learn hierarchical features from images, which makes
them well-suited for capturing spatial patterns from image data.
Though CNN can perform image classification tasks, they are not
inherently designed for image segmentation. This is due to the
absence of deconvolutional layers or transpose convolutional layers
to upsample the dimensions of feature maps equivalent to the
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dimensions of the input images, which is necessary for any image
segmentation model to generate segmentation masks. Therefore,
CNN is modified into a fully convolutional network (FCN) for
image segmentation tasks. The architectures of CNN and FCN are
different, as CNN follows a sequence of convolutional, pooling, and
dense layers to extract features; on the other hand, FCN can map
back the learned features to their original spatial dimensions, and this
allows it to generate segmentation masks where each pixel
corresponds to a class label.

In recent years, transformer-based models have gained much
popularity as they achieved high performance over different CNN
models in image classification tasks such as plant disease
detection [12] and brain tumor diagnosis. This outperforming
nature of the transformer-based models can be argued on the fact
that they can obtain global and local representation from shallow
layers, and these extracted features are similar to the features
extracted by CNN in deeper layers [13]. Also, skip connections in
the transformer encoder (TE) are even more influential than a
popular CNN architecture named ResNet, which increases the
performance of transformer-based models. Hence, various
researchers have exploited the aforementioned advantages of
transformer-based models and merged them with existing FCN
models to build a state-of-the-art (SOTA) system for segmenting
brain tumors from MRI scans [14, 15]. Though the existing
research works achieved better results with faster computation
than SOTA models, these models require a large number of
trainable weights parameters to achieve high performance, which
is computationally expensive. Moreover, there is still a scope for
performance improvement to perform brain tumor segmentation
more accurately. To bridge these research gaps, a novel hybrid
model named “CT-γ-Net” based on convolutional encoder–decoder
and TE has been proposed in this research work for brain tumor seg-
mentation or localization. In the proposed model, depth-wise sepa-
rable convolutional layers are used in CE and CD instead of
conventional convolutional layers to reduce the trainable weights
parameters by a significant factor. The depth-wise separable convo-
lutional layers decrease weight parameters by performing convolu-
tion operations in two stages, namely, the filtering stage and the
combination stage. In the filtering stage, a depth-wise convolution
operation is applied in which each kernel independently processes
individual channels of the input feature map. In the combination
stage, pointwise convolution operation is employed to combine
the output from depth-wise convolution operation that helps to create
new feature maps by linearly concatenating the information across
different channels. Hence, in this way, the number of trainable
weights parameters is decreased by utilizing the depth-wise sepa-
rable convolutional layer in place of conventional convolutional
layers, which reduces the computational cost during the training
and testing phase of the model.

In the CT-γ-Net model, CD is used for decoding; however, an
alternative decoding approach could involve utilizing the modified
transformer decoder (MTD) which is a modification of transformer
decoder (TD). Therefore, two alternate architectures named “CE
+TE!CD+MTD” and “CE+TE!MTD” have also been built to ana-
lyze the ability of MTD in segmenting the tumor region from MRI
images. In CE+TE→CD+MTD, both the CD and MTD are utilized
for segmenting the brain tumor from MRI images, and the output gen-
erated from CD and MTD is combined to get the final segmentation
mask. Meanwhile, in CE+TE→MTD, the segmentation operation is
exclusively performed by MTD. The performances of CT-γ-Net,
CE+TE→CD+MTD, and CE+TE→MTD architectures have been
compared in this researchwork, and it is found that the CT-γ-Net model

outperformed the other twomodels. Thus, combined with low trainable
weights parameters and high performance, the CT-γ-Net model can be
utilized in the real world for performing effective and efficient brain
tumor segmentation from MRI images, which can lead to faster brain
tumor diagnostics.

The remainder of this paper is organized as follows. Section 2
describes several existing research works on brain tumor segmentation
and localization. Section 3 describes the necessary background
concepts that are required to build the proposed CT-γ-Net model.
Section 4 describes the CT-γ-Net model. Moreover, in Section 5,
other variants of the proposed models, namely, CE+TE!CD+MTD
and CE+TE!MTD models which are the combination of CNN and
transformer techniques, are discussed. The experimentations conducted
in this research are outlined in Section 6. In Section 7, results obtained
from the experimentation are given, and Section 8 discusses these results.
Finally, the paper is concluded in Section 9.

2. Related Work

Recently, numerous researchers across the world have developed
various SOTA ML and DL models for automatic segmentation or
localization of brain tumor. This section discusses relevant research
works present in the literature, and it is divided into three
subsections. Section 2.1 discusses the research works based on ML
techniques, Section 2.2 focuses on the DL-based research works, and
in Section 2.3, transformer-based research works are discussed.

2.1. Brain tumor segmentation using ML

Initially, researchers leveraged the potential of ML techniques for
segmenting brain tumors for MRI images. They have explored the
potential of the Wiener filter [16] to enhance the quality and clarity
of the input data through noise reduction [17, 18]. In Dehariya and
Shukla [17], the output of the Wiener filter served as an input to the
intelligent water drop (IWD) genetic algorithm, which defines an
objective function to evaluate the quality of the feature subsets based
on relevance for segmentation through an iterative process. Their
experiment was conducted on 100 brain MRI images, and they
obtained 97.97% pixel accuracy. Pixel accuracy is a metric that
measures the percentage of pixels that are correctly classified by a
model out of the total number of pixels in the image. From their
experiment, it is evident that the Wiener filter can filter noise from
the input brain MRI data to improve segmentation accuracy.
Meanwhile in Zhang et al. [18], K-means++ [19] and Gaussian
kernel-based fuzzy C-means algorithm [20] were combined to
segment images. Initially, cluster centroids were initialized through
K-means++ followed by clustering operation using Gaussian kernel-
based fuzzy C-means algorithm to reduce the sensitivity of the
clustering parameters, which in turn improved the robustness of their
proposed model. Their model was trained with 100 pairs of FLuid-
Attenuated Inversion Recovery (FLAIR) images from BRATS2012
collected from 20 patients and evaluated using data from patients 1,
2, and 3 individually and obtained a Dice score of 92.61%, 94%,
and 89.78% for the patients, respectively. Jayanthi et al. [21]
presented a novel model based on a fuzzy integrated active contour
segmentation technique, which overcomes the limitation of “active
contour without edges” [22] in segmenting images with weak
boundaries. They evaluated their model on BRATS2012 and
BRATS2015 datasets and achieved an average Dice score of 81%.

In the abovementioned research works, despite their high
performance in brain tumor segmentation, they require manual
feature extraction which is time-consuming and laborious. Therefore,
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to overcome this limitation, DL techniques are used by various
researchers for automating brain tumor diagnosis, and in the next
subsection, several DL-based research works are discussed in which
the tumor regions are segmented or localized from brain MRI images.

2.2. Brain tumor segmentation using deep learning

In DL, FCN is considered de facto for image segmentation as it can
automatically learn various spatial and temporal features of brain MRI
images. Thus, various researchers utilized FCN for building the SOTA
model to segment brain tumors from MRI images. Pereira et al. [23]
conducted their experiment for brain tumor segmentation using the
CNN technique. In their experiment, two models, namely, HGG-CNN
and LGG-CNN were developed, which were trained and evaluated for
HGG and LGG tumor grade separately. The HGG-CNN involves 11
layers, and LGG-CNN has 9 layers with a filter size of 3� 3ð Þ in the con-
volutional layers. Moreover, ReLU activation functions were applied con-
sistently throughout the layers in both models. Their evaluation with the
BRATS2013 dataset yielded a Dice score of 88%, 83%, and 77% in seg-
menting complete, core, and enhance tumor regions, respectively. Sunet al.
[24] proposed a novel DL-based framework to segment brain tumors from
MRI images. Their proposed framework involved three different segmen-
tation techniques, namely, Cascaded Anisotropic Convolutional Neural
Network [25], DFKZNet [26], and 3D-UNet [27]. Subsequently, a major-
ity voting strategy was employed in an ensemble technique without
weighted scheme. Their model achieved a mean Dice score of 71.71%,
87.62%, and 79.97% on enhancing, whole, and tumor core during testing
with theBRATS2018 dataset. Daimary et al. [28] presented a hybrid archi-
tecture based on U-Net, SegNet, and ResNet models. Different combina-
tions of thesemodels were configured to find the best-performing one, and
it was found that Seg-UNet, that is, a fusion of SegNet and U-Net, outper-
formsother combinationsby scoring73.4%MeanIoUon theBRATSdata-
set. In the architecture proposed by Balamurugan and Gnanamanoharan
[29], they exploited a VGG-16 model for brain tumor segmentation and
classification between glioma and meningioma tumors through a LuNet
classifier. Their experimental dataset consisted of 173 total samples of
which they achieved 99.7% accuracy.

Although FCN-based techniques are effective in learning local
features, they cannot extract global features of the images effectively
and efficiently due to small receptive field. Additionally, these
techniques are unable to capture the long-range dependencies within
the images. These drawbacks have been conquered by the transformer
model, and the next subsection discusses the research works based on
this model.

2.3. Brain tumor segmentation using
transformer-based model

Several researchers have explored the use of transformer in brain
tumor segmentation or localization to address the deficiency observed
in FCN and CNNmodels, which generally arises due to its incapability
to provide solutions for long-range dependencies. However,
transformer-based architecture, which was originally designed for
textual data, can capture long-range dependencies through the self-
attention mechanism. As such, Wang et al. [30] proposed the
TransBTS model, which utilized 3D convolutional layers and
transformer. Their model follows a structure similar to U-Net;
however, TE layers were added between the encoder and decoder of
U-Net instead of the default bottleneck layer to allow capturing
semantic correlation. Their model achieved Dice scores of 78.73%,

90.09%, and 81.73% on segmenting, enhancing, whole, and core
tumors. Following the U-Net architecture, Hatamizadeh et al. [14]
developed the Swin-UNET-Transformer (Swin-UNETR) model for
brain tumor segmentation, which is based on Swin-UNet [31]. In
this architecture, the decoder of Swin-UNet is modified by replacing
it with a residual block consisting of two 3 × 3 × 3 convolutional
layers. Their model has a total of 61.98 M parameters. While testing
on the BRATS2021 dataset, their model scored an average Dice
score of 89.10%, 93.30%, 91.70%, and 91.30 on enhancing, whole,
and core tumors. Following the suit of Swin Transformer, Jiang
et al. [32] proposed SwinBTS with a similar architecture to Swin
Transformer. However, the self-attention mechanism in the multi-
head attention (MHA) is replaced with 3D convolutional layers.
Their model achieved 83.21%, 84.75%, and 91.83% on enhancing,
core, and whole tumor. Furthermore, Liang et al. [33] proposed an
architecture named TransConver which utilized the convolution and
transformer blocks to find local and global information, respectively.
The skip connection with cross-attention fusion mechanism was used
with an enhanced skip connection to improve their model’s
performance which reduce semantic discrepancies between encoder
and decoder features. Their proposed model achieved 83.72% and
86.32% Dice scores on BRATS2018 and BRATS2019, respectively.

In the preceding discussion, it is evident that existing models
demand a substantial number of trainable weights parameters for
achieving favorable results. Additionally, models based on FCN face
challenges in capturing long-range dependencies due to their reliance
on local receptive fields. On the other hand, Transformer-based
architectures showcase limitations in capturing short-term
dependencies. Therefore, this paper proposes a novel hybrid model
named “CT-γ-Net” for brain tumor segmentation, which is based on
a convolutional encoder–decoder and TE, to bridge these research
gaps. Moreover, the CT-γ-Net model employed depth-wise separable
convolutional layers to decrease the number of trainable weights
parameters. The next section of this paper explains the necessary
concepts required to understand the proposed architecture.

3. Background

This section provides a comprehensive description of
fundamental components derived from CNN and the transformer
model to develop the proposed CT-γ-Net model. This section is
further subdivided into two subsections. Subsection 3.1 explains
CNN and its layers, that is, the convolutional layer and pooling
layer. Subsection 3.2 describes the transformer model and its
components, that is, TE and TD.

3.1. Convolutional neural network

CNN is a DL technique well-suited for handling data with a grid-
like topology, such as time series and image data. The idea behindCNN
is to exploit spatial and temporal information by using a specialized
operation called convolution which operates on two real-valued
functions, in contrast to simple matrix multiplication in conventional
neural networks [11]. A typical representation of CNN is given in
Figure 1 which comprises an input and an output layer and a set of
convolutional, pooling, and dense layers.

3.1.1. Convolutional layer
A convolution operation (denoted by �) is a mathematical opera-

tion that is used in signal processing, image analysis, etc. It involves a
binary operation between two real-valued functions (say l xð Þ and k xð Þ).
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The mathematical representation of convolution operation for discrete
data is given in Equation (1).

z ¼ p � qð Þ xð Þ ¼
X1
v¼�1

p vð Þ:q x � vð Þ (1)

where z ¼ p � qð Þ xð Þ represents the value of convolution of functions
p and q at position x, v is an offset that determines the alignment of the
kernelwith the input, and q x � vð Þ represents the function g shifted by v
units. In the conventional convolution layer, convolution operations are
applied to all input channels usingmultiple filters,which slide across the
input feature maps to perform element-wise multiplication where the
results are summed together to produce a single output. Thus, a signifi-
cant number of multiplications are required in standard convolutional
layers. Therefore, the depth-wise separable convolution layer has been
used to address the drawbacks of the conventional convolution layer as
it significantly reduces the number of multiplications by performing
convolution operations in two stages, namely, the filtering stage and
the combination stage. In the filtering stage, a depth-wise convolution
operation is applied in which each kernel independently processes indi-
vidual channels of the input feature map. These kernels are responsible
for detecting local patterns and features within the data specific to that
channel. Moreover, by processing each channel independently, the
depth-wise convolution layer captures distinctive information within
each feature map. Following the filtering stage, the combination stage
involvesmerging the information from different channels using a point-
wise convolution, typically with a 1� 1 kernel. It combines filtered
information across channels by performing a linear combination. This
step helps create new feature representations that capture cross-channel
correlations. Hence, combining the information from different channels
enriches the overall representation, allowing themodel to learn complex

hierarchical features while maintaining computational efficiency. The
visual representation of the standard convolution layer and depth-wise
separable convolution layer is given in Figure 2.

To illustrate the number of multiplications involved in both
standard and depth-wise separable convolution layer, consider an
input feature map with dimensions of (W;H;C), where W denotes
the width,H the height, andC the number of channels. A convolution
operationwithN filters of dimension K; Kð ÞwhereK is the filter size
is applied to produce a feature map of the height and width of G. The
total number of multiplications required in standard convolution
layer (Nmul

s ) and depth-wise separable convolution layer (Nmul
dsc )

are given in Equations (2) and (3), respectively.

Nmul
s ¼ C:G2:K2:N (2)

Nmul
dsc ¼ C:G2: K2 þ Nð Þ (3)

The ratio between the number of multiplications required in the con-
ventional convolution layer and the depth-wise convolution layer can
be computed by Equation (4).

Nmul
dsc

Nmul
s

¼ C:G2: K2 þ Nð Þ
C:G2:K2:N

¼ K2 þ N
K2 � N

(4)

By putting K ¼ 3 and N ¼ 2014 in Equation (4), we get
32 þ 2014
32 � 2014 ¼ 2023

18126; thus, we can conclude that the number of multiplica-
tions in depth-wise separable convolution layer is approximately
one-ninth of the number of multiplications in standard convolution
layer. Drawing from the given example, the depth-wise separable con-
volution layer demonstrates practical benefits that notably influence

Figure 1
Convolutional neural network (CNN)

Figure 2
A comparative example of standard convolution layer and depth-wise separable convolution layer
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neural networks by lowering computational complexity and enhancing
efficiency, particularly on devices with constrained resources.

3.1.2. Pooling layer
Pooling layer is a fundamental component within FCN. It is used

to reduce the spatial dimension of feature maps by selecting the most
dominant feature within a pooling region to create a more compact
feature map. This makes the FCN model more robust against small
shifts of position in the input feature maps. There are two types of
pooling layers, namely, max pooling and average pooling. The
maximum value is selected within each pooling region in max
pooling, allowing it to select the most relevant information.
Moreover, it provides some degree of translation invariance.
Nevertheless, max pooling discards non-maximal values, leading to
a loss of information. In tasks like brain tumor segmentation where
subtle features or average intensity levels are essential, this loss may
hinder the model’s performance, whereas in average pooling, the
average value is taken from each pooling window, thereby
preserving more information. This can be advantageous when the
overall intensity or distribution of values is important for the
segmentation task. The mathematical equations for max and average
pooling given a kernel size k × k are given in Equations (5) and (6),
respectively.

Max Pooling Xð Þi; j ¼ maxkm ¼ 1maxkn ¼ 1X iþm�1; jþn�1ð Þ (5)

Average Pooling Xð Þi; j ¼
1

k� k

Xk
m¼1

Xk
n¼1

X iþm�1; jþn�1ð Þ (6)

where i; j represents the indices of the output feature map, and
X iþm�1; jþn�1ð Þ represents the value of the input feature map at position
iþm� 1; jþ n� 1ð Þ. The pictorial representation of max and aver-
age pooling is given in Figure 3.

Apart from max pooling and average pooling layers, there exist
additional pooling layers such as global pooling that considers the
entire input feature map as a single pool and fractional pooling,
which is an adaptive pooling operation introduced to address
limitations in traditional max or average pooling, when the input
dimensions do not neatly divide by the pooling size. Therefore,
these pooling techniques could be considered in the architecture.

CNN is primarily used for classification tasks, and they are not
inherently designed for image segmentation. Therefore, researchers
have modified CNN into a convolutional encoder–decoder

architecture for performing the image segmentation task efficiently
and effectively. Hence, in this research work, convolutional encoder-
decoder architecture has been utilized for brain tumor segmentation.

3.2. Transformer

Transformer is a DL architecture used for natural language
processing. It utilized the concept of self-attention that computes
the importance of different tokens in a sequence [34]. The
encoder–decoder structure follows transformer architecture where
the encoder extracts the features from the input sequence;
meanwhile, the decoder takes the output of the encoder as well as
the target sequence to predict the output sequence. The complete
description of TE and TD is discussed in Subsections 3.2.1 and
3.2.2, respectively.

3.2.1. Transformer encoder
TE is one of the components of a transformer. However, to

perform computer vision tasks, the TE requires embedded patches
as input. Therefore, each input image with dimensions of H �W
(where W denotes the width and H the height) is divided into
Np ¼ H:W

P2 nonoverlapping patches of size P � P to control the size
of the resulting sequence of patches. Moreover, it ensures that the
length of the sequence (the number of patches) is determined by
the ratio of the image dimensions to the square of the patch size.
Afterward, these patches are flattened and then linearly embedded
using an embedding function E : RP�P�C ! RD where D, which
is the embedding dimension of the model, is chosen to strike a bal-
ance between maximizing the model’s capacity and ensuring com-
putational efficiency. Through patch embedding, it allows TE to
capture local information within the patch. After patch embedding,
the positional information of these patches is then added to the
embedded patches. This ensures that the model can differentiate
between patches based on their relative positions. Moreover, posi-
tional encoding is essential for preserving spatial information as well
as conveying the spatial relationships and order of the patches.

The TE encompasses multiple stacked encoder blocks where
each encoder block is comprised of MHA, layer normalization,
and multi-layer perceptron (MLP) modules. Moreover, the TE
encompasses two skip connections around MHA and MLP to
mitigate the vanishing gradient problem as well as regain
positional information. The visual representation of the TE has
been depicted in Figure 4 and its components are described below.

Figure 3
Comparison between max and average pooling layers
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a. Multi-head attention
InMHA, n self-attention operations are employed simultaneously

to learn different representations and global relationships among
patches where n is the number of heads used in the MHA. Given

E 2 R Np�Dð Þ, where E is the input embedding matrix, Np denotes
the number of patches, and D is the embedding dimension. The weight
matrices QW 2 RD �qD ; KW 2 RD �kD ; and VW 2 RD �vD are
trained where qD; kD; and vD are the number of columns in
QW ; KW ; and VW weight matrices. After weight initialization, Query
(Q), Key (K), and Value (V) matrices have been calculated by multi-
plying input embedding matrix E with the weights matrices, that is,
Q ¼ EQW ; K ¼ EKW ; and V ¼ EVW . Thereafter, the self-attention
score (Z) is computed by using Equation (7).

Z ¼ softmax
QKTffiffiffiffiffi
kD

p
� �

:V (7)

Further, the outputs of n heads Z1; Z2; . . . :Zn are concatenated and
multiplied by a transformation matrix OW 2 RNp�nvD that allows the
model to adapt and optimally fuses the distinct pieces of information
from various attention heads to produce a complete representation.
The formula for the concatenation operation is given in Equation (8).

Zconcat ¼ concat Z1;Z2; . . . ;Znð Þ � Ow (8)

b. Layer normalization
Layer normalization was given by Ba et al. [35] to overcome the

limitation of batch normalization, that is, batch size dependence. Layer
normalization normalizes activations along the features rather than the
Batch. This reduces the model’s reliance on batch statistics which
makes the activations more robust to the distributional differences
between the training and testing sets. Initially, mean and variance
are calculated using Equations (9) and (10), respectively. It is
followed by the normalization of the feature map. A smoothing
factor ε has been utilized to avoid zero division. The formula for nor-
malizing the feature is given in Equation (11). Finally, two learnable

parameters, that is, a scaling factor γ and a shifting factor ζ, are used to
shift and scale as given in Equation (12).

µt;f ¼
1

HW

XH
i¼1

XW
j¼1

xtijf (9)

σ2
t; f ¼

XH
i¼1

XW
j¼1

xtijf � µt;f

� �
(10)

x t; ijfð Þ ¼
xtijf � µt;f

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
t;f þ ε

q (11)

yt ¼ γxt þ β � LNγ;ζ xtð Þ (12)

where C; H; andW are the channel, height, and weight of the feature
maps, respectively.

c. Multi-layer perceptron
In addition to the attention and Layer Normalization layers, the

encoder of the transformer also comprises an MLP module. Two
linear transformations and a nonlinear activation function are
combined in this module to create nonlinearity and enable the
model to understand intricate correlations between the input
features. The mathematical representation of the MLP module is
given in Equation (13).

MLP xð Þ ¼ σ W2 σ xW1 þ b1ð Þð Þ þ b2ð Þ (13)

3.2.2. Transformer decoder
The TD is a key component of the transformer architecture,

composed of multiple decoder blocks. Each decoder block
comprises 2 × (MHA, layer normalization) followed by MLP
modules. Taking the target sequence as input, the TD component
processes it through the first MHA module. The second MHA
module, along with the output of the first MHA module, also takes
the output of the TE as input, capturing representations from both
the input and target sequences. Additionally, three skip connections
are incorporated around the first and second MHA modules, as well
as the MLP module, to address the vanishing gradient problem and
restore positional information. The architectural diagram of TD has
been given in Figure 5.

Furthermore, CNN and transformer both are utilized for the
proposed model of this paper. A detailed description of the
proposed model is given in the next section.

4. Proposed Work

In this section, we present the CT-γ-Net model, a novel approach
that combines convolution and transformer methodologies for
effective brain tumor segmentation. This integration addresses
limitations observed in depth-wise separable convolution layers,
particularly in handling long-range dependencies, by leveraging
transformer techniques and vice versa. Additionally, the distinctive
architecture of the CT-γ-Net model enhances performance
capabilities while maintaining a low number of trainable
parameters, achieved through the utilization of depth-wise separable
convolution layers.

Figure 4
Transformer encoder (TE)
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TheCT-γ-Netmodel combines convolutional encoder–decoder and
TE modules to perform brain tumor segmentation or localization. The
convolutional encoder–decoder modules can learn spatial as well as
temporal features effectively and efficiently, while TE can capture
global features and learn long-range dependencies from the brain MRI

images. Therefore, by amalgamating the convolutional encoder–
decoder and TE, the CT-γ-Net model has the potential to seamlessly
learn spatial and temporal features along with the long-range
dependencies inherent in brain MRI data. In the proposed model,
depth-wise separable convolutional layers have been utilized in place
of conventional convolutional layers to decrease the count of trainable
weights parameters by a significant factor. The architectural diagram
of the proposed CT-γ-Net model is given in Figure 6.

4.1. Components of the proposed model

CT-γ-Net model follows an encoder–decoder structure, and it
comprises three components, namely, convolutional encoder (CE), TE,
and convolutional decoder (CD). In the encoder of the proposed model,
CE and TE are utilized; on the other hand, the decoder encompasses
CD which decodes the summed output of CE and TE. These
aforementioned components of the CT-γ-Net model are described below.

4.1.1. Convolution encoder
It encompasses five stacked ConvBlocks, and each of these blocks

comprises twoConvBatchNormBlocks followed by amax pooling layer.
Every ConvBatchNormBlock encompasses a depth-wise separable
convolutional layer and batch normalization layer. The depth-wise
separable convolutional layer in ConvBatchNormBlock significantly
minimizes trainable weights parameters while preserving feature
extraction capability, as discussed in Section 3.1. Additionally, a batch
normalization layer is employed following each depth-wise separable
convolutional layer to standardize the feature maps within a batch.
Furthermore, CE employs a max pooling layer in every ConvBlock to
reduce the dimensions of the feature by a factor of two. Given that the

Figure 5
Transformer decoder (TD)

Figure 6
Architectural diagram of the “CT-γ-Net” model
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dimension of the feature maps decreases by a factor of 2 after each
ConvBlock, it is crucial to thoughtfully determine the number of
ConvBlocks in the CE. It aims to avoid an excessively small feature
map dimension, as such reduction could introduce challenges in the
reconstruction process and impede the recovery of lost information.
The diagram of CE is given in Figure 7.

4.1.2. Transformer encoder
It comprises three modules, namely, layer normalization, MHA,

and MLP. In TE, the values of the input embedded patches are
normalized using layer normalization. This is followed by feature
extraction in the MHA module through a self-attention mechanism.
In the MHA, multiple self-attention is employed parallelly to learn
different types of global features as well as long-range dependencies
within the input patches. Subsequently, the normalized output of
MHA is concatenated with the skip connection that is employed
around MHA and is further passed to the MLP module that consists
of two dense layers, which enables the model to enhance its capacity
in capturing important information. Finally, the output of MLP is
concatenated with the skip connection that surrounds MLP, and the
feature maps are then normalized via layer normalization. The block
diagram of TE is given in Figure 4.

To potentially enhance the feature extraction capability through
the TE, one could consider incorporating multiple TE blocks. This
approach enables the model to conduct a more comprehensive and
hierarchical analysis of the input data, with each module processing
information from the preceding one. This sequential processing
contributes to the extraction of progressively abstract and global
features. Additionally, a higher count of modules in the TE
facilitates an extended and refined modeling of long-range
dependencies. However, it is important to note that an increased
number of TE modules raises the overall model complexity, and the
associated trade-off may not necessarily justify the added complexity.

4.1.3. Convolution decoder
It consists of five ConvTransBlocks and each ConvTransBlock

contains a transpose convolutional layer followed by a batch
normalization layer. The transpose convolutional layer upsamples the
feature maps, that is, increasing the spatial dimensions by a factor of
two. Ultimately, the final ConvTransBlock ensures that the spatial
dimensionality of the feature map matches that of the original input
image. Moreover, the skip connections are employed between each
corresponding ConvBlock and ConvTransBlock in the proposed
model to prevent it from vanishing gradient problems. Furthermore,
the batch normalization layer has been utilized for normalizing
output feature maps of the transpose convolutional layer. It is

important to observe that each ConvTransBlock is paired with a
corresponding ConvBlock to facilitate the recovery of lost
information through a skip connection. Consequently, introducing
additional ConvTransBlocks could compromise the quality of the
feature representation, as there will not be corresponding
ConvBlocks for information recovery. While it is conceivable to
direct the output of a single ConvBlock to ConvTransBlocks lacking
corresponding ConvBlocks, the extent of performance improvement
will remain a subject for further experimentation. The diagram of the
CD is given in Figure 8.

In this section, various components utilized in the development
of the proposed CT-γ-Net model have been described. The
discussion of other model variants, namely, CE+TE→MTD and
CE+TE→CD+MTD, is presented in the next section.

5. Other Variants Based on the Combination of
CNN and Transformer

As discussed in the previous section, the proposed CT-γ-Net
model exploits CD for decoding the combined output of CE and
TE. However, an alternative decoding approach could involve
utilizing the TD to decode the combined output of CE and TE.
Nevertheless, the TD of the transformer model utilized in
Vaswani et al. [34] is not suitable for image segmentation;
therefore, the TD is modified for image segmentation in this
research work, and it is referred to as MTD throughout the paper.
The block diagram of MTD is shown in Figure 9. The
modification involves the removal of the masked MHA module
from TD, which is highlighted in Figure 5. Furthermore, in the
modified design, the input from the encoder is directed through
layer normalization located above the MHA module. In addition
to these changes, upsample layers are added before each module
of TD to facilitate the dimensionality expansion of the feature
maps by a factor of two.

To assess the decoding capability of MTD compared with CD and
to substantiate the selection of CT-γ-Net as the proposed model, two
alternative architectures, namely, “CE+TE→CD+MTD” and “CE
+TE→MTD,” were designed and developed in this research work.
The block diagrams of these architectures are given in Figures 10 and
11, respectively. In CE+TE→CD+MTD represented in Figure 10, the
encoding operation on input brain MRI images is performed

Figure 7
Convolutional encoder (CE)

Figure 8
Convolution decoder (CD)
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simultaneously by CE and TE, which is subsequently combined to
produce a unified encoded feature map. In the subsequent decoding
phase, CD and MTD decode the encoded feature maps
simultaneously. The results undergo normalization through a Conv2D
layer employing a sigmoid activation function to produce
segmentation masks. Similar to CT-γ-Net, skip connections are
integrated between the respective ConvBlock of CE and
ConvTransBlock of CD, to address the vanishing gradient problem
and restore positional information. In conjunction, an alternate model
CE+TE→MTD represented in Figure 11 is also developed to
experiment and further explore the efficacy of MTD as compared with
CD. In this architecture, the CD component along with skip
connections from CE is omitted from the CE+TE→CD+MTD,
leaving only MTD for decoding, as depicted in Figure 11. The sole
output of MTD is utilized to generate segmentation masks.

6. Experimental Study

This section seeks to offer a comprehensive understanding of
the experimental study conducted for this research work that aims
to achieve the best-performing combination of CE, TE, CD, and
MTD, that is, CT-γ-Net, CE+TE→MTD, or CE+TE→CD+MTD.
This section is organized into three subsections. Subsection 6.1
describes the Cancer Imaging Archive (TCIA) dataset, and
Subsection 6.2 provides details of various experimentations done
in this research work. In Subsection 6.3, some evaluation metrics
are discussed which are used to evaluate CT-γ-Net, CE
+TE→MTD, and CE+TE→CD+MTD architectures.

Figure 9
Modified transformer decoder (MTD)

Figure 10
Architectural diagram of CE+TE→CD+MTD
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6.1. Dataset description

The TCIA is a benchmark dataset widely used to evaluate any
ML or DL-based models for brain tumor segmentation. This dataset
is publicly available in the Kaggle data science community. It
comprises 2149 brain MRI images along with their corresponding
annotated mask images. The images were taken from 110 patients,
who were diagnosed with brain tumor disease. From each patient,
26 samples of brain MRI images were recorded that fall under
different stages of the tumor. The MRI images are of dimensions
(256 * 256 * 3), denoting a height and width of 256 pixels each,
with 3 channels. In contrast, the mask images possess dimensions
(256 * 256, 1), indicating grayscale images. It is noteworthy that
the TCIA dataset solely comprises native volumes, posing a
limitation in capturing comprehensive information and achieving
robustness to imaging variability.

During preprocessing, the TCIA dataset underwent a random
partition, with 70% for training and 30% for testing. Furthermore,
during each epoch, 30% of the training data is randomly chosen
for validation purposes. Additionally, to increase the number of
samples, various data augmentation techniques such as 20o degree
right rotation, �2 % horizontal and vertical shift, and horizontal
and vertical flip are performed. Moreover, the pixel value was nor-
malized by dividing with 1=255 to scale the pixel values to a range

between 0 and 1 to prevent numerical instability and improve con-
vergence. The visual illustration of some samples of the TCIA data-
set is given in Figure 12.

Figure 11
Architectural diagram of CE+TE→MTD

Figure 12
Augmented sample images of the TCIA dataset with their

corresponding annotated mask
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6.2. Experimental configuration

The research experiments were conducted on Kaggle, a data
science community platform, using Python 3.10.9 as the
programming language. Nevertheless, these experiments can also
be executed using alternative programming languages. Additionally,
TensorFlow 2.12 library is used for model implementation.
Furthermore, the Adam optimizer is used to minimize the loss
computed by the Jaccard loss function. The mathematical formula
for the Jaccard loss is depicted in Equation (14). Furthermore, to
accelerate the training process, GPU NVIDIA Tesla T4 is used.
The training of all the models has been done for 500 epochs with a
batch size of 32. Additionally, an early stopping technique is
applied, meaning that if the validation MeanIoU of the model
shows no improvement for 60 consecutive epochs, the training of
the model will be halted.

Jaccard Loss ¼ 1�
XM
i¼1

Ai \ Bij j
Ai [ Bij j (14)

6.3. Evaluation metrics

To evaluate the performance of CT-γ-Net, CE+TE!CD+MTD,
CE+TE!MTD architectures, the three most commonly used evalu-
ation metrics, namely, mean intersection over union (MeanIoU), Dice
score, and pixel accuracy, are used. Nevertheless, it is crucial to high-
light that both MeanIoU and Dice score exhibit sensitivity to class
imbalance, showing a bias toward the dominant class. Additionally,
MeanIoU and Dice score may encounter difficulties in accurately
assessing the performance of themodel during class overlap especially
when themodel struggles to precisely describe the boundaries between
adjacent classes. To address these concerns, pixel accuracy is also
introduced tomeasure the percentage of correctly classified pixels over
the total number of pixels in the image. Themathematical formulas for
the aforementioned metrics are given in Equations (15)–(17). In these
equations, M is the number of instances, and Ai and Bi represent the
predicted and ground truth segmentation masks, respectively.

Moreover, TP = true positive, TN = true negative, FN = false nega-
tive, and FP = false positive.

MeanIoU A;Bð Þ ¼ 1
M

XM
i¼1

Ai \ Bij j
Ai [ Bij j (15)

Dice score A;Bð Þ ¼ 1
M

XM
i¼1

2� Ai \ Bij j
Aij j þ Bij j (16)

Pixel accuracy ¼ TPþ TNð Þ
TPþ TNþ FPþ FN

(17)

7. Results

This section provides the result of the experimentation done in
this paper. The performance of CT-γ-Net, CE+TE!CD+MTD, and
CE+TE!MTD architectures has been evaluated by usingMeanIoU,
Dice score, and pixel accuracy on the test subset of the TCIA dataset.
The performances of these architectures are compared to find the
best-performing architecture. Thereafter, the best-selected architec-
ture is compared with the existing SOTA research works.

The MeanIoU, Dice score, and pixel accuracy of CT-γ-Net,
CE+TE→MTD, and CE+TE→CD+MTD architectures on the test
subset have been depicted by a line chart given in Figures 13–15,
respectively. It can be observed from these figures that the
architecture CE+TE→MTD achieved 69.07% MeanIoU and
55.48% Dice score. Meanwhile, CT-γ-Net outperforms both
CE+TE→MTD and CE+TE→CD+MTD by achieving 95.5%
MeanIoU and 94.82% Dice score. However, CE+TE→MTD
achieved the highest pixel accuracy compared with
CE+TE→CD+MTD and CT-γ-Net by scoring 99.38% indicating
high overall correctness of the pixel-wise predictions.

Furthermore, the total number of trainable weights parameters
employed in CE+TE!CD+MTD, CE+TE!MTD, and CT-γ-Net
architectures is compared in Table 1. It can be observed from Table 1
that CE+TE!MTD and CT-γ-Net require 346011 and 342431
trainable weights parameters, which are approximately 26.7% and

Figure 13
MeanIoU for CE+TE→MTD, CE+TE→CD+MTD, and CT-γ-Net
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27.4% less than CE+TE!CD+MTD architecture. In addition, out-
put segmentation masks of the aforementioned architectures have
been given in Figure 16. It can be visualized from Figure 16 that

the predicted segmentation mask of CE+TE!MTD architecture sig-
nificantly differs from the ground truth segmentation masks, as the
MeanIoU and Dice score of this architecture are minimum among
other architectures, but pixel accuracy was the highest in
CE+TE!MTD, which indicates the high overall correctness in
pixel-wise prediction predictions. However, it can also be seen from
Figure 16 that the predicted segmentation mask of CT-γ-Net archi-
tecture is similar to the ground truth segmentation mask.

Furthermore, a performance comparison was conducted
between the CT-γ-Net model and existing SOTA models as given
in Table 2. It reveals that, despite using fewer trainable weights
parameters, our proposed model demonstrates superior
performance, achieving the highest MeanIoU and Dice scores
compared to other works found in the literature.

The findings above demonstrate that the CT-γ-Net model shows
significant efficacy in segmenting brain tumors. This can be credited

Figure 14
Dice score for CE+TE→MTD, CE+TE→CD+MTD, and CT-γ-Net

Figure 15
Pixel accuracy for CE+TE→MTD, CE+TE→CD+MTD, and

CT-γ-Net

Figure 16
Segmentation results CE+TE→CD+MTD, CE+TE→MTD, and CT-γ-Net

Table 1
Parameters of the architectures CE+TE→CD+MTD,

CE+TE→MTD, and CT-γ-Net

Model Parameters

CE+TE!CD+MTD 471,986
CE+TE!MTD 346,011
CT-γ-Net 342,431
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to the innovative architecture design, which integrates convolution
layers and TE to effectively capture both local and global features
from MRI images of the brain. Additionally, the utilization of
depth-wise Separable convolution layers reduces the number of
trainable weights parameters, enabling deployment on low-
performing mobile devices without compromising performance in
brain tumor segmentation.

8. Discussion

This research work is aimed at building a SOTA machine
intelligence model to segment tumor regions effectively and
efficiently from brain MRI images. Various researchers have
utilized ML [36] and DL [39] techniques for brain tumor
segmentation and localization. However, their models require
manual feature extraction, or they are computationally expensive,
that is, necessitate a large number of trainable weights parameters.
Additionally, there is still scope for performance improvement in
the existing research works [28, 38]. Therefore, to tackle these
limitations of the existing research work, this paper proposes a
novel hybrid model named “CT-γ-Net” based on FCN and trans-
former for segmenting brain tumor with a lesser number of trainable
weights parameters. To reduce the trainable weights parameters,
depth-wise separable convolutional layers have been utilized in place
of conventional convolutional layers in the CT-γ-Net model. The
proposed model follows the encoder–decoder structure, and it
encompasses CE, TE, and CD components based on FCN and trans-
former. CE and TE are part of encoder, whereas CD has been utilized
for decoding the combined output of CE and TE for generating the
segmentation masks. Although TD can also be used for decoding the
summed output obtained from CE and TE, it is not suitable for image
segmentation as transformer architecture as it is designed for natural
language processing. Therefore, TD is modified into MTD
(described in Section 5), and to verify its potential as a decoder,
two more architectures named CE+TE!CD+MTD and CE
+TE!MTD have been designed and developed in this research
work. Thereafter, the performance of these architectures has assessed
TCIA dataset, which is publicly available with the help of three
evaluation metrics, namely, MeanIoU, Dice score, and pixel
accuracy.

After analyzing the results obtained from experimentation, it is
found that the CT-γ-Net model outperformed the other two architec-
tures by achieving maximum MeanIoU, Dice score, and pixel accu-
racy despite using a significantly lesser number of trainable weights
parameters. However, it was also observed during experimentation
that the performance of the CE+TE!MTD architecture which uti-
lizes only MTD in the decoder is minimal. Therefore, to investigate
the possible reason behind the subpar performance of this architec-
ture, the output feature maps obtained fromMTD andCDmodules of
CE+TE!MTD and CT-γ-Net models have been plotted in Fig-
ures 17, respectively. It has been observed that MTD’s decoding
process was unable to recover the potential information loss during
encoding. Moreover, it is also found that the upsampling operations

in MTD might result in the loss of positional information and global
feature representations. It can also be seen from these figures that the
features obtained from CD are much richer as compared to the output
of MTD. This can be argued by the fact that the skip connections
have the potential to recover the loss of spatial information between
CE and CD.

Conclusively, it can be stated that despite employing a considerably
smaller number of trainableweights parameters, theCT-γ-Netmodel out-
performed CE+TE!CD+MTD and CE+TE!MTD architectures and
other SOTA research works. Hence, considering the impressive perfor-
mance and lightweight design CT-γ-Net model, it can be implemented in
real-world scenarios, making it suitable for deployment on a broader
range of devices including deviceswith lower computational power. This
deployment could offer valuable support tomedical diagnosticians, facili-
tating faster diagnoses, and aiding less experienced medical practitioners
in identifying brain tumors fromMRI images. Furthermore, the applica-
tion of this service could be extended to end users for self-service
purposes.

In this research work, the proposed model experimented with
the TCIA dataset; however, in future research work, the CT-γ-Net
model can also be trained on different medical image datasets like
BRAin Tumor Segmentation (BRATS), Iraq-Oncology Teaching
Hospital/National Center for Cancer Diseases (IQ-OTH/NCCD),
etc. This will not only facilitate a more in-depth evaluation but also
enhance the generalization capabilities of the proposed CT-γ-Net
across various modalities in brain tumor datasets. Moreover, a wider
range of evaluation metrics can be considered, which will contribute
to a more thorough understanding of the CT-γ-Net model. Addition-
ally, future endeavors can involve improving the segmentation per-
formance in CE+TE→CD+MTD and CE+TE→MTD by devising a
more efficient and effective design for MTD components. This
should be coupled with addressing the substantial computational
requirements due to a high number of trainable weights parameters
in TE andMTD because of the use of the MHAmechanism for brain
tumor segmentation.

Table 2
Comparison of existing models with the CT-γ-Net model

Research work MeanIoU Dice score Pixel acc. Params

Kadry et al. [36] – 90.36% – –

Gagan et al. [37] 80.06% – – 483,197
Wu et al. [38] 89.9% 82.3% – –

CT-γ-Net 95.50% 94.82% 99.24% 342,431

Figure 17
Output feature maps of CD in CT-γ-Net model
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9. Conclusion

A brain tumor is a cluster of masses in the brain resulting from
the rapid growth of abnormal brain tissue. It is a life-threatening
disease, and its early diagnosis is a crucial step in saving human
life. However, manual segmentation or localization performed by
medical experts requires valuable time. Therefore, many
researchers have used various ML and DL techniques for
segmenting brain tumor from MRI images. However, the models
utilized in existing SOTA require manual features extraction or a
large number of trainable weights parameters. Moreover, there is
still scope for performance improvement in the existing research
works. Therefore, to address these limitations, a novel hybrid
model named “CT-γ-Net” was proposed in this research work for
localizing or segmenting brain tumors from MRI images. The CT-
γ-Net model utilized CE and TE to encode the input images,
whereas CD was used to decode the combined output of CE and
TE for generating segmentation masks. Moreover, TD could also
be employed for decoding the summed output of CE and TE.
However, as TD was originally designed for natural language
processing; in this research work, it was modified to perform
image segmentation and referred to as MTD in the paper. To
validate the performance of MTD for decoding the summed
output of CE and TE, two alternate architectures were built by
utilizing MTD for decoding. These alternate architectures were
referred to as “CE+TE!CD+MTD” and “CE+TE!MTD” in this
paper. After analyzing the experimental results, it was concluded that
CT-γ-Net outperforms the other two architectures by achieving
95.05% MeanIoU, 94.82% Dice score, and 99.24% pixel accuracy.
Moreover, it was also found that the CT-γ-Net model outperforms
the existing SOTA architectures presented in the literature despite
using a significantly lesser number of trainable weights parameters.
Hence, the proposed model can be deployed on various low-compu-
tational powered devices like mobile phones, Raspberry Pi, etc., to
effectively and efficiently segment or localize the brain tumors from
MRI images, due to its high performance and lightweight nature.
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