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Abstract:Multi-tiered persistent storage systems integrate many types of persistent storage devices, such as different types of NVMes, SSDs,
and HDDs. This integration provides a multi-level view of persistent storage, where each tier has a different data transmission speed and
capacity. Data transfer processes operating on multi-tiered persistent storage allow for the parallelisation of data transfers among the
partitions of data at the same or different tiers. This work considers the problem of efficient scheduling of parallel data transfers between
the tiers of persistent storage. We consider a data processing model where several data transfer processes move or copy data from one
tier to another through the buffers in transient memory. We propose a new model for data processing over multi-tiered persistent storage
and new algorithms to minimise both the overall time spent on parallel data transfers and the idle time of data transfer processes. We
also describe how the scheduling algorithms dynamically apply different procedures to assign data transfers to the processes. Finally, we
present the outcomes from the experiments that confirm the correctness and efficiency of the scheduling algorithms.
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1. Introduction

The fast-paced growth of data analysis techniques in recent
years has accumulated a vast amount of data. As a result,
organizations are looking for higher capacity and faster persistent
storage solutions. They use various storage devices to manage
costs and outsource storage and data management to cloud service
providers offering diverse storage options. However, the
complexity of integrating different storage devices and optimizing
data processing presents a challenge.

A multi-tiered view of persistent storage unifies many types and
characteristics of persistent storage devices into a single logical device
[1]. A multi-tiered approach to persistent storage is used to simplify
data processing. This approach consolidates various storage devices
into a hierarchical structure based on capacity and access time
characteristics. Data can be transferred between tiers, optimizing
access times and storage utilization. However, resource allocation
becomes crucial due to the limited capacity of higher tiers and the
need to consider factors like processing speed and access frequencies.

One solution to expedite data processing is parallelizing data
transfer across storage tiers. This paper focuses on solving the
issue of scheduling parallel data transfers within multi-tiered
persistent storage systems. We propose a model where data
transfers are executed by multiple processors, aiming to minimize
transfer time and processor idle time.

The paper’s key contributions are as follows:
1) Introducing a novel model for query processing over multi-tiered

persistent storage, organizing queries into sequences of data
transfer sets.

2) Presenting new scheduling algorithms to optimize parallel data
transfers, reducing overall processing time.

3) Discussing dynamic scheduling strategies that adapt to changes in
workload characteristics.

4) Showing how well the suggested algorithms work in creating
efficient plans for transferring data in parallel.

By addressing these challenges, this research enhances data
processing efficiency in multi-tiered persistent storage systems,
paving the way for improved resource utilization and performance.

The paper is organized as follows: Section 2 presents earlier
works related to the organization of multi-tiered storage and the
scheduling of data transfers, and Section 3 includes notational
conventions and the definitions of new concepts. Section 4 then
explains the scheduling algorithms, and Section 5 presents the
experiments and interpretations of the results. Finally, Section 6
summarizes the paper, lists the conclusions, and explains the
avenues for future research in the same area.

2. Previous Works

Integrating additional layers of devices and memory can
significantly enhance computers’ computing and I/O performance
[1]. In today’s rapidly evolving technological landscape, I/O
performance is increasingly significant across various applications.
Artificial intelligence techniques like machine learning and deep
learning rely on processing diverse data types and structures,
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necessitating efficient data storage and access across multiple
locations [2].

Organizations increasingly adopt multi-cloud systems to ensure
seamless data access anytime and anywhere [3]. However, with the
escalating data growth, more than relying on cloud storage may be
required, leading to adopting hybrid multi-cloud solutions [3].
Concurrently, the market introduces multi-tiered storage systems
[4, 5], offering varied read/write speeds, features, and prices,
including HDDs, SSDs, and NVMe. NVMe stands out for its rapid
data processing capabilities [6–8], prompting widespread adoption
of multi-tiered persistent storage models among organizations [9, 10].

This research leverages multi-tiered persistent storage with
partitions to efficiently manage data and facilitate parallel
processing [11]. However, the adoption of faster devices may be
limited by cost and storage capacity constraints, necessitating
optimal resource allocation and data transfer planning over multi-
tiered storage systems [12].

Our work builds upon previous studies addressing data
distribution and resource allocation in multi-tiered persistent
storage systems [13], aiming to improve database management
system performance. Various scheduling theories and methods
have been proposed to address resource allocation challenges,
ranging from dynamic programming algorithms to quality-aware
scheduling techniques [14–17].

These schedulingmethods, including EDF, SJF, and PAQRS, offer
different approaches to optimizing service quality and data quality
[18, 19]. Each method presents its unique advantages and limitations,
necessitating careful consideration of workload characteristics and
system requirements. Thus, our study aims to contribute to this
evolving field by addressing the challenges of resource allocation and
scheduling in multi-tiered persistent storage systems.

3. Data Processing Model

3.1. Architecture of multi-tiered persistent storage

The sequence of persistent storage tiers (levels) in a multi-tiered
persistent storage system is denoted by L = <l0, : : : , ln>. The
slowest tier with the lowest performance and the highest capacity
is represented by l0, while the fastest tier with the highest
performance and the lowest capacity is represented by ln. Each
tier li, where i is between 1 and n, is implemented as a set of
persistent storage devices Di = {di1, : : : , dim}. Any device located
at the same tier li is described by a triple (ri, wi, si), where ri is the
reading speed of the tier, wi is the writing speed at the tier, and si
is the total amount of storage available on the device. Further on,
we refer to a persistent storage device in Di as a partition at a tier li.

In a model of multi-tiered persistent storage extended with
partitions, data can be read or written at the same tier and at the
same time from/to different partitions/devices. A simplified
structure of multi-tiered persistent storage considered in this paper
is presented in Figure 1.

3.2. Extended Petri Net

In this work, we consider a data processing model where a set of
queries, {q1, : : : , qm}, is submitted to a database system for
simultaneous processing. For each query in {q1, : : : , qm}, a cost-
based query optimizer generates several query processing plans and,
for each query, selects the plan with the lowest processing costs.
Next, each query processing plan is converted into an Extended Petri
Net (EPN) to represent the operations on data and data flows that
can be processed simultaneously. The EPN is a quadruple (B, V, E,

W), where B = {b1, : : : , bj} is a set of input/output datasets,
V = {v1, : : : , vj} is a set of operations, E = {e1, : : : , ej} is a set of
edges representing dataflows, and W is a function W: E → N+ that
assigns numerical values to each edge in E.

A set b ∈ B is a set of pairs {(Di, lj.dk), : : : , (Dj, lk.di)}, where
eachDi is the total number of data blocks available at a partition lj.dk.
Each edge e ∈ E is either a pair (b, v) or a pair (v, b) where b ∈ B and
v ∈ V. A sample EPN is given in Figure 3.

Example 1 The present example considers the following query.

SELECT CCUSTKEY, CNAME, OORDERDATE
FROM (
SELECT *
FROM CUSTOMER
WHERE CNATIONKEY BETWEEN 1 AND 6
UNION
SELECT *
FROM CUSTOMER
WHERE CNATIONKEY BETWEEN 10 AND 15
) as T1
JOIN ORDER
ON CCUSTKEY = OCUSTKEY
WHERE OORDERDATE< 2000-01-01;
A sample query processing plan obtained from the application

of EXPLAIN PLAN statement to a query above is visualized in
Figure 2. The Extended Petri Net (B, V, E, W) for the query
processing plan is given in Figure 3.

3.3. Data transfer

An EPN is converted into a sequence of sets of data transfers
Q = <{(q, lj.dn τ1), : : : , (q, lk.dj, τi)}, : : : , {(q, lx.dy, τj), : : : , (q, ly.di,
τk)}>. The detailed procedure for converting a query into an EPN is
presented in Noon et al. [13]. A triple (q, lj.dn, τk) denotes a single
data transfer. The first element, q, represents a query to which the
transfer belongs; the second element lj.dn represents a tier lj and
partition/device dn involved in the transfer; and the last element, τk,
represents the total number of time units required to process the transfer.

Information from a query processing plan regarding the total
amount of data involved in each operation and the speed of read
and write operations at each persistent storage tier is used to
predict the processing time τk of a transfer.

The total number of data transfers depends on the size of a
buffer. For example, reading 100 data blocks from device dj at tier

Figure 1
Architecture of multi-tiered persistent storage
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lj and writing them to device di at tier lj with a buffer size of 50 data
blocks requires two transfers to read data and two transfers to
write data.

3.4. Data transfer processes

Several dedicated data transfer processes copy data across the
partitions in multi-tiered persistent storage and transient data
buffers. A data transfer process either reads data from the
persistent storage or writes it to a data buffer or vice versa. We
assume that there are m processes P = {P1, : : : , Pm} available for
the implementation of data transfers. Data transfer processes
operate simultaneously on the tiers of persistent storage and
transient memory. For each 1 ≤ i ≤ m, a data transfer plan πi is
assigned to a data transfer process, and Pi is a sequence of data
transfers <(qi, lj.dk τi), : : : , (qj, lx.dy, τk)>.

3.5. Candidate data transfers

A candidate data transfer in an implementation of a query q
is a data transfer in Q that has not yet been assigned to any process
and therefore belongs to the first set of data transfers in Q that
includes at least one data transfer not assigned to any data
transfer process.

Example 2 In this example, we consider the queries q1, q2,
and q3 implemented into the following sequences of sets of data
transfers:

• Q1: <{(q1, l4.d1, 8)}, {(q1, l3.d3, 9)}>
• Q2: <{(q2, l3.d2, 3), (q2, l2.d1, 4)}, {(q2, l1.d1, 3)}, {(q2, l3.d1, 7)}>
• Q3:<{(q3, l1.d2, 3), (q3, l4.d1, 3)}, {(q3, l1.d1, 7), (q3, l3.d1, 3)}, {(q3,
l1.d2, 3)}, {(q3, l1.d1, 5)}>

Notably, at the very beginning, none of the data transfers
implementing the queries is assigned to a data transfer process. As
a result, we can combine all the first sets of transfers from each
query and form a set of candidate transfers. A set of candidate
transfers Tc for Q1, Q2, and Q3 includes the following
sets of transfers: {{(q1, l4.d1, 8)}, {(q2, l3.d2, 3), (q2, l2.d1, 4)},
{(q3, l1.d2, 3), (q3, l4.d1, 3)}}.

4. Scheduling Algorithms

4.1. Overview

Algorithm 1 is the central point linking all other algorithms that
assign the data transfers to the transfer processes and allocate
resources over multi-tiered persistent storage. A flowchart of
Algorithm 1 is given in Figure 4. The inputs to Algorithm 1
include a set of queries converted into the sequences of sets of
data transfers Q = {Q1, : : : , Qn}, a set of processes P = {P1, : : : ,
Pm}, a sequence of persistent storage tiers L = < l0, : : : , ln >, and
a threshold value delta that identifies very long data transfers. An
output from Algorithm 1 is a set of data transfer plans {π1, : : : ,
πm} assigned to each data transfer process.

Algorithm 1 iteratively processes the sequences of sets of data
transfers in Q. First, the algorithm applies Algorithm 2 to identify a
subset of processes in P, denoted as Plow, with the lowest workload
presently assigned, and a subset of the remaining processes, with
larger workloads, denoted as Phigh. The procedure that finds a set
of processes with a lower workload is described in Section 4.2.
Following this, the algorithm generates a set of candidate transfer
sets Tc using Algorithm 3 from the transfers in Q that are yet to be
assigned to a process. The procedure that creates Tc is described
in Section 4.3.

Next,Algorithm 1 applies the scheduling rules to narrow down Tc
to either a single set of data transfers or an empty transfer. An empty
transfer represents an idle periodwhen none of the candidates inTc can
be assigned to the selected data transfer process. When more than one
set of data transfers is found in Tc, the algorithm applies the scheduling
rules to narrow down candidate transfers from Tc.

Algorithm 4 applies Rule 0 to remove conflicting data transfers
from Tc. A conflict between two data transfers occurs when both
transfers attempt to access the same partition at the same moment

Figure 2
Visualization of a query processing plan

Figure 3
Extended Petri Net

Journal of Data Science and Intelligent Systems Vol. 2 Iss. 4 2024

243



in time or when their processing order violates an order indicated by a
query plan. If more than one set of data transfers is found in Tc, then
Algorithms 5–10 apply the following procedures:

• Algorithm 5 applies Rule 1 to retain only significantly long data
transfers. This rule minimizes long idle times for future
allocation.

• Algorithm 6 applies Rule 2 to retain only the data transfers
associated with the sequences with the longest processing time.
This rule minimizes overall processing time and balances the
assigned workload among many data transfer processes.

• Algorithm 7 applies Rule 3 to retain only data transfers with a
higher chance of conflict in the near future. This rule is intent to
minimize conflict in future allocations.

• Algorithm 8 applies Rule 4 to retain only the data transfers associated
with the sequences with the largest number of data transfers.

• Algorithm 9 applies Rule 5 to randomly select a set of transfers
from the remaining transfers in Tc.

• Algorithm 10 assigns the sets of data transfers in Tc to the
processing plans for each process in P using Rule 6.

At the end of the iteration, Algorithm 1 removes all data transfers
from Q that are included in Tc and updates a set of processes Plow and
Phigh using Algorithm 2.

Thereafter, the iteration described above is repeated until all
data transfers in Q are assigned to the transfer processes. Finally,
the algorithm returns a set of data transfer plans {π1, : : : , πm}
assigned to each data transfer process.

Figure 4
A flow chart of Algorithm 1
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Algorithm 1: Main Algorithm

Require: A set of processes P, a set of sequences Q, a sequence
of tiers L, a set of devices associated with each tier D, a
threshold value δ to determine the significantly long sequences,
and the number of sets is f to analyze a future conflict within the
selected f sets from each sequence.
Ensure: A set of data transfer process plans {π1, : : : , πm}.
1: Let the total number of processes be p and create p number of
empty data transfer plans π1, : : : , πp; associate each plan with a
process in P.
2: Pass the information of a set of processes P and a set of plans
{π1, : : : , πm} to Algorithm 3 to obtain a set of lower workload
processes Plow and Phigh.
3: Pass a set of Q and a set of data transfer plans {π1, : : : , πp} to
Algorithm 3 to obtain a set of sets of candidate data transfers Tc.
4: To eliminate conflict from Tc, the algorithm passes the
information of Plow, Phigh, and Tc to Algorithm 4.
5: if Tc is empty then
6: Add idle time unit to all process plans associated with

processes in Plow.
7: Go back to line 2.
8: end if
9: if Tc has more than one set of data transfers then
10: Apply Rule 1 by using Algorithm 5 with Tc and threshold

value δ.
11: Algorithm 5 eliminates data transfers from Tc that fail to

comply with Rule 1.
12: if Tc has more than one set of data transfers then
13: Apply Rule 2 by using Algorithm 6 with Tc, a set of

sequences Q.
14: Algorithm 6 eliminates data transfers from Tc that fail

to comply with Rule 2.
15: if Tc has more than one set of data transfers then
16: Apply Rule 3 by using Algorithm 7 with Tc, a set of

sequences Q.
17: Algorithm 7 eliminates data transfers from Tc that

fail to comply with Rule 3.
18: if Tc has more than one set of data transfers then
19: Apply Rule 4 by using Algorithm 8 with Tc, a set

of sequences Q.
20: Algorithm 8 eliminates data transfers from Tc that

fail to comply with Rule 4.
21: if Tc has more than one set of data transfers then
22: Apply Rule 5 by using Algorithm 9 with Tc.
23: Algorithm 9 eliminates data transfers from Tc

that fail to comply with Rule 5.
24: end if
25: end if
26: end if
27: end if
28: end if
29: Assign each data transfer from Tc to each process plan by

using Rule 6 in Algorithm 10 that returns an updated set of
process plans {π1, : : : , πp}.

30: Remove all data transfers from Q that are included in Tc.
31: if Q is not empty then
32: Go back to line 2.
33: else
34: Return an updated set of data transfer plans {π1, : : : , πp}.
35: end if

4.2. Finding the processes with the lowest
workload assigned

This section explains how to divide a set of processes P into two
groups. The first group, called Plow consists of processes with the
lowest workload. The remaining processes are assigned to Phigh.
To find a process with the lowest workload assigned, we calculate
the length of the data transfer plan assigned to each process. The
length of a plan π is denoted as T(π) where π = <(qi, lj.dk, τi),
: : : , (qj, lx.dy, τk)> is computed with Equation (1) below:

TðpÞ ¼ ti þ . . . þ tk (1)

As input, Algorithm 2 takes a set of data transfer processes P and the
current state of data transfer plans {π1, : : : , πj} associated with the
processes. The algorithm computes the length of workload for
each plan and then saves the processes with the lowest assigned
workload in Plow. The remaining processes are saved in Phigh.
Algorithm 2 returns the two sets of data transfer processes Plow

and Phigh.

Algorithm 2: Finding the processes with high and low
workloads assigned
Require: A set of processes P = {P1, : : : , Pj} and a set of plans
{π1, : : : , πj}.
Ensure: A set processes Plow with the lowest workload assigned
and a set of remaining processes Phigh.

1: for each plan in {π1, : : : , πj} do
2: Let the current plan be πi = < (qj, li.dj, τx), : : : , (qk, lj.dk, τy)>.
3: Use Equation (1) to compute the length for πi, T (πi).
4: end for
5: Find the smallest value Tlow from T (π1), : : : , T (πj).
6: Save all processes with the lowest workload Tlow in Plow.
7: Save all remaining processes in Phigh.
8: Return Plow and Phigh.

An example below shows how to split a set of processes P into
Plow and Phigh.

Example 3 In this example, we consider the data transfer processes
P= {P1, P2, P3, P4, P5} and the data transfer plans {π1, π2, π3, π4, π5}
assigned to the respective processes.

• π1 = <(q1, l1.d3, 10)>
• π2 = <(q3, l2.d2, 3)>
• π3 = <(q2, l1.d1, 6)>
• π4 = <(q2, l2.d1, 5), (q1, l1.d2, 3)>
• π5 = <(q3, l2.d3, 3)>

The workload for P1 is T(π1)= 10, for P2 is T(π2)= 3, for P3 is
T(π3)= 6, for P4 is T(π4)= 8, and for P5 is T(π5)= 3.

A set of the lowest workload processes as Plow = {P2, P5}.
The remaining processes are included in Phigh = {P1, P3, P4}.

4.3. Finding candidate transfers

Algorithm 3 uses a set of sequences Q = {Q1, : : : , Qn} to find
candidate data transfers. The algorithm iterates over {Q1, : : : , Qn}
and inserts the first set from each Qi, i= 1, : : : , n into Tc.
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Algorithm 3: Finding candidate transfers Tc

Require: A set of sequences Q = {Q1, : : : , Qn}.
Ensure: A set of sets of candidate data transfers Tc = {{(qi, lj.dk,
τk), : : : , (qj, lk.dj, τi)}, : : : , {(qk, li.dn, τj), : : : , (ql, ln.di, τn) }}.
1: for Qi ∈ {Q1, : : : , Qn} do
2: Get the first set of data transfers from Qi and append it to Tc.
3: end for
4: Finally, return the result Tc = {{(qi, lj.dk τk), : : : , (qj, lk.dj τi),
: : : , (qk, li.dn τj), : : : , (ql, ln.di τn)}}.

4.4. Scheduling rules

4.4.1. Eliminating conflicting data transfers
Algorithm 4 applies Rule 0 to eliminate the conflicts between

data transfers already assigned to the processes and the candidate
data transfers in Tc. Algorithm 4 operates on the sets of data
transfer processes Plow and Phigh along with their assigned data
transfer plans and on a set of sets of candidate data transfers Tc.
The algorithm finds the size of lower workload Tlow assigned to
one of the processes in Plow and the size of the highest workload
Thigh assigned to one of the processes in π. Next, the algorithm
computes the time range F as in the following way.

F ¼ ½ðTlow þ 1Þ;Thigh� (2)

The algorithm then retrieves the transfers that are at the tail of each
plan associated with processes from P

high and that overlap with a
timeframe F. All such transfers are added to a set of data transfers Ta.

In the next step, the algorithm identifies the conflicts between
the candidate transfers in Tc and the transfers in Ta. The data transfers
(qi, lm.dj, τi ) ∈ Ta and (qj, ln.dk, τj ) ∈Tc conflict when one of the
following conditions is satisfied:

• Condition 1: The transfers belong to the same query, qi = qj, and
their processing order differs from the order determined by a
sequence of transfers implementing a query qi.

• Condition 2: The transfers belong to different queries qi ≠ qj, and
both transfers are related to the same device, such as lm.dj = ln.dk.

Algorithm 4: Eliminating conflicting data transfers (Rule 0)

Require: A set of processes Plow with the data transfer plans
assigned, a set of processes Phigh with the data transfer plans
assigned, and a set of candidate data transfer sets Tc.
Ensure: A set of sets of candidate transfers Tc with no conflicts.
1: Create an empty set of data transfers Ta = { }.
2: Select a process at random from the set Plow, and retrieve the
corresponding plan, denoted as πi.
3: Calculate the amount of time needed to carry out the plan πi;
use Equation (1) and refer to it as T(πi).
4: Select a highest workload process from Phigh, and retrieve the
corresponding plan, denoted as πj.
5: Calculate the amount of time needed to carry out the plan πj;
use Equation (1) and refer to it as T(πj).
6: Next, compute F by using Equation (2).
7: for each process in Phigh do
8: Let the current process be Pj and associated plan be πj.
9:

(Continued)

(Continued )

Select all the data transfers from a tail of πj that fall
within the time range of F and append them to Ta.

10: end for
11: for each set in Tc do
12: Let the current set be {(qi, lj.dk,τy), : : : , (qi, ln.dj,τk)}.
13: for each data transfer in the current set do
14: Let the current data transfer be (qi, lj.dk,τy).
15: for each data transfer in Ta do
16: Let the current data transfer be (qj, ln.dk,τj).
17: if conflict is found between (qi, lj.dk,τy)

and (qj, ln.dk,τj) by Condition 1 then
18: Remove the current set from Tc.
19: Exit the loop and return to line 11.
20: else
21: if Conflict is found between (qi,

lj.dk,τy) and (qj, ln.dk,τj) by
Condition 2 then

22: Remove (qi, lj.dk,τy) from Tc.
23: end if
24: end if
25: end for
26: end for
27: end for
28: Finally, return a conflict-free set of sets of candidate data
transfers Tc.

Example 4 The following is a sample trace from the processing of
Algorithm 4. Consider three data transfer processes P1, P2, and P3

and three queries Q = {Q1, Q2, Q3}.

Assume that the original sequences are as follows:
Q1: <{(q1, l1.d1, 2), (q1, l2.d2, 2)} {(q1, l3.d1, 3)}, {(q1, l2.d1, 3)}>
Q2: <{(q2, l1.d2, 3), (q2, l2.d1, 4)}, {(q2, l3.d1, 3)}>
Q3: <{(q3, l2.d1, 2),(q3, l1.d1, 4), (q3, l2.d2, 2)}, {(q3, l2.d2, 2)}>

Assume that the transfers are currently assigned to the
processors P1, P2, and P3 in the following way:

• π1: < (q1, l1.d1, 2), (q3, l1.d1, 4)>
• π2: < (q2, l1.d2, 3), (q1, l2.d2, 2)>
• π3: < (q3, l2.d1, 2)>

The present data transfer plans are visualized in Figure 5.

From the original three sequences, the above transfers are assigned
to processes; therefore, we assume that the implementations of the
updated sequences are as follows:

• Q1: <{(q1, l3.d1, 3)}, {(q1, l2.d1, 3)}>
• Q2: <{(q2, l2.d1, 4)}, {(q2, l3.d1, 3)}>
• Q3: <{(q3, l2.d2, 2)}, {(q3, l2.d2, 2)}>

Figure 5
Elimination of conflicts
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Algorithm 2 creates the sets of processes Phigh = {P1, P2} and
Plow = {P3}. Algorithm 3 creates a set of candidate transfer sets Tc =
{{(q1, l3.d1, 3)}, {(q2, l2.d1, 4)}, {(q3, l2.d2, 2)}}. Next, the
computations of T(π3)= 2 and T(π1)= 6 contribute to a time
frame range F = (3, 6). The data transfers that overlap within F
from the tail of plan π1 and π2 are saved in Ta = {(q3, l1.d1, 4),
(q2, l1.d2, 3), (q1, l2.d2, 2)}.

Next, Algorithm 4 finds the conflicts. The first set of candidate
data transfers {(q1, l3.d1, 3)} is removed from Tc because it belongs to
the same sequence Q1 as a data transfer (q1, l2.d2, 2) and their
processing time slots overlap. Next, there is no need to remove
from Tc a data transfer (q2, l2.d1, 4) because no conflict is detected
for it. A data transfer (q3, l2.d2, 2) is removed from Tc because it
accesses the same l2.d2 as a transfer (q1, l2.d2, 2) from Ta. Finally,
Algorithm 4 returns a set Tc = {{(q2, l2.d1, 4)}}.

4.4.2. Prioritizing significantly long data transfers
A strategy for assigning the transfers from the candidate sets Tc

to the processes is based on the principle of choosing long transfers
first. Leaving a long data transfer until the end of a processing plan
can result in significant idle time assigned to the processes and an
unbalanced workload. Such a situation may arise when all short
transfers are assigned to the processes, the workload on each
process is approximately the same, and only a few long transfers
remain to be assigned. The long transfers then engage only a few
processes, leaving the other processes idle and reducing the level
of parallelism when conflicts occur between the long transfers.
When assigning data transfers to processes, long transfers must be
prioritized to ensure efficient workload distribution and to
minimize idle time. Another reason for such a strategy is the
processing characteristics of queries, which tend to read large data
containers first to reduce the amount of data before processing
joins. This approach also allows for faster processing by
transferring data from lower to higher levels in multi-tiered
storage as early as possible.

A strategy for assigning the transfers from the candidate sets Tc
to the processes is based on the principle of choosing long transfers
first. Leaving a long data transfer until the end of a processing plan
can result in significant idle time assigned to the processes and an
unbalanced workload. Such a situation may arise when all short
transfers are assigned to the processes, the workload on each
process is approximately the same, and only a few long transfers
remain to be assigned. The long transfers then engage only a few
processes, leaving the other processes idle and reducing the level
of parallelism when conflicts occur between the long transfers.
When assigning data transfers to processes, long transfers must be
prioritized to ensure efficient workload distribution and to
minimize idle time. Another reason for such a strategy is the
processing characteristics of queries, which tend to read large data
containers first to reduce the amount of data before processing
joins. This approach also allows for faster processing by
transferring data from lower to higher levels in multi-tiered
storage as early as possible.

Algorithm 5 reads a set Tc and detects long data transfers in Tc.
Notably, a significantly long data transfer can be the longest in Tc.
However, the longest transfer in Tc may not be a significantly
long data transfer. This occurs, for example, when the data
transfers are long, and the lengths of all data transfers in Tc are
approximately the same. In such a case, the longest data transfer
in Tc is not significantly longer than the other transfers, and the
algorithm does not detect significantly long data transfers in Tc.
Data transfers that have approximately the same length do not
contribute to a long tail of idle time units. By contrast, if one or

more long data transfers in Tc are significantly longer than the
others, then they may contribute to a significantly imbalanced
workload assigned to the processors.

To calculate the gap percentageG between the longest and other
data transfers in Tc Algorithm 5, simply utilize Equation (3). Initially,
the algorithm determines the length of Tmax, which represents the
longest data transfer. It then proceeds to identify the total number
of data transfers n in Tc, excluding those that are the longest.
Finally, the algorithm calculates the length of Tother, which
represents the sum of all other transfers in Tc, except for the most
extended data transfers.

G ¼ Tmax � Tother
n

� �

Tmax
�100 (3)

Next, a threshold percentage δ is used to find the longest transfers in
Tc that are significantly longer than others. For example, suppose that
the length of the longest data transfer is 100, and the length of the
other transfer is 50. The gap between those two transfers is 50,
and if the acceptable threshold value δ= 50, then the longest data
transfer is not significantly long. However, if the acceptable
threshold value δ= 40, the longest data transfer can be defined as
significantly longer than other data transfers. The detailed
procedure is shown in Algorithm 5.

Algorithm 5: Prioritizing significantly long data transfers
(Rule 1)

Require: A set of candidate data transfer sets Tc and threshold
value δ.
Ensure: An updated set of Tc.
1: for each data transfer in Tc do
2: Find the length of the longest transfer and save it in Tmax.
3: Sum the lengths of all transfers in Tc except the length equal
to Tmax and save the result in Tother.
4: Use Equation (3) to compute G.
5: if G ≥ δ then
6: Eliminate all data transfers from Tc shorter than Tmax.
7: end if
8: Return Tc.
9: end for

Example 5 Let a threshold value for a long transfer be δ= 50.

Let a set of sets of candidate transfers be Tc= {{(q1, l6.d1, 9), (q1,
l5.d1, 3), (q1, l3.d2, 10)}, {(q2, l3.d1, 10), (q2, l2.d3, 1)}}.

Therefore, Tmax= 10 and Tmin = 13 and G= 56.67.
Since G is greater than δ, significant long transfers are detected

in Tc. Therefore, Tc must be updated to {{(q1, l3.d2, 10)}, {(q2,
l3.d1, 10)}}.

4.4.3. Rule 2: Finding the longest processing sequences
Rule 2 is used to further reduce the size of Tc. An objective of

this rule is tominimize the overall processing time and ensure that the
workload is evenly distributed among the various data transfer
processes. The rule selects the sets of transfers from Tc that
belong to the present longest sequences in Q. In order to
determine the total length of each sequence in Q, it is not
sufficient to simply add the τ values from each sequence. This is
because the sets of data transfers from each sequence can be
processed in parallel over multiple processes, but each set must be
processed sequentially.
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To estimate the time required to process each set in parallel, it is
necessary to find the average processing time by summing all the τ
values from each set and dividing this sum by the number of
processes. In Equation (4), let Avg(Ti) denote the average
processing time for a set of data transfers Ti, p denotes the
number of processes, and Ti represents the set of data transfers.
The detailed calculation is presented in Equation (4) below.

Avg Tið Þ ¼ 1
p

X
m
i¼n

τn (4)

Once the average processing time for each set is obtained, it is
possible to sum all the average times to determine the total
processing time for a single sequence. This leads to an accurate
estimation of the length of the sequence. In Equation (5), T(Qi) is
denoted as the estimated length for a sequence Qi. The detailed
calculation is presented in Equation (5) below.

T Qið Þ ¼
X

j
n¼i

Avg Tnð Þ (5)

Algorithm 6 uses a set of sequences Q and a set of candidate
transfer sets Tc from Rule 1. It applies Equations (4) and (5) to
compute the length of each sequence. Then it selects sequences
with the lengths equal to the maximum T value and retains only
their data transfer sets, removing any data transfer sets violating
Rule 2. Algorithm 6 returns an updated Tc.

Algorithm 6: Finding the longest processing sequences (Rule 2)

Require: A set of sequences Q = {Q1, : : : , Qm} and a set of
candidate transfers sets Tc from Rule 1.
Ensure: An updated set of candidate transfers sets Tc.
1: for each sequence in Q do
2: Let the current sequence be Qi.
3: Use Equations (4) and (5) to compute the length T(Qi)$.
4: end for
5: Let Tmax be the largest value in T(Q1), : : : , T(Qm)}.
6: for each sequence in Q do
7: Let the current sequence be Qi.
8: if T(Qi) ≠ Tmax then
9: Remove a set of candidate transfers from Tc that belongs

to a sequence Qi.
10: end if
11: end for
12: Return an updated set of candidate data transfer sets Tc.

Example 6 Consider the sequences Q1, Q2, and Q3 such that
T(Q1)= 50, T(Q2)= 30, and T(Q3)= 50. Let a set of candidate data
transfer sets be Tc = {{(q1, l1.d1, 2), (q1, l2.d1, 3)}, {(q2, l1.d2, 3),
(q2, l1.d3, 4)}, {(q3, l2.d2, 4)}}. The length of the longest sequence
is T(Q1)= 50. The length of sequence Q3 is the same as the length
of sequence Q1. According to Rule 2, we remove a set of candidate
data transfers belonging to Q2 because T(Q2) is not equal to T(Q1).
An updated Tc = {{(q1, l1.d1, 2), (q1, l2.d1, 3)}, {(q3, l2.d2, 4)}}.

4.4.4. Rule 3: Minimizing the future conflicts
When scheduling data transfers, it is important to consider the

likelihood of future conflicts. Rule 3 eliminates data transfers from Tc
that are less likely to cause conflicts in the future. The rule aims to
eliminate future conflicts by prioritizing data transfers that are likely
to cause them. Fewer conflicts in turn lead to less idle time assigned
to processes and provide a well-balanced workload. However,
identifying future conflicts through analysis of entire sequences in Q

might take too long and the sets that fall behind the sequences may
not contribute to future conflicts involving transfers in Tc. Therefore,
prediction of future conflicts requires analysis within the limited
number of data transfer sets from each sequence. The algorithm,
hence, only uses a certain number of sets, denoted by f, from each
sequence to discover future conflicts.

For instance, if a transfer in Tc is found to have a high chance of
conflict with other transfers not included in Tc, it will be given
priority and allocated in the current stage. Any remaining transfers
in Tc that have a low chance for future conflicts are removed from
Tc, while those with a high likelihood are retained in Tc.
Algorithm 7 eliminates data transfers from Tc using Rule 3.

The algorithm processes a set of sequencesQ a sequence of tiers
L and f sets in each sequence, and it outputs an updated set of
candidate data transfers Tc. The algorithm skips the first set from
each sequence, selects f sets from each sequence, and then adds
them to a temporary set of data transfers, Ttemp.

Next, the algorithm creates a matrix M of future conflicts.
This matrix has several rows m equal to the total number of
sequences in Q and a number of columns n equal to the number
of devices in L. Each column in the matrix corresponds to a
device from a tier l ∈ L.

The algorithm iterates over Ttemp and considers the current data
transfer as (qi, lj.dk, τp). Let row x be associated with sequenceQi and
column y be associated with device lj.dk. The algorithm increases a
value at an entry M(x, y) by 1. Once the matrix is filled with values,
the algorithm calculates the values in a vector s. In particular, for all
sequences inQ, the algorithm computes the total number of transfers
that utilize each device l.d and saves it in a vector s(l.d).

For instance, suppose that two data transfers access the same
device li.dj in Qi and one transfer accesses the same device li.dj in
Qj. The total number of times the device li.dj is accessed is 3 and
a value in a vector s(li.dj) is thus set to 3. A vector s is used to
determine the busiest devices once all the data transfers from Q
have been processed.

In Equation (6), fill up the vector value s(l.d) by summing all the
value from column l.d. Equation (6) shows how the algorithm fills
the entries in a vector s.

s l:dð Þ ¼
Xn

i¼1

M Qi; l:dð Þ (6)

Next, the algorithm calculates the values in a vector c. Notably,
many transfers accessing a device do not necessarily mean the
device will contribute to future conflicts but rather that the
device is busier than the other devices. If multiple data transfers
from the same sequence access the same device, they can be
processed sequentially without causing conflicts. Thus, even if
the device appears busy, it may not necessarily cause conflicts.
To predict potential conflicts, the algorithm utilizes Equation (7)
to compute the values in a vector c. This vector indicates how
many sequences of data transfers access the same device on a
ratio basis. The values in c range from 0 to 1. The total number
of rows in the matrix is n. Determine the number of rows
containing a zero in each column, and save the result for each
columns as z(l.d). For instance, get the number of zero values in
column l.d and save the result in z(l.d). The total number of rows
in the matrix is denoted as m and Equation (7) below to
calculate the conflict ratio c(l.d) for column l.d.

c l:dð Þ ¼ 1� z l:dð Þ
m� 1

(7)
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Merely considering the value of c is not enough to determine
whether a transfer will cause conflict when accessing a busy
device. This is because two or more devices could have the same
c value but different data transfer distributions. The algorithm
therefore adds the vectors c(l.d) and s(l.d) together to estimate
future conflicts more efficiently. Equation (8) is used to compute
the values in a vector S(l.d) that estimate the chances of future
conflicts by summing vector values s(l.d) and c(l.d).

S l:dð Þ ¼ s l:dð Þ þ c l:dð Þ (8)

Next, the algorithm chooses the devices that offer the largest
value of S. Thereafter, it picks the data transfers from Tc that
are accessing the selected devices, and it excludes the
remaining data transfers from Tc that are not accessing the
selected devices.

Algorithm 7: Minimizing the total number of future conflicts
(Rule 3)

Require: A set of sequences Q = {Q1, : : : , Qm}, a sequence of tier
L = <l0, : : : , ln>, a set of candidate data transfer sets Tc = {{(qi,
lj.dk, τk), : : : , (qj, lk.dv, τi)}, : : : , {(qk, li.dn, τj), : : : , (ql, ln.di, τn)}},
and the f sets for further analysis of each sequence.
Ensure: An updated set of candidate transfers sets Tc.
1: Create a temporary empty set Ttemp.
2: for each sequence in Q do
3: Let the current sequence be Qi.
4: Select f sets from Qi – first set.
5: Append selected sets of data transfers to Ttemp.
6: end for
7: Create a matrix M(m × n), where m represents the total
number of sequences in Q and n represents the total number of
devices associated with each tier in L.
8: for each data transfer in Ttemp do
9: Let the current data transfer be (qi, lj.dk, τp).
10: Let the location of Qi be in row x and the location of device

lj.dk be in column y.
11: Increase the value at M(x, y) by 1.
12: end for
13: for i: = 1 to n do
14: Let the current column be y and it is associated with device

lxdy.
15: Compute the vector value s(lxdy) using Equation (6).
16: Count how many zeros appear in the current column and set

the value to z(lxdy).
17: Compute the vector value c(lxdy) using Equation (7).
18: Compute the vector value S(lxdy) using Equation (8).
19: end for
20: Sort the vector S in descending order.
21: Let the first vector value be associated with S(li.dj).
22: Select all the data transfers from Tc that are accessing the
device li.dj.
23: if data transfers are selected then
24: Keep all the selected data transfers in Tc and remove the un-

selected data transfers from Tc.
25: Exit
26: end if
27: Return an updated set of candidate data transfer sets Tc.

Example 7 We consider a multi-tiered persistent storage with four
tiers L = < l1, l2, l3, l4>.

A tier l1 is implemented as a set of devices D1 = {l1.d1, l1.d2}.
A tier l2 is implemented as a set of devices D 2 = {l2.d1}.
A tier l3 is implemented as a set of devices D3 = {l3.d1, l3.d2}.
A tier l4 is implemented as a set of devices D4 = {l4.d1}.
We assume the following present state of the sequences Q =

{Q1, Q2, Q3}.

• Q1 = <{ (q1, l0.d1, 3), (q1, l0.d2, 2)}, {(q1, l3.d3, 3)}, {(q1, l4.d1, 2)},
: : : >,

• Q2 = <{ (q2, l1.d2, 4), (q2, l1.d1, 3)}, {(q2, l1.d1, 4), (q2, l2.d1, 2)},
{(q2, l3.d2, 2), (q2, l3.d1, 4)}, : : : >,

• Q3 = <{(q3, l0.d3, 2)}, {(q3, l1.d2, 5), (q3, l4.d1, 2), (q3, l1.d1, 2)},
{(q3, l1.d2, 3), (q3, l3.d1, 2)}, : : :>.

The current Tc = {{(q1, l0.d1, 3), (q1, l0.d2, 2)}, {(q2, l1.d2, 4),
(q2, l1.d1, 3)}, {(q3, l0.d3, 2)}}. We assume the maximum number of
sets for future conflict analysis f= 2. Therefore, a temporary set of
data transfers is Ttemp = {(q1, l3.d3, 3), (q1, l4.d1, 2), (q2, l1.d1, 4),
(q2, l2.d1, 2), (q2, l3.d2, 2), (q2, l3.d1, 4), (q3, l1.d2, 5), (q3, l4.d1,
2), (q3, l1.d1, 2), (q3, l1.d2, 3), (q3, l3.d1, 2)}. Algorithm 7 creates a
conflict matrix based on the sequences in Ttemp and a matrix of
conflicts with vectors s, c, and S as shown in Table 1.

Since the largest value of S is 3.50, associated with column
l1.d1.Therefore, the algorithm picks only data transfers accessing
the device l1.d1 and removes the rest of the sets from Tc. The
updated Tc will be {{(q2, l1.d2, 4), (q2, l1.d1, 3)}}.

4.4.5. Rule 4: Finding the largest number of data transfers
The scheduling Rule 4 selects sets of data transfers from Tc that

belong to sequences with the largest number of data transfers. The
sequences with the largest number of data transfers can contain
several small data transfers. Smaller data transfers can produce fewer
chances of future conflict and provide well-balanced allocation over
processes. The scheduling rule balances data transfer allocation in
the process and reduces the idle time during the allocation.

Algorithm 8 takes a set of sequences Q and a set of candidate
transfer sets Tc from Rule 3. Then, it counts the total number of
data transfers C(Qi) in each sequence Qi in Q. Thereafter, the
algorithm selects sequences with total transfers equal to C(Qj) and
subsequently removes all sets of data transfers that do not belong
to the selected sequences from Tc. Finally, the updated Tc is returned.

Table 1
A matrix of conflicts M with the vectors s, c, and S

l1.d1 l1.d2 l2.d1 l3.d1 l3.d2 l3.d3 l4.d1

Q1 0 0 0 0 0 1 1
Q2 1 0 1 1 1 0 0
Q3 2 2 0 1 0 0 1
s 3 2 1 2 1 1 2
c 0.50 0.00 0.00 0.50 0.00 0.00 0.50
S 3.50 2 1 2.5 1 1 2.5
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Algorithm 8: Finding the largest number of data transfers
(Rule 4)

Require: A set of sequences Q = {Q1, : : : , Qm}, and a set of
candidate transfers sets Tc from Rule 3.
Ensure: An updated set of candidate transfers sets Tc.
1: for each sequence in Q do
2: Let the current sequence be Qi.
3: Count the number of data transfers in Qi and let C(Qi) store

the count result of Qi.
4: end for
5: Let a sequence Qj consists of the largest number of data
transfers C(Qj).
6: for each sequence in Q do
7: Let the current sequence be Qi.
8: if C(Qi) ≠ C(Qj) then
9: Remove a set of candidate transfers from Tc that belongs

to a sequence Qi.
10: end if
11: end for
12: Return an updated set of candidate data transfer sets Tc.

Example 8 We consider a set of sequencesQ = {Q1, Q2, Q3}, and
we assume the length of each sequence C(Q1)= 12, C(Q2)= 12, and
C(Q3)= 8. A set of candidate data transfers is Tc = {{(q1, l1.p1, 2),
(q1, l2.p1, 3)}, {(q2, l2.p2, 4)}, {(q3, l3.p1, 2), (q3, l3.p2, 2)}}. The
longest sequences are Q1 and Q2 due to C(Q1) = C(Q2) = 12.
According to Rule 4, we need to remove a set of candidate data
transfers belonging to Q3 because C(Q3) is not equal to C(Q1).
Final updated result is Tc = {{(q1, l1.p1, 2), (q1, l2.p1, 3)}, {(q2,
l2.p2, 4)}}.

4.4.6. Rule 5: Random selection of data transfers
Whenmultiple sets of data transfers are returned byRule 4 in Tc,

the scheduling rule called Rule 5 is applied to randomly pick one of
the sets. Due to the application of multiple rules that decrease the size
of Tc, the remaining data transfer sets will effectively minimize the
idle time in future allocation while also balancing the workload
across processes. Thus, assigning any data transfers from Tc to
lower workload processes could be beneficial. In Algorithm 9, a
set of candidate data transfers Tc is used, and Rule 5 is
implemented to select one set for allocation on processes randomly.

Algorithm 9: Random (Rule 5)

Require: A set of candidate transfers sets Tc from Algorithm 8.
Ensure: An updated set of candidate transfers sets Tc.
1: Select a set of candidate data transfers randomly from Tc.
2: Remove all other sets of candidate data transfers from Tc
except the one that was selected.
3: Return an updated set of candidate data transfer sets Tc.

4.4.7. Rule 6: Longest data transfer and process with shortest
workload

To balance workload, the scheduling Rule 6 is implemented in
this section. This rule selects a transfer candidate from Tc that is
larger in size than the others and assigns it to a process with the
lowest workload, thereby guaranteeing that workload is
distributed evenly among the processes.

Algorithm 10 implements Rule 6 by taking a set of candidate data
transfers Tc returned from Algorithm 9, a set of data transfer processes
denoted as P= {P1, : : : , Pj} and a set of process plans denoted as {π1,

: : : , πj}. The algorithm sorts all data transfers from Tc in descending
order based on their tau values before iterating over Tc and selecting
the current data transfer (qi, lj.dk, τn). Thereafter, the algorithm
computes the workload of the process using Equation (1) and then
assigns the current data transfer (qi, lj.dk, τn) to the process plan
with the lowest workload, denoted as πj. This iteration continues
until all data transfers from Tc are assigned to the process plans
associated with the processes in P. Finally, Algorithm 10 provides
an updated set of process plans {π1, : : : , πj}.

Algorithm 10: Longest data transfer and process with shortest
workload (Rule 6)

Require: A set of candidate transfers sets Tc from Algorithm 9, a
set of processes P = {P1, : : : , Pj}, and a set of process plans
{π1, : : : , πj}.
Ensure: An updated set of process plans {π1, : : : , πj}.
1: Arrange all data transfers in Tc in descending order according
to their τ value.
2: for each data transfer in Tc do
3: Let the current data transfer be (qi, lj.dk,τn).
4: Computes the workload for each process by using Equation (1).
5: Select a process plan πj, which is the shortest workload

among all process plans.
6: Assign a data transfer (qi, lj.dk,τn) to a process plan πj.
7: end for
8: Return the updated version of a set of process plans {π1, : : : , πj}.

Example 9 In this example, we have a set of data transfers denoted
as Tc. It consists of three transfers: (qi, lj.dk, 5), (qi, li.dj, 3), and (qi,
lk.di, 6).

First, algorithm needs to arrange the values of Tc in descending
order using τ as follows<(qi, li.dj, 3), (qi, lj.dk, 5), (qi, lk.di, 6)>. Next,
algorithm iterates over Tc and the current data transfer is (qi, li.dj, 3).
Next, the algorithm calculates the workload for each process using
Equation (1). The results are T(π1) = 5 and T(π2)= 2. Since π2
has the lowest workload in this iteration, the algorithm assigns (qi,
li.dj, 3) to a plan π2 = <(qk, li.dj, 3), (qi, li.dj, 3)>. After
completing the iteration, the algorithm returns the updated process
plan as follows:

• π1 = < (qi, li.dn, 2), (qj, lk.dm, 3), (qi, lj.dk, 5)>
• π2 = <(qk, li.dj, 3), (qi, li.dj, 3), (qi, lk.di, 6)>.

5. Experiments

This study conducted various experiments to evaluate the
proposed rules and their impact on different processes. Multiple
cases were created and implemented in different categories. Some
experiments focused on sequences with similar lengths, where
transfers within those queries exhibited noticeable variations in
length. This was a strict test for Rule 1. Other experiments
maintained consistent transfer lengths within sequences of similar
lengths to avoid invoking Rule 1. Furthermore, to test Rule 3,
certain experiments featured sequences with significant disparities
in length while keeping transfer lengths consistent. A subset of
experiments introduced significantly longer sequences and
transfers to examine the combined effects of Rule 1, Rule 3, and
Rule 4. Specific experiments intentionally introduced conflicts
into sequences with similar lengths to assess the efficacy of Rule
0. By contrast, another set of experiments prolonged certain
sequences and introduced multiple conflicts to evaluate the
interplay of Rule 0, Rule 1, and Rule 2. Most experiments
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involved sequences of similar length without conflicts, facilitating
the evaluation of random allocation using Rule 5 and the
comprehensive assessment of all rules in a combined fashion. A
distinct subset featured significantly longer sequences without
conflicts, providing a unique perspective on the applicability of all
rules collectively. This comprehensive approach allowed for a
thorough investigation of the rules’ effectiveness across a wide
spectrum of conditions.

Eight experiments were conducted on a stimulated multi-tiered
persistent storage to investigate various aspects of data transfer
allocation strategies in different query scenarios and process
configurations. In our experiments, we stimulated multi-tiered
persistent use, with four tiers denoted as L = <l0, l1, l2, l3>.
However, due to practical limitations, it was not feasible to
physically test all devices in a short period of time for a large
database with complete tiers. Therefore, instead of using realistic
devices, we analyzed the available devices from the market and
incorporated their read/write speeds into a simulator. Each tier has its
own set of device configurations, which are unique and distinct.

• Tier 0 (l0): Consists of three devices, namely {d1, d2, d3}, all
equipped with HDD storage.

• Tier 1 (l1): Comprises three devices, {d1, d2, d3}, each utilizing
SSD storage technology.

• Tier 2 (l2): Comprises three devices, {d1, d2, d3}, all employing
high-speed SSD storage.

• Tier 3 (l3): Consists of one device, specifically {d1}, each featuring
an NVMe drive.

The read and write speeds associated with each of these tiers are
depicted in Figure 6, providing essential information for the
experiment’s evaluation and resource allocation considerations.

5.1. Experiment configuration

Moreover, we used the TPC-H benchmark database [20] as the
foundation for our experiment’s database and query configuration.
The TPC-H database was scaled down to 10GB to facilitate
efficient testing within a manageable range. Data were distributed
across storage tiers, as detailed in Table 2, to explore multi-tiered
persistent data distribution. From 22 available queries in TPC
[20], we selected 15 to investigate. The experiment configuration
comprised eight distinct experiments. Each is designed to explore
various aspects of our multi-tiered data persistence system.

Experiment 1 focused on five sequences, namely {Q1, Q2, Q3, Q4,
Q5}, and employed two processes, evaluating all four scheduling
methods for transfer allocation plans. Experiment 2, similarly to
Experiment 1, used the same five queries {Q1, Q2, Q3, Q4, Q5},
but employed three processes and assessed all four scheduling
methods for transfer allocation plans. In Experiment 3, five
queries, namely {Q6, Q7, Q8, Q9, Q10}, were utilized, and two
processes were employed, with all four scheduling methods
applied for transfer allocation plans. Experiment 4, similarly to
Experiment 3, used vie queries, namely {Q6, Q7, Q8, Q9, Q10},
but employed three processes and assessed all four scheduling
methods for transfer allocation plans. Experiment 5 focused on
five queries, namely {Q11, Q12, Q13, Q14, Q15}, and employed two
processes, evaluating all four scheduling methods for transfer
allocation plans. Similarly, to Experiment 5, Experiment 6 used
the same five queries, namely {Q11, Q12, Q13, Q14, Q15}, but it
employed three processes and assessed all four scheduling
methods for transfer allocation plans. Experiment 7 focused on
seven queries, namely {Q1, Q2, Q3, Q4, Q5, Q6, Q7}, and three
processes were employed, with all four scheduling methods
applied for transfer allocation plans. The final experiment utilized
eight queries, namely {Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15}, and
employed three processes, evaluating all four scheduling methods
for transfer allocation plans.

From 22 available queries in TPC [20], we selected 15 to
investigate. The experiment configuration comprised eight distinct
experiments. Each is designed to explore various aspects of our multi-
tiered data persistence system. Experiment 1 focused on five
sequences, namely {Q1, Q2, Q3, Q4, Q5}, and employed two
processes, evaluating all four scheduling methods for transfer
allocation plans. Experiment 2, similarly to Experiment 1, used the
same five queries {Q1, Q2, Q3, Q4, Q5}, but employed three processes
and assessed all four scheduling methods for transfer allocation plans.
In Experiment 3, five queries, namely {Q6, Q7, Q8, Q9, Q10}, were
utilized, and two processes were employed, with all four scheduling
methods applied for transfer allocation plans. Experiment 4, similarly
to Experiment 3, used vie queries, namely {Q6, Q7, Q8, Q9, Q10}, but
employed three processes and assessed all four scheduling methods
for transfer allocation plans. Experiment 5 focused on five queries,
namely {Q11, Q12, Q13, Q14, Q15}, and employed two processes,
evaluating all four scheduling methods for transfer allocation plans.
Similarly, to Experiment 5, Experiment 6 used the same five queries,
namely {Q11, Q12, Q13, Q14, Q15}, but it employed three processes
and assessed all four scheduling methods for transfer allocation plans.
Experiment 7 focused on seven queries, namely {Q1, Q2, Q3, Q4, Q5,
Q6, Q7}, and three processes were employed, with all four scheduling
methods applied for transfer allocation plans. The final experiment
utilized eight queries, namely {Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15},
and employed three processes, evaluating all four scheduling methods
for transfer allocation plans.

For experiments, we use stimulated multi-tiered persistent
storage. Therefore, we need to process data transfer plans for
queries on that simulator. To achieve this, we first need to convert
queries into EPNs and then convert them into data transfer plans,
which are sequences of sets of data transfers.

To accomplish this, we use MySQL software to transform each
query into a query explain plan (a query processing graph). This
graph provides the data flow and estimated sizes of input and
output data for each operation. The example of the graph
generated by MySQL is shown in Figure 2.

From this graph, we can easily transform it into EPN and generate
data transfer plans based on the availability of the number of data
transfer processes. Since the number of data transfer processes used

Table 2
Table locations and estimated size

Table name Location
Number of

rows
Size (in
MB)

Each row (in
bytes)

LINEITEM l1.d1 24,000,000 2,563 112
LINEITEM l1.d2 24,000,000 2,563 112
LINEITEM l1.d2 24,000,000 2,563 112
ORDERS l1.d3 10,000,000 992 104
ORDERS l1.d4 5,000,000 495 104
CUSTOMER l0.d3 1,500,000 256 179
NATION l0.d1 250 < 1 128
REGION l0.d1 50 < 1 124
PART l0.d1 2,000,000 296 155
PARTSUPP l0.d2 8,000,000 1,099 144
SUPPLIER l0.d2 100,000 15 159

Total 9,067
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in each experiment is different, generating data transfer plans for each
experiment will also be different. There are several ways to generate
data transfer plans, and processing on that plan proceeds different
processing time too. Different scheduling methods show different
ways of generating the data transfer plans.

The experiments used four distinct scheduling methods to
generate data transfer plans. Four different scheduling methods
were evaluated during each experiment, each with a unique way
of allocating resources. The first method, optimal scheduling,
aimed to create the most efficient allocation plan possible. The
second method, known as rules-based scheduling or Algorithm 1,
was proposed in the study. The third method, allocating long
transfers first, prioritized the completion of long data transfers.
The fourth method allocates long sequences first, prioritized data
transfers from long sequences. These four methods were used to
evaluate the effectiveness and performance of various resource
allocation strategies in the experiments.

5.2. Experiment result

A detailed analysis of the experiment result of the eight different
experiments, each evaluating various strategies for data transfer
allocation. The results from these experiments are summarized inTable3.

5.2.1. Rule-based and optimal strategies
Across most experiments (Experiments 1–6, 8), the rule-based

and optimal strategies demonstrated comparable execution times.
This intriguing finding suggests that the rule-based approach
closely approximates the theoretically optimal strategy.

5.2.2. Long transfer and long sequence strategies
Notably, strategies prioritizing long transfers or long sequences

occasionally resulted in extended execution times compared to rule-
based and optimal approaches. This intriguing observation
underscores the importance of careful consideration in resource
allocation decision-making processes, highlighting the potential

trade-offs associated with prioritizing specific data transfer
characteristics.

Specifically, the rule-based scheduling approach emerged as a
promising contender, often showcasing performance on par with the
optimal strategy, with a total time unit of 312. In contrast, the long
transfer first strategy consistently demanded more time (total time
unit of 335), potentially due to its emphasis on prioritizing long
transfer tasks without necessarily optimizing overall efficiency.
While the long sequence first strategy exhibited relatively better
performance with a total time unit of 327, it still trailed behind
optimal and rule-based strategies, thereby underscoring the
nuanced dynamics at play in data transfer optimization.

In conclusion, the rule-based scheduling approach emerges as a
robust and effective strategy for minimizing data transfer time across
a diverse array of scenarios. Despite potential requirements for
manual rule definition, the rule-based approach offers
commendable efficiency and competitiveness when compared to

Figure 6
A sample data transfer speed for the tier with a set of devices

Table 3
Experiment results

Experiment
Optimal

scheduling
Rule-based
scheduling

Long data
transfer
first

Long
sequence

first

Experiment 1 54 55 57 56
Experiment 2 36 42 42 42
Experiment 3 51 51 51 51
Experiment 4 34 34 35 35
Experiment 5 30 30 31 30
Experiment 6 21 21 21 21
Experiment 7 43 43 49 44
Experiment 8 47 47 49 48
Total 316 323 335 327
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the optimal strategy. However, it is imperative to acknowledge the
potential drawbacks associated with strategies prioritizing long
transfers or sequences, as they may inadvertently lead to
suboptimal outcomes. Hence, careful consideration and evaluation
of various scheduling methods are crucial for informed resource
allocation decisions in multi-tiered persistent storage environments.

6. Summary, Conclusions, and Future Work

This paper introduces scheduling algorithms to enhance parallel
data transfers in multi-tiered persistent storage systems. These
algorithms are meticulously crafted, considering query sets,
storage tier sequences, data transfer sequences, and predefined
thresholds for identifying prolonged data transfers.

Algorithm 1 is the main algorithm, coordinating other
algorithms for crafting parallel data transfer plans for individual
processes. It initiates by selecting potential data transfers from a
sequence of data transfer sets, storing them in a set awaiting
assignment to processes. Subsequent algorithms refine these sets,
resolving conflicts and streamlining transfers, ultimately striving
to condense them to a single set allocated to processors with
minimal workload.

Experimental results confirm that the generated parallel data transfer
plans exhibit near-optimal performance, with some instances achieving
perfection. The proposed algorithms accommodate varying query
characteristics, yet occasional suboptimal plans may arise due to idle
time units in specific scenarios, highlighting areas for further refinement.

In conclusion, this study presents an efficient approach to
scheduling parallel data transfers in complex storage environments.
The algorithms reduce candidate transfer sets through elimination
rules, albeit with varying computational demands.

Moving forward, several challenges warrant attention. First, the
scheduling algorithms outlined in the paper sometimes yielded
suboptimal solutions, leaving several idle time units in the final
plans. It would be useful to further optimize the plans that have
already been generated. Second, deciding which queries to
prioritize for processing presents an interesting challenge: not all
queries need to be processed at the highest tiers of persistent
storage. So, prioritization could add flexibility to the use of said
storage. The third issue is the preprocessing of an input set of
queries, which could lead to partial optimization of the queries
before the scheduling algorithms are applied.
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