
Received: 5 January 2024 | Revised: 28 February 2024 | Accepted: 9 March 2024 | Published online: 13 March 2024

RESEARCH ARTICLE

A Model-Based Reinforcement Learning
Method with Conditional Variational
Auto-Encoder

Ting Zhu1 , Ruibin Ren1, Yukai Li1 and Wenbin Liu1,2,*

1School of Mathematics, Southwest Jiaotong University, China
2The 30th Research Institute of China Electronics Technology Group Corporation, China

Abstract:Model-based reinforcement learning can effectively improve the sample efficiency of reinforcement learning, but the environment
model in this method has errors. The model errors can mislead the policy optimization, leading to suboptimal policy. To improve the
generalization ability of the environment model, existing methods often use ensemble models or Bayesian models to build the
environment model. However, these methods are computationally intensive and complex to update. Since the generated model can
describe the stochastic nature of the environment, this paper proposes a model-based reinforcement learning method based on a
conditional variational auto-encoder (CVAE). In this paper, we use a CVAE to learn task-related representations and apply the
generative model to predict environmental changes. Considering the problem of multi-step error accumulation, model adaptation is
utilized to minimize the difference between simulated and real data distributions. Furthermore, the experiments verified that the proposed
method can learn task-relevant representations and accelerate policy learning.

Keywords: model-based reinforcement learning, conditional variational auto-encoder, task-relevant representations

1. Introduction

Reinforcement learning enables learning by interacting with the
environment and mainly solves the problem of sequential decision-
making. Deep reinforcement learning, which is said to be the key
to general artificial intelligence, has been widely used in robot
control, strategic gaming, autonomous driving, and other fields
[1–3]. However, reinforcement learning training requires many
samples and sample collection is expensive in practical
applications. Therefore, improving the sample efficiency is a key
issue in reinforcement learning research [4]. Model-based
reinforcement learning provides additional information for training
by modeling the environment, which can effectively improve the
sample efficiency. However, the environment model differs from
the real environment in model-based reinforcement learning. Its
prediction errors can further mislead the policy evaluation and
affect policy optimization. Therefore, it is important to establish an
environment model that can accurately depict the features of the
environment.

Learning an accurate environment model is challenging due to
random noise and limited diversity in training data [5]. Effective
representation and model uncertainty measurement can mitigate the
negative impact of model errors. On the one hand, appropriate data
representation can help the model extract pivotal information about

the environment for many high-dimensional tasks, while ignoring
much irrelevant background information in the data. On the other
hand, the uncertainty of the model reflects its knowledge about the
natural environment. Adaptively applying the uncertainty-aware
model can minimize the accumulation of errors.

In model-based reinforcement learning, state representations are
usually learned by reconstruction or contrastive learning [6–8]. When
the observation is complex, the variational auto-encoder (VAE) is
often used to project the observation into a low-dimensional latent
space [9, 10]. The encoder is often further optimized using
contrastive learning to improve the learning of representations.
However, the classic VAE usually assumes that the prior distribution
of the latent variables is a standard Gaussian, which only guarantees
that the model can extract useful information from some of the
modes. Considering the uncertainty of the environment model,
existing methods often use probabilistic and ensemble models to
construct the environment model [11, 12]. The difference among
ensemble models reflects the model’s cognitive bias toward
environmental transition. Both are practical tools for modeling
uncertainty.

In order to learn effective representations and capture
environmental uncertainty, this paper proposes a model-based
reinforcement learning method based on a conditional variational
auto-encoders (CVAE) because the generative model can better
characterize environmental stochasticity than the discriminative
model [13–15]. First, the task-related environmental information is
extracted by a prior network. The decoder is constructed using a
probabilistic model. Next, the prior network is applied to learn the

*Corresponding author:Wenbin Liu, School ofMathematics, Southwest Jiaotong
University and the 30th Research Institute of China Electronics Technology Group
Corporation, China. Email: WenbinLiu@my.swjtu.edu.cn

Journal of Data Science and Intelligent Systems
2024, Vol. 00(00) 1–11

DOI: 10.47852/bonviewJDSIS42022432

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://orcid.org/0009-0005-3587-1302
mailto:WenbinLiu@my.swjtu.edu.cn
https://doi.org/10.47852/bonviewJDSIS42022432
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

knowledge of the encoder, and it is used for environment model
construction. Then, the simulated data features are learned
adaptively from the real data features. Finally, the trained
environment model is used for policy learning in conjunction with
a model-free reinforcement learning approach.

The comprehensive evaluation results show that the method
proposed in this paper can effectively improve the sample efficiency,
and its convergence performance can reach or even exceed the state-
of-the-art algorithm. In a nutshell, our contributions are as follows:

1. We propose a CVAE-based feature extraction model
with expressive ability and generalization and can learn
task-relevant information.

2. We reduce the instability of the environment model by applying a
prior model to learn the encoder using a method of knowledge
distillation.

3. We mitigate the bias of the simulated data distribution by
reducing the difference between the real and simulated data
feature distributions.

This paper is structured as follows: Section 2 introduces methods
related to model-based reinforcement learning. In Section 3, the
basics required for this paper are presented. A model-based
reinforcement learning method with a CVAE is presented in
Section 4. Comparative experiments verify the effectiveness of the
proposed method in Section 5. In Section 6, we include the
limitations and future scope of the work. Finally, the paper is
concluded.

2. Literature Review

Due to the discrepancy between the environment model in
model-based reinforcement learning and the real environment, the
convergence performance of model-based reinforcement learning
is often lower than that of model-free reinforcement learning.
Existing work typically improves the performance of model-based
reinforcement learning algorithms by modeling the environment
with sufficient accuracy.

With the development of deep learning, neural networks have
demonstrated powerful representation capabilities [16]. Therefore,
neural networks are often used to model the environment. Ha and
Schmidhuber [17] proposed the World Model, which uses a VAE
to learn abstract compressed environmental representations and
performs model learning and policy optimization based on the latent
space. In addition, recurrent neural networks are applied to build a
model that combines historical information to predict future state
representations. The model based on a VAE [18] can transform the
high-dimensional state space into a low-dimensional latent space,
but the low-dimensional representation may lose information [15].
Considering the difference between simulated and real data
distribution, some works [19, 20] have reduced the bias of the
simulated data distribution by minimizing the difference between
the feature distributions. Similarly, conditional generative
adversarial networks are commonly used to constrain the bias of the
data distribution [15, 21]. The difference between simulated and
real data is reduced by discriminator training.

Since the environment may be stochastic and multimodal,
Thomas et al. (2017) applied a conditional auto-encoder to fit
multimodal environmental transfer. However, this method directly
combines the prior model with the decoder as the environment
model, which has instability [22]. Gal et al. [23] proposed the

DEEP PILCO, incorporating the Bayesian approach to estimate the
model uncertainty. Using Bayesian neural networks to model
the environment, the posterior distribution of parameters captures the
model uncertainty. However, this method could be more precise in
estimating the model uncertainty and is complicated in updating the
model. The model uncertainty can be categorized into stochastic
uncertainty and cognitive uncertainty. Chua et al. [11] proposed an
ensemble probabilistic model approach, PETS. The probabilistic
neural network model is mainly used to estimate the stochasticity,
and the ensemble model is used to estimate the cognitive
uncertainty. In addition, some works [24, 25] reduced the impact of
model prediction errors on model application through uncertainty
perception.

Existing model-based reinforcement learning methods commonly
use ensemble models and Bayesian models to construct the
environment model [11, 19, 26, 27], but the models of such methods
are complex and have high computational resource requirements.
The model proposed in this paper uses only a single generative
model to learn the environment, which can be generalized to unseen
state data.

3. Preliminary

3.1. Summary of notations

Table 1 shows the notations used in this paper.

3.2. Reinforcement learning

Reinforcement learning [28] mainly learns the optimal policy
by interacting with the environment and the interaction process is
usually built as a Markov decision process, denoted as
S;A; r;T; ρ0; γf g. S;A denotes the state space and action space,

Table 1
Summary of notations

Notation Meaning

S The state space
A The action space
st State at time t
at Action at time t
Δstþ1 State change at time t þ 1, Δstþ1 ¼ stþ1 � st
R Set of real numbers
rðs; aÞ Immediate reward from state s after action a
Tðs; aÞ Transition to next state from state s taking action a
πðajsÞ Probability of taking action a in state s
ρ0 The distribution of the initial state
γ The discount factor
Qðs; aÞ Value of taking action a in state s
θ The parameters of the encoder
φ The parameters of the decoder

θ̂ The parameters of the prior model

pθðzjxÞ The variational distribution of z conditioned on x
qφðxjzÞ The generative distribution of x conditioned on z
pðzÞ The prior distribution of z
pθ̂ðzjyÞ The prior distribution of z conditioned on y
N µ; σ2Ið Þ Gaussian distribution with the mean µ and

the variance σ2

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

02

respectively, and ρ0 denotes the initial state distribution.
r : S� A ! R is the reward function, and T : S� A ! S is the envi-
ronmental transition kernel, which is used to represent the state stþ1

resulting from the environmental change after the action at is per-
formed at the state st . γ 2 ð0; 1Þ is the discount factor used to balance
the weights between long-term benefits and short-term rewards. The
policy function πðajsÞ usually represents the probability of choosing
an action a given state s. The purpose of reinforcement learning is to
find an optimal policy that maximizes the expected cumulative
reward, denoted as,

π�¼ argmax
π

E
π

XH
t¼1

γt�1rðst ; atÞjs0 � ρ0

" #
; (1)

where stþ1 ¼ Tðst ; atÞ, at � πðajstÞ and H is the length of the epi-
sode. The environment model in model-based reinforcement learn-
ing usually refers to the reward function and the transition kernel.

After each update of the policy function, the expected
cumulative reward can be calculated according to Equation (1),
which can be used to evaluate the policy. However, this process
requires a large amount of data collection, which seriously
reduces the efficiency of policy evaluation and updates. Therefore,
the state-action value function Qðs; aÞ is often used to evaluate the
value of a policy decision [29], which is expressed as the expected
cumulative reward that the agent receives in the future after execut-
ing an action a.

Qπðs; aÞ ¼ Eπ

XH
k¼t

γk�1rðsk; akÞj st ¼ s; at ¼ a

" #
: (2)

3.3. Conditional variational auto-encoder

VAE is a deep generative model with latent variables, which
mainly applies neural networks to model two complex conditional
probability functions [30]. As shown in Figure 1, VAE mainly
consists of an inference network and a generative network. The
inference network is mainly used to estimate the variational
distribution pθðzjxÞ, and the generative network is used to estimate
the probability distribution qφðxjzÞ. The inference network can be
regarded as an encoder that maps the observed variables x into latent
variables z. The generative network is a decoder that decodes the
sampled latent variables z. It is usually assumed that the distribution
pθðzjxÞ follows a Gaussian distribution with diagonalized covari-
ance, whose mean and variance are predicted by the encoder.

The optimization objective of the VAE is to maximize the
evidence lower bound (ELBO) [30], which can be regarded as the
E-step and M-step in the EM algorithm.

max
θ;φ

ELBOðq; x; θ;φÞ

¼ maxð
θ;φ

Ez~pθðzjxÞ½log qφðxjzÞ� � KLðpθðzjxÞ; pðzÞÞÞ
(3)

where pðzÞ is the prior distribution of the latent variables, usually
assumed to be isotropic standard Gaussian distribution and θ;φ are
the parameters of the encoder and decoder, respectively. VAE is often
used to extract the features of high-dimensional data, and the size of the
control parameters can be reduced by projecting the observation to a
low-dimensional state through the encoder [9].

Unlike VAE, the input of the CVAE also contains label
information y, and the corresponding distribution of latent variables
also depends on y [31]. CVAE mainly consists of three parts: an
encoder, a decoder, and a prior network, where the prior network
pðzjyÞ represents the prior distribution of the latent variables. The
outputs of the encoder, the mean µ and the variance σ2, represent
the parameters of the distribution of the latent variable z. Therefore,
the latent variable distribution can be expressed as,
pθðzjx; yÞ ¼ N z;µθ; σ

2
θI

� �
:After sampling z from the latent variable

distribution, the labeling information y is concatenated with it and
inputted into the decoder to obtain x.

Using variational inference, the CVAE is optimized by
maximizing ELBO [31],

max
θ;φ

ELBOðq; x; θ;φÞ ¼ max
θ;φ

ðfEpθðzjx;yÞ½log qφðxj; y; zÞ�

� KLðpθðzjx; yÞjjpðzjyÞÞÞ (4)

where pðzjyÞ is the prior distribution of the latent variable z, which is
usually obtained through a prior network. The architecture of the
prior network is similar to that of the variational encoder except
for the inputs.

4. Model Learning Based on CVAE

4.1. Learning potential transition information

As a common model for feature learning, the VAE can learn
essential representations of the data through feature encoding and
data reconstruction. However, the features sampled in VAE are
not controllable and may lose much information. Thus, this paper
utilizes the CVAE to learn environmental transfer features.

The feature learning framework of this paper is shown in
Figure 2, where ðst ; atÞ represents the condition y, and Δstþ1; rtþ1

represent the original data x. With pθðzjx; yÞ denoting the latent var-
iable distribution, the latent features can be obtained through repara-
metrized sampling, z ¼ µθ þ ò � σθ; ò � Nðz; 0; IÞ. In order to learn
the transfer features corresponding to a specific state-action pair
ðst ; atÞ, the decoder’s input contains the condition labels ðst ; atÞ in
addition to the latent features z. The decoder is trained to reconstruct
Δstþ1; rtþ1, making the encoder learn pivotal features of the transition.

Since the deterministic model has the problem of overfitting, a
probabilistic model qφðΔstþ1; rtþ1jzt ; st ; atÞ is used to construct the
decoder.

qφ Δstþ1; rtþ1j zt; st ; atð Þ ¼ N Δstþ1; rtþ1;µφ; σφ2 I
� �

: (5)

Similarly, the output of the encoder µφ; σ
2
φ is parameterized to

represent a Gaussian distribution. For different ðst ; atÞ, the decoder
qφ learns different state change distributions. Sampling Δstþ1 from
qφ, the next state can be represented as,

Figure 1
A network framework for variational auto-encoder

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

03

stþ1 ¼ st þΔstþ1: (6)

The loss of CVAE consists of two main components, the KL
divergence term and the reconstruction loss,

LcvaeðΔstþ1; rtþ1; st ; at ; θ;φÞ
¼ KL pθðzjΔstþ1; rtþ1; st ; atÞjjpðzj st ; atÞð Þ

� 1
n

Xn
i¼1

logqφðΔstþ1; rtþ1jst; at ; ziÞ
(7)

where zi is sampled from the distribution of the latent variable and n
is the number of samples.

4.2. Updates of the prior network

To enable environment models to take full advantage of feature
models, model-based RL usually constructs the environment model
by directly combining the prior model with the decoder [14].
However, due to the difference between the prior and the
posterior of the latent variables, the method can lead to model
instability [15]. Therefore, after the training of CVAE, this paper
applies the prior model to distill the knowledge of the encoder
and updates the prior model with the encoder output. The prior
model, parametrized to represent the distribution of transfer
features pθ̂ðzt jst; atÞ, is consistent with the encoder model except
for the different inputs. Its inputs and outputs are ðst ; atÞ and
µθ̂; σ

2
θ̂
, respectively.

Specifically, the distribution pθ represented by the encoder is
used as the target value and the distribution pθ̂ represented by the
prior model is made close to it. The KL divergence is used to measure
the distance between the prior distribution and the posterior distribu-
tion, and the prior model is trained byminimizing the KL divergence.

Lpriorðst ; at ; θ̂Þ ¼ KL pθðzj st ; at ;Δstþ1; rtþ1Þjjpθ̂ðzj st ; atÞ
� �

(8)

4.3. The environment model

The feature z obtained by the prior model is similar to the latent
feature obtained by the encoder, and the decoder can decode z to
obtain Δstþ1; rtþ1. Therefore, as shown in Figure 3, this paper com-
bines the prior model with the decoder to construct the environment
model. The prior model learns the distribution of environmental
transfer features, while the decoder predicts the state changes and
rewards, qφðΔstþ1; rtþ1jzt ; st ; atÞ.

To optimize the environment model, the model is trained by
minimizing the negative log-likelihood of the predicted data.

Lenvðst ; at ; θ̂;φÞ ¼ � 1
n

Xn
i¼1

logqφðΔstþ1; rtþ1j st; at; ziθ̂Þ: (9)

4.4. Model adaptation

Generative models can mitigate the overfitting problem of one-
step prediction of environment models, but the problem of multi-step
prediction still exists [32]. Prediction errors accumulate with multi-
step predictions, resulting in deviations between the simulated
trajectory and the real trajectory. This bias will mislead the
assessment of the value of the policy. Thus, this paper uses the
model adaptation method to mitigate the problem. Learning the
invariant features between simulation data and real data can
reduce the offset of simulation data distribution [19]. The model
framework is shown in Figure 4.

When the distance between the simulated and real data
distribution is small, the corresponding feature distributions
should be similar. Therefore, the environment model is optimized
by minimizing the distance between the feature distributions. The
encoder and prior model extracts the features of real data and
simulated data, respectively. In this paper, the maximum mean
discrepancy (MMD) is used to measure the distance between the
real and simulated feature distributions. The deviation of the
simulated data distribution is reduced by minimizing the MMD loss,

LMMD ¼ 1
n

Xn
i¼1

f zeið Þ � 1
m

Xm
j¼1

f zmj

� ������
�����
2

H

:

¼ 1
n2

Xn
i¼1

Xn
i0¼1

k zei; z0eið Þ � 2
nm

Xn
i¼1

Xm
j¼1

k zei; zmj

� �þ 1
m2

Xm
j¼1

Xm
j0¼1

k zmj; z0mj

� �������
������

(10)

where f is the mapping function on feature z. The MMD is
usually computed implicitly using the kernel function kðx; yÞ with
the kernel trick.

Figure 2
The feature learning framework based on CVAE

Figure 3
The environment model

Figure 4
The feature adaptation model

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

04

After the environment model is built, it can be applied to the
learning of the controller in model-free reinforcement learning. As
shown in Algorithm 1, with the SAC method, this paper uses the
environment model as a data augmenter for the branch rollout
[27]. The generated simulation data are mixed with real data for
value and policy learning.

Algorithm 1: CVAE-SAC

Input: the environment dataset Denv.
Output: the policy π, the value function Q.
1 Initialization: the model dataset Dmodel, the policy π, the value
function Q, the environment model M.

2 For episode i ¼ 1 to N do
3 Train the CVAE model and build the environment model M.
4 For step j ¼ 1 to H do
5 Interact with the environment using the policy π. Add data
ðsj; aj; sjþ1; rjÞ to Denv.

6 Model rollouts: Randomly sample the start state s from Denv.
Perform the k-step rollout from s in M. Add data ðs; a; s0 ; rÞ
to Dmodel.

7 End
8 Sample data from Denv and Dmodel to update policy π and the
value function Q by applying SAC method.

9 End

5. Experiments and Results

5.1. Experiment settings

This paper evaluated the proposed methods and other baselines
on several MuJoCo continuous control tasks from OpenAI Gym
with a maximum horizon of 150. The experiments in this paper
were conducted under five different random seeds, and the curve
results were averaged under random seeds. The following are the
experimental details involved in the CVAE experiment. The
environment model consists of a prior network and a decoder. The
prior network is a multilayer perceptron (MLP) with three hidden
layers of size 200 and the decoder is a MLP with two hidden layers
of size 200. The encoder and the prior network have the same
architecture except for the different input sizes. The dimensions of
the encoded features are the sum of the dimensions of states and
actions. The length of the rollout in the experiment is 1.

5.1.1. The experimental scenarios
The experiments in this paper mainly use the Mujoco scenarios

of Inverted Pendulum, Reacher, Reacher3D, Pusher, and Swimmers,
as shown in Figure 5.
a) Inverted Pendulum: consists of a cart that moves linearly, with a

pole fixed at one end and free at the other. The cart can be pushed
to the left or right, and the goal is to balance the bar on top of the
cart by applying force to the cart.

b) Reacher: a robotic armwith two joints. The goal is tomove the tip of
the robot near a randomly generated target. The action is the torque
applied at the two hinges, represented as a two-dimensional vector.
The reward consists of the distance from the tip to the target position
and the action penalty. Reacher3D is identical to the Reacher target,
but its robot arm is three-dimensional.

c) Pusher: a multi-jointed robotic arm, consisting of shoulder,
elbow, forearm, and wrist joints. The goal is to move the target
cylinder to the target position using the robot’s end-effector.
The action is to apply torques to the hinges of the shoulder
and elbow, expressed as a seven-dimensional vector. The

reward is composed of fingertip-to-object position distance,
object-to-target position distance, and action penalty.

d) Swimmer: consists of three links and two joints. The goal is to
move the object to the right as fast as possible by applying
torque to the joints. The action is the torque applied to the two
joints, represented as a two-dimensional vector and the reward
consists of a forward reward and a penalty for the action.

e) Hopper: a two-dimensional one-legged figure. The goal is to
make hops that move in the forward (right) direction. The
action is applying torques on the three hinges connecting the
four body parts. The reward consists of a healthy reward, a
forward reward, and a penalty for the action.

5.1.2. The baseline algorithms
The comparison algorithms used for the experiments in this

paper are MBPO [27], AMPO [19], SAC [33], and DDPG [34].
a) MBPO: utilizes an ensemble probabilistic model to learn the

environment, mainly considering when to trust the
environmental model. In order to minimize the impact of
model errors on policy evaluation, the planning length is
determined according to the impact of model errors.

b) AMPO: is an improved algorithm based onMBPO, whichmainly
studies the problem of simulation data bias. Combined with the
domain adaption method, it enhances the optimization of the
model by minimizing the distance between the feature
distributions of the simulated data and the real data.

c) SAC: is an offline learning method that mainly introduces
entropy regularization to achieve the exploration of the policy,
which can prevent the policy from falling into the local
optimum, and speed up the training.

d) DDPG: combines DQN and AC methods, utilizes neural
networks to fit the value function and policy function, and
performs well in many continuous control problems.

5.2. Feature visualization

This paper records the data feature of the proposed method
during the training process in the Mujoco environment to test
whether the feature model can learn the task-relevant features.
Figure 6 shows the representation of the features handled by
t-SNE 2-dimensions reduction. The color of the scatter indicates
the value of the state, the lighter the color, the higher the value.
As shown in the figure, neighboring points in the latent feature

Figure 5
The experiment scenarios: Inverted Pendulum, Reacher,

Reacher3D, Pusher, Swimmer, and Hopper

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

05

Figure 6
A visualization of the latent features of the training data

Figure 7
Training trajectories of robot arm fingertips under

MBPO and CVAE algorithms

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

06

Figure 8
Distribution of training data and visualization
of latent features using the CVAE algorithm

Figure 9
Comparison of the convergence performance of the benchmark algorithms on continuous tasks such as Inverted Pendulum

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

07

space have similar values, which indicates that the prior network can
project states with similar values to a similar latent space. The region
division between different value features is evident in Inverted
Pendulum, Reacher3D, and Swimmer scenarios. This implies that
the bias of state values generated by randomness in the feature
sampling process is not too large. In conclusion, the prior model
can learn task-relevant information.

5.3. Training trajectories

In the Reacher environment, the agent’s task is tomake the fingertips
of the robot arm reach the target position as soon as possible. A coordinate
system is established to visualize the trajectory of the fingertip of the robot
arm and use the target position as the origin. Figure 7(a) and Figure 7(b)
individually present the fingertip trajectories navigating from the starting
point (0.209,0) to the designated target position when employing the
MBPO and CVAE methodologies, respectively. Trajectories of different
colors in the same figure indicate the test trajectories after different
training times, and trajectories of the same color in both figures indicate
the same training time. As shown in the figure, MBPO takes more time
to reach the target position in the pre-training period, while CVAE
reaches the target position faster with the same training time. The
controllers of MBPO and CVAE are the same, the only difference is
the source of simulation data. This indicates that the simulation data
generated by CVAE are more accurate and can provide effective
information for policy learning.

Figure 8(a) shows the allocation of training data for CVAE, and
the scatter color’s darkness shows the corresponding data’s value.
CVAE has less data in the low-value region, and the training data
are mainly distributed in the high-value region. Figure 8(b) shows
the visualization of the latent layer features after t-SNE
dimensionality reduction. The figure shows that CVAE can separate
the high-value and low-value data. It shows that the environment
model of CVAE combines the advantages of generative modeling,
which can learn the nature of the surrounding data with less data.

5.4. Performance testing of the algorithm

Figure 9 records the cumulative reward changes of various
algorithms during the training process in continuous control tasks
such as the Inverted Pendulum. The CVAE represents the algorithm
generated by combining the environment model proposed in this
paper with the controller in MBPO. As shown in the figure, the final
cumulative rewards of CVAE can be optimal and converge
relatively quickly. The environment model in CVAE enables rapid
learning of effective task information to assist in policy learning.
However, the proposed methods are only suitable for simple
continuous control tasks. Figure 10(a) records the reward curves of
each method, while Figure 10(b) shows the return at convergence in
the Hopper. As shown in Figure 10(b), the convergence performance
in the proposed method is lower than the model-free method under
the complex continuous control task. This indicates that the model
architecture of the proposed method is relatively simple and cannot
accurately describe the changes in the complex environment.

The solid line represents the mean of the cumulative rewards
under the 5 random seeds, the shaded portion indicates the range
of variation, and the dashed line is the rewards when SAC converges.

5.5. Effectiveness of model adaptation

In order to test the effect of themodel adaptation on the environment
model, this paper records the performance of the removed optimization
module, denoted as CVAE_no_adapt, in the Swimmer scenario.

Figure 11(a) records the cumulative reward changes over the training
process for multiple model-based algorithms. Figure 11(b) records the
KL loss for the prior model, reflecting the difference between the
prior model and the encoder. As shown in the figure, CVAE
accelerates the algorithm’s convergence compared to other algorithms.
Figure 12(a) and Figure 12(b) respectively record the distribution of
the hidden layer features of CVAE and CVAE_no_adapt, and the
distribution of the features learned by CVAE_no_adapt is scattered.
This indicates that the model adaptation module can optimize model
learning and reduce the bias of simulated data.

6. Discussion

This paper proposes a model-based reinforcement learning
method based on CVAE. Considering the stochastic nature of the
environment and the uncertainty of model prediction, this paper
applies a CVAE to learn the transfer features of environmental
changes. It uses knowledge distillation to learn feature encoding
and combines the decoder to construct the environment model. In
addition, to mitigate the accumulation of multi-step prediction
errors, a model adaptive method is applied to optimize the

Figure 10
Comparison of the convergence performance

of the benchmark algorithms in Hopper

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

08

environment model. Experiments show that the proposed method
can effectively learn effective features of the environment in the
simple continuous control task, which can assist the policy
learning and enable the return and sample efficiency to exceed
that of the benchmark methods. Section 5.3 shows that the
proposed method can learn the task information faster and
accelerate the policy to explore the high-value region compared
with other model-based methods.

However, since the network architecture of the environment
model is relatively simple, the model cannot accurately capture the
information of the complex environment. Section 5.4 shows that for
complex tasks, the model prediction errors of the proposed method
mislead the policy optimization, which makes the final return lower
than that of the model-free reinforcement learning method. In
addition, the proposed method only focuses on reducing model
prediction errors in terms of model construction, while the effect of
model uncertainty on policy optimization still exists. In future work,
it can be suggested to apply complex neural networks to construct
the model framework and consider the effect of historical
information to extend the proposed method to complex and

high-dimensional tasks. In addition, it is also possible to adaptively
apply the environment model in terms of model application,
reducing the impact of model errors.

7. Conclusion

The prediction errors of the environment model in model-based
reinforcement learning can accumulate with the planning steps and
affect the policy evaluation. In order to mitigate the problem, this
paper proposes an environment model based on CVAE.
Specifically, CVAE is applied to learn the potential information of
the data, and the stochasticity of the generative model is exploited
to improve the generalization of the environment model. Through
comprehensive experimental evaluation, it is verified that the
model in this paper can effectively learn the features related to the
task, accelerate the learning of the policy, and effectively improve
the sample efficiency. However, this paper does not consider the
application of the model based on the effect of error and leaves
the adaptive application of the model for future work.

Figure 12
Latent feature visualization image of the training data

Figure 11
Cumulative rewards variation in model-based algorithms and

KL loss for the prior model training

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

09

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

Author Contribution Statement

Ting Zhu: Conceptualization, Methodology, Software,
Investigation, Writing – original draft, Writing – review & editing.
Ruibin Ren: Conceptualization, Methodology, Formal analysis,
Investigation, Resources, Writing – review & editing, Visualization,
Supervision, Project administration.Yukai Li: Software, Validation,
Formal analysis, Data curation, Writing – review & editing.Wenbin
Liu: Software, Validation, Resources, Writing – review & editing,
Project administration.

References

[1] Wang, L., Yang, S., Yuan, K., Huang, Y., & Chen, H. (2023).
A combined reinforcement learning and model predictive
control for car-following maneuver of autonomous vehicles.
Chinese Journal of Mechanical Engineering, 36(1), 1–11.

[2] Wu, J., Huang, Z., & Lv, C. (2023). Uncertainty-aware model-
based reinforcement learning: Methodology and application in
autonomous driving. IEEE Transactions on Intelligent
Vehicles, 8(1), 194–203.

[3] Wu, J., Huang, C., He, H., & Huang, H. (2024). Confidence-aware
reinforcement learning for energy management of electrified
vehicles. Renewable and Sustainable Energy Reviews, 191, 114154.

[4] Wang,T., Bao,X.,Clavera, I.,Hoang, J.,Wen,Y., Langlois, E.D.,
: : : , & Ba, J. (2019). Benchmarking model-based reinforcement
learning. arXiv Preprint: 1907.02057.

[5] Luo, F. M., Xu, T., Lai, H., Chen, X. H., Zhang, W., & Yu, Y.
(2024). A survey on model-based reinforcement learning.
Science China Information Sciences, 67(2), 121101.

[6] Ho, J., & Ermon, S. (2016). Generative adversarial imitation
learning. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, 4572–4580.

[7] Nabati, O., Tennenholtz, G., & Mannor, S. (2023).
Representation-driven reinforcement learning. Proceedings of
the 40th International Conference on Machine Learning,
25588–25603.

[8] Niv, Y. (2019). Learning task-state representations. Nature
Neuroscience, 22(10), 1544–1553.

[9] Liang, X. X., Feng, Y. H., Huang, J. C., Wang, Q., Ma, Y.,
& Liu, Z. (2020). Novel deep reinforcement learning
algorithm based on attention-based value function and
autoregressive environment model. Journal of Software,
31(4), 948–966.

[10] Rafailov, R., Yu, T., Rajeswaran, A., & Finn, C. (2021). Offline
reinforcement learning from images with latent space models.
Learning for Dynamics and Control, 1154–1168.

[11] Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep
reinforcement learning in a handful of trials using probabilistic

dynamics models. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, 4759–4770.

[12] Deisenroth, M., & Rasmussen, C. E. (2011). PILCO: A model-
based and data-efficient approach to policy search. Proceedings
of the 28th International Conference on Machine Learning,
465–472.

[13] Moerland, T. M., Broekens, J., Plaat, A., & Jonker, C. M. (2023).
Model-based reinforcement learning: A survey. Foundations and
Trends® in Machine Learning, 16(1), 1–118.

[14] Moerland, T. M., Broekens, J., & Jonker, C. M. (2017). Learning
multimodal transition dynamics for model-based reinforcement
learning. In 29th Benelux Conference on Artificial Intelligence, 362.

[15] Zhao, T., Wang, Y., Li, G., Kong, L., Chen, Y., Wang, Y., : : : ,
& Yang, J. (2021). A model-based reinforcement learning
method based on conditional generative adversarial
networks. Pattern Recognition Letters, 152, 18–25.

[16] Selvaraj, J., & Jayanthy, A. K. (2023). Automatic polyp
semantic segmentation using wireless capsule endoscopy
images with various convolutional neural network and
optimization techniques: A comparison and performance
evaluation. Biomedical Engineering: Applications, Basis and
Communications, 35(06), 2350026.

[17] Ha, D., & Schmidhuber, J. (2018). Recurrent world models
facilitate policy evolution. In Proceedings of the 32nd
International Conference on Neural Information Processing
Systems, 2455–2467.

[18] Kingma, D. P., & Welling, M. (2013). Auto-encoding
variational Bayes. arXiv Preprint: 1312.6114.

[19] Shen,J.,Zhao,H.,Zhang,W.,&Yu,Y.(2020).Model-basedpolicy
optimization with unsupervised model adaptation. Advances in
Neural Information Processing Systems, 33, 2823–2834.

[20] Shen, J., Lai, H., Liu, M., Zhao, H., Yu, Y., & Zhang, W.
(2023). Adaptation augmented model-based policy optimiz-
ation. Journal of Machine Learning Research, 24(218), 1–35.

[21] Dong, W., Liu, S., & Sun, S. (2023). Safe batch constrained
deep reinforcement learning with generative adversarial
network. Information Sciences, 634, 259–270.

[22] Rempe, D., Birdal, T., Hertzmann, A., Yang, J., Sridhar, S., &
Guibas, L. J. (2021). Humor: 3D human motion model for
robust pose estimation. Proceedings of the IEEE/CVF
International Conference on Computer Vision, 11488–11499.

[23] Gal, Y., McAllister, R., & Rasmussen, C. E. (2016). Improving
PILCO with Bayesian neural network dynamics models.
In Data-efficient Machine Learning Workshop.

[24] Malekzadeh, P., Hou, M., & Plataniotis, K. N. (2023).
Uncertainty-aware transfer across tasks using hybrid
model-based successor feature reinforcement learning.
Neurocomputing, 530, 165–187.

[25] Wu, Z., Yu, C., Chen, C., Hao, J., & Zhuo, H. H. (2022). Plan to
predict: Learning an uncertainty-foreseeing model for model-
based reinforcement learning. Advances in Neural
Information Processing Systems, 35, 15849–15861.

[26] Fan, Y., & Ming, Y. (2021). Model-based reinforcement
learning for continuous control with posterior sampling.
International Conference on Machine Learning, 3078–3087.

[27] Janner, M., Fu, J., Zhang, M., & Levine, S. (2019). When to
trust your model: Model-based policy optimization.
Proceedings of the 33rd International Conference on Neural
Information Processing Systems, 12519–12530.

[28] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:
An introduction. USA: MIT Press.

[29] Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine
Learning, 8, 279–292.

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

10

[30] Nielsen, M. A. (2015). Neural networks and deep learning.
USA: Determination Press.

[31] Sohn, K., Yan, X., & Lee, H. (2015). Learning structured output
representation using deep conditional generative models.
In Proceedings of the 28th International Conference on
Neural Information Processing Systems, 2, 3483–3491.

[32] Marino, D. L., & Manic, M. (2019). Modeling and planning
under uncertainty using deep neural networks. IEEE
Transactions on Industrial Informatics, 15(8), 4442–4454.

[33] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft
actor-critic: Off-policy maximum entropy deep reinforcement

learning with a stochastic actor. In International Conference
on Machine Learning, 1861–1870.

[34] Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W.,
Horgan, D., Dhruva, T., : : : , & Lillicrap, T. P. (2018).
Distributed distributional deterministic policy gradients.
arXiv Preprint: 1804.08617.

How to Cite: Zhu, T., Ren, R., Li, Y., & Liu, W. (2024). A Model-Based
Reinforcement Learning Method with Conditional Variational Auto-Encoder.
Journal of Data Science and Intelligent Systems. https://doi.org/10.47852/
bonviewJDSIS42022432

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

11

https://doi.org/10.47852/bonviewJDSIS42022432
https://doi.org/10.47852/bonviewJDSIS42022432

	A Model-Based Reinforcement Learning Method with Conditional Variational Auto-Encoder
	1. Introduction
	2. Literature Review
	3. Preliminary
	3.1. Summary of notations
	3.2. Reinforcement learning
	3.3. Conditional variational auto-encoder

	4. Model Learning Based on CVAE
	4.1. Learning potential transition information
	4.2. Updates of the prior network
	4.3. The environment model
	4.4. Model adaptation

	5. Experiments and Results
	5.1. Experiment settings
	5.1.1. The experimental scenarios
	5.1.2. The baseline algorithms

	5.2. Feature visualization
	5.3. Training trajectories
	5.4. Performance testing of the algorithm
	5.5. Effectiveness of model adaptation

	6. Discussion
	7. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

