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Abstract:Most data-driven techniques rely on the availability of data. Hence, when the data provided are not sufficient, the algorithm might
not work as intended. Thus, it is important to be able to predict the dynamics of the data, even when the number of available data is low, or
scarce. This study aimed to predict the power consumption of a building given a scarce dataset via a novel Monte Carlo simulation-based
Regression Tree (MCRT) algorithm. The main idea is to train Monte Carlo simulation on each leaf generated by the regression tree algorithm.
Thus, the prediction no longer depends on the average of the samples contained in the leaf, but now depends on the probability of the samples.
The proposed algorithm was validated on 2 datasets obtained from Universitas Widya Dharma Pontianak (UWDP), Indonesia, and
Trapeznikov Institute of Control Sciences (TICS), Russia. To show that the MCRT algorithm is better than the regression tree (RT)
algorithm, a two-tail hypothesis was proposed. Based on the experiments which were run on Python software with 16 GB RAM, 7th Gen
Core i7 machine on 50 datasets randomly generated from the UWDP electrical data, it can be concluded that the MCRT algorithm
performs better than the previous RT algorithm used to model scarce datasets with P-value= 0.000319. Furthermore, the proposed
algorithm improves the model predictive accuracy of the RT algorithm by up to 2%.
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1. Introduction

This paper aims to study the performance of Monte Carlo (MC)
simulation-based regression tree (RT) in predicting power
consumption inside a building given a scarce dataset, i.e., when
there are a lot of missing data points in the dataset. Along with
the development of technology, especially in an era where human
“tedious” tasks are being handled by Artificial Intelligence, it is
not unusual to find a building equipped with various kinds of
sensors that can precisely measure the dynamics of the building
[1, 2]. This information is useful as a mathematical model can
then be derived from it in order to simulate the future dynamics of
the structure [3]. The approach based on this information is called
the data-driven approach [4–6]. The data-driven approach is a
machine-learning technique that focuses on learning mathematical
models to represent the dynamics of a dataset. This approach is
somehow easier to deploy rather than the model-based approach,
which depends on a strong knowledge of the structure’s physical
properties. Various methods apply this approach. Some of them
are MC simulation [7–10] and the RT from Decision Tree
Learning [11–13].

1.1. Previous work

The MC simulation is a stochastic model that predicts an
outcome of a process based on the probability of random
variables [14]. In Hoendarto et al. [8], the authors proposed an
idea to predict the power consumption inside a structure with the
MC simulation. In their research, they have shown that the MC
algorithm can predict the power consumption inside a building
with an accuracy of more than 90%. In Mardani Najafabadi and
Taki [9], the MC simulation was used to optimize the energy
consumption of a cucumber greenhouse located in Golshan, Iran.
It was shown that the MC simulation helped to control the gas
and improve the energy consumption efficiency inside the
greenhouse via precise modeling. In the study by Shen et al. [10],
the authors employed a combination of MC simulation and
support vector regression model to forecast household power
consumption. Their research demonstrated that this approach led
to a notable 12% reduction in power consumption. Similarly,
Ding et al. [7] utilized MC simulation and probability density
analysis to predict nuclear energy consumption in China and
America. Their findings suggested that the proposed model
showed promise in accurately forecasting nuclear energy
consumption from 2019 to 2023.

The RT algorithm, instead, is an algorithm that focuses on
splitting the dataset based on the similarities of features presented
in the dataset. The idea is to group the whole dataset into smaller
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subsets of data based on their variance. Smarra et al. [12] used the RT
algorithm together with entropy (referred to as entropy-based subset
selection RT or e-ss RT) from information theory to detect the
presence of faults inside a building based on seismic dynamic data
recorded by accelerometers located within a structure. They have
shown that the entropy-based RT can potentially detect damages
within a structure while also requiring significantly fewer
parameters compared to the classical RT algorithm (around 5) to
detect faults. The research paper by Panjaitan et al. [11] showed
that the random forest, which is a collection of RTs, can precisely
model the energy consumption of a building with an accuracy
above 90%. Recently, Tjen et al. [13] modified the algorithm
proposed by Smarra et al. [12] to predict power consumption in a
university building located in Pontianak, Indonesia. They have
shown that the modified RT algorithm can precisely predict power
consumption inside the building even when the available data are
scarce.

In particular, the papers stated above have shown the capability
of RT and MC simulation in predicting the dynamics of data.
However, it is well known that data-driven approach performance
depends mostly on the availability of the dataset [15]. Hence,
when only a few data exist, the approach might not produce
optimal results [16–18].

1.2. Contributions

As mentioned earlier, data-driven approaches such as MC
simulation and RT algorithms may not yield the desired outcome
when dealing with scarce datasets. However, there must be a way
to achieve precise predictions even with limited data. Therefore,
this paper is organized to highlight three contributions:

1) The enhancement of the RT algorithm proposed in Tjen et al. [13]
by applying MC simulation in each leaf of the tree generated by
the RT algorithm, thereby improving prediction accuracy.

2) The comparison between theMonte Carlo-based Regression Tree
(MCRT) algorithm to the RT algorithm proposed in Tjen et al.
[13] and followed by the proof that the MCRT algorithm
indeed enhances the predictive accuracy of the previous RT
algorithm.

3) The methodology was validated on 2 real datasets: UWDP,
Indonesia, and Trapeznikov Institute of Control Sciences
(TICS), Russia.

This paper follows the methodology presented by Smarra et al. [12] and
Tjen et al. [13]. Specifically, this paper highlights themodification of the
RT algorithm by incorporating the MC simulation proposed by
Hoendarto et al. [8] into each leaf of the tree generated by the RT
algorithm. Thus, instead of deriving the prediction as the mean of the
samples contained in the leaves, the MCRT algorithm predicts the
outcome of a process using MC simulation. The details of this
algorithm will be discussed in the next section.

This paper is organized as follows: the first part is the
introduction. Section 2 will discuss the proposed algorithm and
how it is constructed to handle scarce datasets. Section 3 will
explain the datasets used in this paper. In Section 4, the
discussion on the numerical results of the proposed algorithm is
presented, and finally, the last section will conclude the research.

2. Proposed Algorithm

This section will mainly discuss the proposed algorithm.
Specifically, this section will explain how to modify the RT

algorithm to accommodate scarce datasets and then demonstrate
how to integrate MC with the RT algorithm. Readers are
encouraged to refer to Breiman et al. [19], Loh [20], Lewis [21],
and Jain et al. [22] for basic concepts related to the RT algorithm
and training models within RT-based model leaves. Additionally,
it is recommended to read Betz et al. [23] and Xie [24] for the
discussion of MC simulation-based algorithms.

2.1. Monte Carlo-based regression tree approach

The MCRT algorithm consists of 3 main parts: (1) RTs model
derivation, (2) assigning the MC model to leaves, and (3) MCRT
model prediction. To have a better illustration, let us assume the
following case: let X 2 XD XE½ �;X 2 Rm�n be an electrical dataset
that is related to a structure, where XD ¼ y m d½ h mi s �; XD 2
Rm�nd is a matrix that contains the time information such as year(y),
month(m), day(d), hour(h), minutes(miÞ) and second(s), while
Xe ¼ x1 x2 � � � xme½ �;Xe 2 Rm�nd is a matrix that contains the elec-
trical parameters (e.g., voltage, current, active power, etc.,). Suppose
that X is scarce, i.e., for any time instance t, X t þ 1ð Þ ¼ XD t þ 1ð Þ½
XE t þ 1ð Þ� might not be (while it is possible) the direct continuation
ofX tð Þ. GivenX, suppose that the goal of this process is to predict the
outcome of a certain electrical parameter, xi 2 XE at instance k,
namely xi kð Þ. Then, the prediction for xi kð Þwhich is x̂i kð Þ viaMCRT
algorithm can be found by following these steps:

Step 1. Let E ¼ xj xjþ1 xjþ2 . . . xjm
� �

; E 2 Rm�p; E � XE be a matrix
that contains all electrical parameters that are related to xi, where
j ¼ 1; 2; 3; . . . ;me. The first step is to generate an RT model for
each parameter in E. In particular:

x̂j kð Þ ¼ fRT1 xD kð Þð Þ;

x̂jþ1 kð Þ ¼ fRT2 xD kð Þð Þ;

..

.

x̂jm kð Þ ¼ fRTme
xD kð Þð Þ (1)

where xD kð Þ ¼ y kð Þm kð Þd kð Þh kð Þmi kð Þs kð Þ½ � is the time parameter
at instance k. Let x̂j kð Þ ¼ x̂j kð Þ x̂jþ1 kð Þ . . . x̂jm kð Þ� �

be a vector of pre-
diction. Given Equation (1), then it is possible to derive the RTmodel
for x̂i as:

x̂i kð Þ ¼ fRTi xD kð Þ; x̂j kð Þ� �
(2)

At this point, if E is chosen carefully, e.g., via the entropy analysis as
done in Tjen et al. [13], it is already possible to obtain the prediction
for x̂i kð Þ. However, in this case, the prediction power of the model in
Equation (2) will be enhanced by assigning anMCmodel to each leaf
of the tree generated by Equation (2).

Step 2. Let T denote the RT model as in Equation (2) and
l1; l2 . . . ; la be leaves corresponding to the tree T. Let
lf x̄ kð Þð Þ ¼ a : x̄ kð Þ 2 laf g be a function that assigns the value

x̄ kð Þ ¼ xD kð Þ; x̂j kð Þ� �
to the right leaf la in T: And finally, let

xlf x̄ kð Þð Þ be the vector that contains the value of xi in a specific leaf

due to lf x̄ kð Þð Þ (i.e., xl2contains all samples of xi belonging to l2
etc.,). Then for each leaf, with a slight abuse of notation, it is possible
to assign a random variable:

Journal of Data Science and Intelligent Systems Vol. 00 Iss. 00 2024

02



Alf x̄ kð Þð Þ ¼
1 if xi kð Þ < qlf x̄ kð Þð Þ 1ð Þ
2 if qlf x̄ kð Þð Þ 1ð Þ � xi tð Þ < qlf x̄ kð Þð Þ 2ð Þ
3 if qlf x̄ kð Þð Þ 2ð Þ � xi tð Þ < qlf x̄ kð Þð Þ 3ð Þ
4 if xi kð Þ � qlf x̄ tð Þð Þ 3ð Þ

8>><>>: (3)

where qlf x̄ tð Þð Þ ¼ qlf x̄ tð Þð Þ 1ð Þ qlf x̄ tð Þð Þ 2ð Þ qlf x̄ tð Þð Þ 3ð Þ
h i

is a vector
that contains the value of 1st, 2nd (also known as median) and
3rd quartile of xlf x̄ tð Þð Þ. Let

plf x̄ kð Þð Þ ¼ plf x̄ kð Þð Þ 1ð Þ . . . plf x̄ kð Þð Þ 4ð Þ
h i

(4)

be a vector that contains the probability of samples taking values
from 1 to 4 from each corresponding random variableAlf x̄ kð Þð Þ and

blf x̄ kð Þð Þ ¼ blf x̄ kð Þð Þ 1ð Þ . . . blf x̄ kð Þð Þ 4ð Þ
h i

(5)

be a vector that contains the average of samples xi corresponding
to the value of Alf x̄ kð Þð Þ ¼ 1 until Alf x̄ kð Þð Þ ¼ 4, i.e., blf x̄ kð Þð Þ nð Þ is
the average of samples xi which satisfies the condition
Alf x̄ kð Þð Þ ¼ n.

Step 3. Given Equations (3–5), it is now possible to estimate the
value of x̂i kð Þ. For a vector of random number xr 2 0; 1½ �nr , where
o ¼ 1; 2; . . . ; nr , let

gðoÞ ¼

blf x̄ kð Þð Þ 1ð Þ if xr oð Þ < plf x̄ kð Þð Þ 1ð Þ

blf x̄ kð Þð Þ 2ð Þ if xr oð Þ 2 plf x̄ kð Þð Þ 1ð Þ;P2
i¼1

plf x̄ kð Þð Þ ið Þ
��

blf x̄ kð Þð Þ 3ð Þ if xr oð Þ 2 P2
i¼1

plf x̄ kð Þð Þ ið Þ;
P3
i¼1

plf x̄ kð Þð Þ ið Þ
��

blf x̄ kð Þð Þ 4ð Þ if xr oð Þ � P3
i¼1

plf x̄ kð Þð Þ ið Þ

8>>>>>>>>>>><>>>>>>>>>>>:
Given g, the MCRT estimate for xi kð Þ is defined as

x̂i kð Þ ¼ 1
nr

Xnr
i¼1

g ið Þ (6)

Algorithm 1 shows the pseudocode for the MCRT algorithm.
Concerning the time complexity, the RT algorithm has a time
complexity of O m� n2ð Þ [25] where m denotes the number of sam-
ples and n is the number of features, while the MC simulation is esti-
mated to run with the time complexity ofO m2ð Þ [26]. In our use case,
since the calculation is repeated for amany times of leaves, with each
leaf havingma samples, the overall complexity for our algorithm is in
OðPa

i¼1 m
2
i ) which is less than O m2ð Þ as

P
a
i¼1 mi ¼ m. Thus,P

a
i¼1 m

2
i � m2 due to the quadratic expansion. Hence, the whole

MCRT algorithm runs within the time complexity of
O m2 þm� n2ð Þ ¼ O m mþ n2ð Þð Þ. Note that this estimation toward
time complexity is the upper bound for the algorithm, as
O

P
a
i¼1 m

2
ið Þ � O m2ð Þ. With a proper setup in step 1 (e.g., by using

the feature selection proposed in Smarra et al. [12], it is possible
to select a minimum number of features, resulting in faster execution
of the entire algorithm.

3. Research Methodology

In this section, the discussion will commence with an overview
of the datasets utilized in this research. Specifically, two datasets,
namely UWDP from Indonesia and TICS from Russia, will be

Algorithm 1: Monte Carlo-Based Regression Tree

Input : X ¼ XD XE½ �, x̄, nr , E, xi
Output : x̂i
Process :
# Initialization
q ¼ ½ �
p ¼ ½ �
b ¼ ½ �

# RTs model derivation
for x in E

x̂j ¼ regression tree XD; xj
� �

end for
x̂i ¼ regression tree ½XD x̂j�; xi

� �
# Assigning MC model to leaves
l ¼ number of leaf x̂ið Þ
for i ¼ 1 : l

xl ¼ leaf sample T; xi; lð Þ
q i; :ð Þ ¼ quartile 0:25 0:5 0:75½ �; xlð Þ
nl ¼ number of sample xlð Þ
p temp ¼ zeros 4; 1ð Þ
b temp ¼ zeros 4; 1ð Þ
for j ¼ 1 : length xlð Þ

if xl jð Þ < q l; 1ð Þ
p temp 1ð Þ ¼ p temp 1ð Þ þ 1
b temp 1ð Þ ¼ b temp 1ð Þþl jð Þ

elseif q l; 1ð Þ � xl jð Þ < q l; 2ð Þ
p temp 2ð Þ ¼ p temp 2ð Þ þ 1
b temp 2ð Þ ¼ b temp 2ð Þ þ xl jð Þ

elseif q l; 2ð Þ � xl jð Þ < q l; 3ð Þ
p temp 3ð Þ ¼ p temp 3ð Þ þ 1
b temp 3ð Þ ¼ b temp 3ð Þ þ xl jð Þ

else
p temp 4ð Þ ¼ p temp 4ð Þ þ 1
b temp 4ð Þ ¼ b temp 4ð Þ þ xl jð Þ

end if
end for
p l; :ð Þ ¼ p temp=length xlð Þ
b l; :ð Þ ¼ b temp=length xlð Þ

end for

# MCRT model prediction
lt ¼ target leaf T; x̄ð Þ
xr ¼ rand 0 1½ �; nrð Þ
g ¼ ½ �
for i ¼ 1 : length xrð Þ

if xr ið Þ < p l; 1ð Þ
g ið Þ ¼ b l; 1ð Þ

elseif p l; 1ð Þ � xr ið Þ < sum p l; 1 : 2ð Þð Þ
g ið Þ ¼ b l; 2ð Þ

elseif sum p l; 1 : 2ð Þð Þ � xr ið Þ < sum p l; 1 : 3ð Þð Þ
g ið Þ ¼ b l; 3ð Þ

else
g ið Þ ¼ b l; 4ð Þ

end if
end for
x̂i ¼ mean gð Þ
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examined. Additionally, an explanation will be provided on how
the algorithm discussed in Section 2 was adjusted to
accommodate the unique requirements of the chosen datasets.
Subsequently, the methodology employed for conducting
numerical simulations in this research will be expounded upon.
This will include a detailed description of the simulation
procedures, parameter configurations, and performance metrics
utilized to assess the algorithm’s effectiveness. Through rigorous
numerical simulations, the goal is to demonstrate the efficacy of
the algorithm and its capacity to yield meaningful insights from
real-world data.

3.1. 1st case study: Universitas Widya Dharma
Pontianak (UWDP)

The first electrical dataset was obtained from a University
building located in Pontianak, West Kalimantan Indonesia. The
data for this 10-floor building were provided by the Indonesian
state electricity company or PLN (Indonesian: Perusahaan Listrik
Negara), in which the dataset consists of 3,113 samples with 18
features: date, times of the day, frequency, and 3 phases of
voltages (V), currents (A), active powers (W), reactive powers
(VA), and apparent powers (VAR). Figure 1 shows the picture of
the UWDP main campus building.

Due to unknown reasons, the UWDP dataset provided by PLN
consists of only 3,113 samples while it was measured for about 3
years, dated from 1st January 2020 up to 27th February 2023.
Furthermore, the dataset was recorded completely at a random
period and there is a gap from 1 sample to the next consecutive
sample (i.e., the next data are recorded on a different date from
the previous data).

3.2. 2nd case study: Trapeznikov Institute of
Control Sciences (TICS)

The second electrical dataset was obtained from the TICSwhich
is located in Russia. The dataset is measured from 1st January 2021
until 31st December 2021 and sampled every second. The dataset was
collected from the administrative and laboratory buildings. The
administrative building has 30 feeders while the laboratory
building has 65 feeders. The whole data were separated
into monthly datasets, where each dataset consists of around

300,000 samples (varied for each month) with 21 features, where
it has the same 18 features as in the UWDP dataset + another 3
phases of total harmonic distortion data. Figure 2 shows the
picture of the TICS building.

3.3. Power consumption via MCRT algorithm

The goal of this research is to develop an algorithm capable of
predicting the power consumption of a building even with a scarce
dataset. In this regard, regarding the proposed algorithm in Section 2,
the total active power (P) is chosen to be the xi for both case studies.
In addition, only three phases of currents, namely I1, I2, and I3, were
taken into account as parameters related to P. This choice stems from
findings presented in Tjen et al. [13], which demonstrate that currents
are the most influential parameters in predicting power consumption.
In particular, the first step of theMCRT algorithm shown in Section 2
yields the following RT models:

Î1 kð Þ ¼ fRT1 xD kð Þð Þ;

Î2 kð Þ ¼ fRT2 xD kð Þð Þ;

Î3 kð Þ ¼ fRT3 xD kð Þð Þ;

P̂ kð Þ ¼ fRTP xD kð Þ; Î1 kð Þ; Î2 kð Þ; Î3 kð Þ� �
(7)

The nr ¼ 1000 was considered for the random numbers in the 3rd
step. The choice was made by considering the trade-off between
the time complexity and the model predictive accuracy of the
algorithm.

In the first use case, the entire dataset was considered, whereas
for the second use case, only the dataset from June 2021 was utilized.
This choice was informed by the average temperature observed
during June, which corresponds to the onset of summer and
closely resembles the climate in West Kalimantan. Figure 3 shows
the block diagram of the process of predicting the power
consumption with the MCRT algorithm.

3.4. Experimental setup

The numerical simulation comprises two main parts: testing the
hypothesis and measuring the model’s predictive accuracy. It was

Figure 1
Universitas Widya Dharma Pontianak (UWDP) main building

located in West Kalimantan, Indonesia

Figure 2
Trapeznikov Institute of Control Science (TICS) main building

located in Trapeznikov, Russia
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asserted that the MCRT algorithm enhances the predictive accuracy
of the RT algorithm introduced in Tjen et al. [13], which was
developed after the e-ss RT proposed in Smarra et al. [12]. To
validate the performance of the proposed algorithm, a t-test was
conducted on the following hypothesis:

H0 : The model predictive accuracy of the MCRT algorithm is equal
to the RT algorithm.

Ha : The model predictive accuracy of the MCRT algorithm is not
equal to the RT algorithm.

Figure 3
Block diagram for predicting the power consumption via the MCRT Algorithm
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The hypothesis testing was done by considering the model
predictive accuracy of both algorithms for 50 different datasets
generated by taking randomly 50% of the available samples from
the 1st dataset as the training dataset and use the rest to validate
the model accuracy. The model predictive accuracy in this case is
represented by the Normalized Root Mean Square Error
(NRMSE) as in Equation (8):

Aðy; byÞ ¼ ð1� NRMSEðy; byÞÞ � 100%

NRMSEðy; byÞ ¼ 1ffiffi
n

p � ȳ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðy ið Þ � by ið ÞÞ2
s

(8)

where y is the observed data, by is the predicted data, n is the number
of samples, and ȳ is the mean of y. In this paper, the NRMSE was
selected as the evaluationmetric to assess the accuracy of themodels.
The NRMSE measures the average discrepancy between real and
estimated values, with lower values indicating better predictive accu-
racy [27]. This metric is commonly used in regression analysis and
provides a standardized measure of model performance.

Both datasets were utilized for the second part, which focused
on assessingmodel predictive accuracy. Specifically, in the first case,
2,800 samples (approximately 90% of the available data) were
selected as the training dataset, with the remaining samples used
for validation. In the second case, 150,000 samples, equivalent to
50% of the total available data, were used for training the model,
while the remainder served as the test dataset. The model
predictive accuracy is reported as the accuracy in Equation (8)
and also in the root mean square error which is defined as:

RMSEð y; byÞ ¼ 1ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðy ið Þ � by ið ÞÞ2
s

(9)

4. Numerical Results and Discussion

In this section, the initial focus will be on presenting the results
of the t-test conducted on the proposed hypothesis, demonstrating the
superiority of the MCRT algorithm over the RT algorithm proposed
in Tjen et al. [13]. Subsequently, the numerical simulations
conducted to predict power consumption in both case studies will
be showcased.

4.1. Hypothesis testing

Table 1 shows the model predictive accuracy of both MCRT
and the RT algorithm proposed by Tjen et al. [13], while Table 2
shows the result of the t-test performed on the data in Table 1.

From Table 1, it is evident that, on average, the MCRT
algorithm performs slightly better than the previous RT algorithm.
Notable differences in accuracy are observed in datasets No. 8, 9,
10, 20, 21, 23, and 49, where the MCRT algorithm improves the
model predictive accuracy of the RT algorithm by more than 1%
(up to 2%). Conversely, in dataset no. 1, 3, 4, 18, 24, 32, 34, 36,
40, 41, 42. 44, 46, and 47, the RT algorithm outperforms the
MCRT, albeit with a very subtle difference (less than 0.1%). It is
reasonable to assume that the accuracy of the RT algorithm in
these datasets is comparable to that of the MCRT algorithm.
Overall, the MCRT algorithm outperforms the RT algorithm in 38
out of 50 datasets.

This result demonstrates that integrating the MC algorithm into
the leaf of the RT algorithm significantly enhances the predictive
capability of the RT-based model. This outcome aligns with

expectations, as the classical RT model calculates the output by
averaging the samples within the leaf. In contrast, the MCRT
algorithm considers the probability of samples, resulting in more
accurate predictions compared to the classical RT algorithm.

Table 1
Model predictive accuracy comparison between MCRT and RT

N. dataset

Accuracy (%)

RTMC RT RTMC-RT

1 86.198 86.209 −0.010
2 86.041 85.994 0.047
3 86.672 86.677 −0.006
4 86.988 86.990 −0.002
5 86.428 86.137 0.291
6 85.365 85.362 0.003
7 86.682 86.358 0.324
8* 86.437 83.953 2.484
9* 87.301 86.274 1.028
10* 87.214 84.592 2.623
11 87.462 87.458 0.004
12 85.622 85.621 0.001
13 87.353 86.660 0.693
14 86.570 85.953 0.617
15 86.376 86.372 0.004
16 86.392 85.827 0.565
17 86.261 86.259 0.002
18 85.484 85.484 0.000
19 85.923 85.921 0.001
20* 87.521 86.222 1.299
21* 86.786 85.775 1.011
22 85.427 85.426 0.000
23* 87.152 85.318 1.834
24 86.564 86.571 −0.007
25 84.974 84.971 0.003
26 84.895 84.893 0.002
27 86.724 86.238 0.487
28 86.751 86.624 0.127
29 86.452 86.450 0.003
30 87.318 87.317 0.001
31 85.554 85.551 0.003
32 86.542 86.544 −0.002
33 87.102 87.101 0.001
34 87.173 87.184 −0.011
35 87.121 87.120 0.001
36 86.251 86.254 −0.002
37 86.535 85.610 0.924
38 85.591 85.588 0.003
39 86.612 86.611 0.001
40 86.415 86.418 −0.002
41 86.219 86.225 −0.006
42 86.329 86.330 0.000
43 87.115 86.870 0.244
44 85.120 85.123 −0.003
45 86.324 86.320 0.005
46 86.812 86.813 −0.001
47 85.890 85.892 −0.002
48 86.986 86.312 0.674
49* 86.401 83.846 2.555
50 85.701 85.701 0.001
Average 86.423 86.066 0.356

*improvement over 1%
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From Table 2 it can be seen that the P-value for 2 tail test is less
than 0.05. This means the H0 is rejected, and thus, Ha is accepted.
This outcome is somewhat unsurprising when considering that the
MCRT algorithm demonstrates superior performance compared to
the RT algorithm, with improvements of up to 2%, as depicted in
Table 1. This result indicates that theMCRT does improve the model
predictive accuracy of the RT algorithm and thus justifies the claim
that theMCRT algorithm outperforms the RT algorithm proposed by
Tjen et al. [13].

4.2. Model predictive accuracy

Table 3 shows themodel predictive accuracy forMCRT and RT
algorithms for both case studies. From Table 3, it is observable that
the MCRT algorithm outperforms the RT algorithm for both UWDP
and TICS cases. However, a more notable difference comes from the
TICS dataset, where the MCRT algorithm accuracy is around 2%
higher than the RT algorithm. Instead for the UWDP case, the
MCRT still outperforms the RT algorithm, however with a
smaller margin which is less than 1%. However, if both cases are
considered, it can be seen that the UWDP model’s predictive
accuracy is much lower than the TICS.

Figures 4 and 5 show the plot for the observed power
consumption and its prediction with the MCRT algorithm for both
UWDP and TICS datasets, respectively. As shown in Figure 4,
the MCRT model failed to predict the peak dynamics of the
power consumption, especially when there is a “spike” in the
power consumption which occurred due to some electrical
appliances being turned on. For this case study, due to the

limitation of the available dataset, the model cannot properly learn
the dynamics of power consumption. Hence, predicted the
dynamic is much worse than in Figure 4.

For the TICS instead, it can seen from Figure 5 that the MCRT
algorithm followed the pattern almost precisely, which resulted in
higher accuracy than in the UWDP case. Even though there are
also “spikes” for the TICS dataset (which is unavoidable, as any
electrical equipment can be used anytime during the day), it is
observable that the MCRT algorithm provided a better estimation
of it rather than in the UWDP case, due to the model being
exposed to a sufficient amount of data. It is worth noting that the
model is only trained with 50% of the available data and validated
on the remaining half data, yet able to provide a precise

Table 2
T-test result of Table 1

Parameter Value

N. observations 50
Degree of freedom 49
t Stat 3.648556
P-value (one tail) 0.000319
t Critical (one tail) 1.676551
P-value (two-tails) 0.000639*
t Critical (two-tails) 2.009575

*significant at α ¼ 0:05

Table 3
Model predictive accuracy for both case studies

Universitas Widya Dharma Pontianak (UWDP)

Parameter MCRT RT

RMSE 292.27 306.25
NRMSE 0.17 0.18
Accuracy 82.76% 81.93%

Trapeznikov Institute of Control Sciences (TICS)

Parameter MCRT RT

RMSE 49.19 72.34
NRMSE 0.06 0.08
Accuracy 94.33% 91.66%

Figure 4
The observed and predicted power consumption for the UWDP

building dataset

Figure 5
The observed and predicted power consumption for the TICS

building dataset
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prediction. This result shows the potency of the MCRT algorithm in
predicting the power consumption inside a building.

5. Conclusion

In this paper, the challenge of predicting power consumption in
buildings using a scarce dataset was addressed. A novel algorithm
based on the RT algorithm was proposed, wherein an MC
simulation is assigned to each leaf in the tree generated from the
RT. Results from numerical simulations demonstrate that the
MCRT algorithm outperforms the previous RT algorithm
introduced by Tjen et al. [13]. In a test comprising 50 random
datasets, the MCRT algorithm demonstrated superior performance
over the RT algorithm in the majority of datasets (38 out of 50),
with an average increase in model predictive accuracy of 0.36%.
Moreover, the algorithm improved the model predictive accuracy
for both case studies by up to 2%. Significance tests also
confirmed the superiority of the MCRT algorithm over the RT
algorithm.

Given the capabilities of the proposed algorithm, this research
holds potential for regulating the usage of electronic appliances in
buildings. Firstly, the algorithm can establish a baseline for
building power consumption, which can be integrated into Internet
of Things devices. Specifically, the algorithm can function as a
detector to identify instances where electrical equipment is active
when it should be inactive, thereby enabling more efficient energy
management.

For further study, it is suggested to switch the MC simulation
with another MC-based method, such as Markov Chain Monte
Carlo, and find which MC algorithm is the best to be paired with
the RT algorithm in order to provide a better estimation of power
consumption.
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