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Abstract: Most data-driven techniques rely on the availability of data. Hence, when the data provided is not sufficient, the 
algorithm might not work as intended. Thus, it is important to be able to predict the dynamics of the data, even when the number 
of available data is low, or scarce. This study aimed to predict the power consumption of a building given a scarce dataset via a 
novel Monte Carlo simulation-based Regression Tree (MCRT) algorithm. The main idea is to train Monte Carlo simulation on each 
leaf generated by the regression tree algorithm. Thus, the prediction no longer depends on the average of the samples contained in 
the leaf, but now depends on the probability of the samples. The proposed algorithm was validated on 2 datasets obtained from 

Universitas Widya Dharma Pontianak (UWDP), Indonesia and Trapeznikov Institute of Control Sciences (TICS), Russia. To show 
that the MCRT algorithm is better than the RT algorithm a two-tail hypothesis was proposed. Based on the experiments which were 
run on Python software with 16 GB RAM, 7th Gen Core i7 machine on 50 datasets randomly generated from the UWDP electrical 
data, it can be concluded that the MCRT algorithm performs better than the previous RT algorithm used to model scarce datasets 
with P-value = 0.000319.  Furthermore, the proposed algorithm improves the model predictive accuracy of the RT algorithm by up 
to 2%. 
Keywords: Monte Carlo simulation, regression tree, power consumption, scarce dataset 

 

1. Introduction 
 
This paper aims to study the performance of Monte 

Carlo (MC) Simulation-based Regression Tree (RT) in 
predicting power consumption inside a building given a 
scarce dataset, i.e., when there are a lot of missing data points 
in the dataset. Along with the development of technology, 
especially in an era where human "tedious" tasks are being 
handled by Artificial Intelligence (AI), it is not unusual to 

find a building equipped with various kinds of sensors that 
can precisely measure the dynamics of the building (Yu et 
al., 2023; Gao et al., 2023). This information is useful as a 
mathematical model can then be derived from it in order to 
simulate the future dynamics of the structure (Saravanan & 
Sujatha, 2018). The approach based on this information is 
called the data-driven approach (Fan et al., 2021; Zhao & 
You, 2019; Arridge et al., 2019). The data-driven approach 

is a machine-learning technique that focuses on learning 

mathematical models to represent the dynamics of a dataset. 
This approach is somehow easier to deploy rather than the 
model-based approach, which  

 
depends on a strong knowledge of the structure's physical 
properties. Various methods apply this approach. Some of 
them are MC simulation  (Hoendarto et al., 2023; Mardani 
Najafabadi & Taki, 2020; Shen et al., 2020; Ding et al., 
2021) and the RT from Decision Tree Learning (DTL) 
(Smarra et al., 2022; Panjaitan et al., 2023; Tjen et al., 2023). 
 

1.1. Previous work 
  

The MC simulation is a stochastic model that predicts 

an outcome of a process based on the probability of random 
variables (Binder & Heermann, 2014). In Hoendarto et al. 
(2023), the authors proposed an idea to predict the power 
consumption inside a structure with the MC simulation. In 
their research, they have shown that the MC algorithm can 
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predict the power consumption inside a building with an 
accuracy of more than 90%.  In Mardani Najafabadi and Taki 
(2020), the MC simulation was used to optimize the energy 
consumption of a cucumber greenhouse located in Golshan, 

Iran. It was shown that the MC simulation helped to control 
the gas and improve the energy consumption efficiency 
inside the greenhouse via precise modeling. In the study by 
Shen et al. (2020), the authors employed a combination of 
Monte Carlo (MC) simulation and Support Vector 
Regression Model (SVRM) to forecast household power 
consumption. Their research demonstrated that this 
approach led to a notable 12% reduction in power 

consumption. Similarly, Ding et al. (2021) utilized MC 
simulation and Probability Density Analysis (PDA) to 
predict nuclear energy consumption in China and America. 
Their findings suggested that the proposed model showed 
promise in accurately forecasting nuclear energy 
consumption from 2019 to 2023. 

The RT algorithm, instead, is an algorithm that focuses 
on splitting the dataset based on the similarities of features 

presented in the dataset. The idea is to group the whole 
dataset into smaller subsets of data based on their variance. 
Smarra et al. (2022) used the RT algorithm together with 
entropy (referred to as entropy-based subset selection RT or 
e-ss RT) from information theory to detect the presence of 
faults inside a building based on seismic dynamic data 
recorded by accelerometers located within a structure. They 
have shown that the entropy-based RT can potentially detect 

damages within a structure while also requiring significantly 
fewer parameters compared to the classical RT algorithm 
(around 5) to detect faults. The research paper by Panjaitan 
et al. (2023) showed that the random forest, which is a 
collection of RTs, can precisely model the energy 
consumption of a building with an accuracy above 90%. 
Recently, Tjen et al. (2023) modified the algorithm proposed 
by Smarra et al. (2022) to predict power consumption in a 
university building located in Pontianak, Indonesia. They 

have shown that the modified RT algorithm can precisely 
predict power consumption inside the building even when 
the available data is scarce.  

In particular, the papers stated above have shown the 
capability of RT and MC simulation in predicting the 
dynamics of data. However, it is well known, that data-
driven approach performance depends mostly on the 
availability of the dataset (Nandy et al., 2022). Hence, when 

only a few data exist, the approach might not produce 
optimal results (Li et al., 2023; Zhang et al., 2020; Li et al., 
2020). 

 

1.2. Contributions 
 

As mentioned earlier, data-driven approaches such as 
MC simulation and RT algorithms may not yield the desired 
outcome when dealing with scarce datasets. However, there 
must be a way to achieve precise predictions even with 
limited data. Therefore, this paper is organized to highlight 
three contributions:  

1) The enhancement og the RT algorithm proposed in 
Tjen et al. (2023) by applying MC simulation in each 
leaf of the tree generated by the RT algorithm, thereby 
improving prediction accuracy. 

2) The comparison between the Monte Carlo-based 
Regression Tree (MCRT) algorithm to the RT 
algorithm proposed in Tjen et al. (2023) and followed 
by the proof that the MCRT algorithm indeed enhances 

the predictive accuracy of the previous RT algorithm. 
3) The methodology was validated on 2 real datasets: 

Universitas Widya Dharma Pontianak (UWDP), 
Indonesia, and Trapeznikov Institute of Control 
Sciences (TICS), Russia. 

This paper follows the methodology presented by 
Smarra et al. (2022) and Tjen et al. (2023). Specifically, this 
paper highlight the modification of the RT algorithm by 

incorporating the MC simulation proposed by Hoendarto et 
al. (2023) into each leaf of the tree generated by the RT 
algorithm. Thus, instead of deriving the prediction as the 
mean of the samples contained in the leaves, the MCRT 
algorithm predicts the outcome of a process using MC 
simulation. The details of this algorithm will be discussed in 
the next section. 

This paper is organized as follows: the first part is the 

introduction. Section 2 will discuss the proposed algorithm 
and how it is constructed to handle scarce datasets. Section 
3 will explain the datasets used in this paper. In Section 4, 
the discussion on the numerical results of the proposed 
algorithm is presented, and finally, the last section will 
conclude the research.  
 

2. Proposed Algorithm 
 
This section will mainly discuss the proposed 

algorithm. Specifically, this section will explain how to 
modify the RT algorithm to accommodate scarce datasets 

and then demonstrate how to integrate MC with the RT 
algorithm. Readers are encouraged to refer to Breiman et al. 
(2017), Loh (2011), Lewis (2000), and Jain et al. (2018) for 
basic concepts related to the RT algorithm and training 
models within RT-based model leaves. Additionally, it is 
recommended to read Betz et al. (2022) and Xie (2020) for 
the discussion in MC simulation-based algorithms. 

 

2.1. Monte Carlo-based Regression Tree 

approach 
 

The MCRT algorithm consists of 3 main parts: (1) RTs 
model derivation, (2) Assigning the MC model to leaves and 
(3) MCRT model prediction. To have a better illustration, let 

us assume the following case: let 𝑋 ∈ [𝑋𝐷  𝑋𝐸]; 𝑋 ∈ ℝ
𝑚×𝑛 

be an electrical dataset that is related to a structure, where 

𝑋𝐷 = [𝒚 𝒎 𝒅 𝒉 𝒎𝒊 𝒔 ];  𝑋𝐷 ∈ ℝ
𝑚×𝑛𝑑  is a matrix that 

contains the time information such as year(𝒚), month(𝒎), 

day(𝒅), hour(𝒉), minutes(𝒎𝒊) and second(𝒔), while, 𝑋𝑒 =
[𝒙𝟏 𝒙𝟐  ⋯ 𝒙𝒎𝒆]; 𝑋𝑒 ∈ ℝ

𝑚×𝑛𝑑  is a matrix that contains the 
electrical parameters (e.g., voltage, current, active power, 

etc.). Suppose that 𝑋 is scarce, i.e., for any time instance 𝑡, 
𝑋(𝑡 + 1) = [𝑋𝐷(𝑡 + 1) 𝑋𝐸(𝑡 + 1)] might not be (while it is 

possible) the direct continuation of 𝑋(𝑡). Given 𝑋, suppose 
that the goal of this process is to predict the outcome of a 

certain electrical parameter, 𝑥𝑖 ∈ 𝑋𝐸 at instance 𝑘, namely 

𝑥𝑖(𝑘). Then the prediction for 𝑥𝑖(𝑘) which is  𝑥𝑖(𝑘) via 
MCRT algorithm can be found by following these steps: 
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Step 1. Let 𝐸 = [𝒙𝒋 𝒙𝒋+𝟏 𝒙𝒋+𝟐…𝒙𝒋𝒎];𝐸 ∈ ℝ
𝑚×𝑝; 𝐸 ⊂

𝑋𝐸 be a matrix that contains all electrical parameters that are 

related to 𝒙𝒊 , where 𝑗 = 1,2,3,… ,𝑚𝑒 . The first step is to 

generate an RT model for each parameter in 𝐸. In particular: 

𝑥𝑗(𝑘) = 𝑓𝑅𝑇1(𝒙𝑫(𝑘)), 

𝑥𝑗+1(𝑘) = 𝑓𝑅𝑇2(𝒙𝑫(𝑘)), 

⋮ 
𝑥𝑗𝑚(𝑘) = 𝑓𝑅𝑇𝑚𝑒

(𝒙𝑫(𝑘)), (1) 

where 𝒙𝑫(𝑘) = [𝑦(𝑘)𝑚(𝑘)𝑑(𝑘)ℎ(𝑘)𝑚𝑖(𝑘)𝑠(𝑘)]   is the 

time parameter at instance 𝑘 . Let  �̂�𝒋(𝑘) =

[𝑥𝑗(𝑘) �̂�𝑗+1(𝑘)…𝑥𝑗𝑚(𝑘)] be a vector of prediction. Given 

(1), then it is possible to derive the RT model for  �̂�𝒊 as: 

𝑥𝑖(𝑘) = 𝑓𝑅𝑇𝑖 (𝒙𝑫(𝑘), �̂�𝒋(𝑘)) (2) 

At this point, if 𝐸 is chosen carefully, e.g., via the entropy 
analysis as done in Tjen et al. (2023), it is already possible 

to obtain the prediction for 𝑥𝑖(𝑘). However, in this case, the 
prediction power of the model in (2) will be enhanced by 
assigning an MC model to each leaf of the tree generated by 

(2). 

Step 2. Let 𝑇 denote the RT model as in (2) and 

𝑙1 , 𝑙2… , 𝑙𝑎  be leaves corresponding to the tree 𝑇 . Let 

𝑙𝑓(�̅�(𝑘)) = {𝑎: �̅�(𝑘) ∈ 𝑙𝑎}  be a function that assigns the 

value �̅�(𝑘) = [𝒙𝑫(𝑘), �̂�𝒋(𝑘)] to the right leaf 𝑙𝑎  in 𝑇. And 

finally, let 𝒙𝑙𝑓(𝒙(𝑘)) be the vector that contains the value of 

𝒙𝒊  in a specific leaf due to 𝑙𝑓(�̅�(𝑘)) (i.e., 𝒙𝑙2contains all 

samples of 𝒙𝒊 belonging to 𝑙2 etc.). Then for each leaf, with 
a slight abuse of notation, it is possible to assign a random 
variable: 

𝐴𝑙𝑓(𝒙(𝑘)) =

{
 
 

 
 
1 if 𝑥𝑖(𝑘) < 𝑞𝑙𝑓(𝒙(𝑘))(1)                          

2 if 𝑞𝑙𝑓(𝒙(𝑘))(1) ≤ 𝑥𝑖(𝑡) < 𝑞𝑙𝑓(𝒙(𝑘))(2)

3 if 𝑞𝑙𝑓(𝒙(𝑘))(2) ≤ 𝑥𝑖(𝑡) < 𝑞𝑙𝑓(𝒙(𝑘))(3)

4 if 𝑥𝑖(𝑘) ≥ 𝑞𝑙𝑓(𝒙(𝑡))(3)                           

(3) 

where 𝒒𝒍𝒇(𝒙(𝒕)) = [𝑞𝑙𝑓(𝒙(𝑡))(1) 𝑞𝑙𝑓(�̅�(𝑡))(2) 𝑞𝑙𝑓(𝒙(𝑡))(3) ] is a 

vector that contains the value of 1st, 2nd (also known as 
median) and 3rd quartile of 𝒙𝑙𝑓(𝒙(𝑡)). Let,  

𝒑𝒍𝒇(𝒙(𝑘)) = [𝑝𝒍𝒇(𝒙(𝑘))(1) … 𝑝𝒍𝒇(𝒙(𝑘))(4)] (4) 

be a vector that contains the probability of samples taking 
values from 1 to 4 from each corresponding random variable 

𝐴𝑙𝑓(𝒙(𝑘)) and  

𝒃𝒍𝒇(𝒙(𝑘)) = [𝑏𝒍𝒇(𝒙(𝑘))(1) … 𝑏𝒍𝒇(𝒙(𝑘))(4)] (5) 

be a vector that contains the average of samples 𝒙𝒊 
correspond to the value of 𝐴𝑙𝑓(𝒙(𝑘)) = 1 until 𝐴𝑙𝑓(𝒙(𝑘)) = 4, 

i.e., 𝑏𝒍𝒇(𝒙(𝑘))(𝑛) is the average of samples 𝒙𝒊 which satisfies 

the condition 𝐴𝑙𝑓(𝒙(𝑘)) = 𝑛. 

Step 3. Given (3-5), it is now possible to estimate the 

value of 𝑥𝑖(𝑘). For a vector of random number 𝑥𝑟 ∈ [0,1]
𝑛𝑟, 

where 𝑜 = 1,2,… , 𝑛𝑟, let 

𝑔(𝑜) =

{
 
 
 
 
 

 
 
 
 
 
𝑏𝒍𝒇(�̅�(𝒌))(1) if 𝑥𝑟(𝑜) < 𝑝𝑙𝑓(�̅�(𝑘))(1)                                      

𝑏𝒍𝒇(�̅�(𝒌))(2) if 𝑥𝑟(𝑜) ∈ [𝑝𝒍𝒇(�̅�(𝒌))(1),∑𝑝𝒍𝒇(�̅�(𝒌))(𝑖)

2

𝑖=1

)      

𝑏𝒍𝒇(�̅�(𝒌))(3) if 𝑥𝑟(𝑜) ∈ [∑𝑝𝒍𝒇(�̅�(𝒌))(𝑖)

2

𝑖=1

,∑𝑝𝒍𝒇(�̅�(𝒌))(𝑖)

3

𝑖=1

)

𝑏𝒍𝒇(�̅�(𝒌))(4) if 𝑥𝑟(𝑜) ≥∑𝑝𝒍𝒇(�̅�(𝒌))(𝑖)

3

𝑖=1

                                 

 

Given 𝒈, the MCRT estimate for 𝑥𝑖(𝑘) is defined as 

𝑥𝑖(𝑘) =
1

𝑛𝑟
∑𝑔(𝑖)

𝑛𝑟

𝑖=1

 (6) 

Algorithm 1 shows the pseudocode for the MCRT 
algorithm. Concerning the time complexity, the RT 

algorithm has a time complexity of 𝑂(𝑚 × 𝑛2) (Sani et al., 

2018) where 𝑚 denotes the number of samples and 𝑛 is the 
number of features. While the MC simulation is estimated to 

run with the time complexity of 𝑂(𝑚2) (Del Moral et al., 

2012). In our use case, since the calculation is repeated for 𝑎 

many times of leaves, with each leaf having 𝑚𝑎 samples, the 

overall complexity for our algorithm is in 𝑂(∑ 𝑚𝑖
2𝑎

𝑖=1 ) which 

is less than 𝑂(𝑚2) as ⋃ 𝑚𝑖
𝑎
𝑖=1 = 𝑚. Thus, ∑ 𝑚𝑖

2 ≤ 𝑚2𝑎
𝑖=1  

due to the quadratic expansion. Hence, the whole MCRT 

algorithm runs within the time complexity of 𝑂(𝑚2 +𝑚 ×
𝑛2) = 𝑂(𝑚(𝑚+ 𝑛2)) . Note that this estimation toward 
time complexity is the upper bound for the algorithm, as 

𝑂(∑ 𝑚𝑖
2𝑎

𝑖=1 ) ≤  𝑂(𝑚2). With a proper setup in step 1(e.g., 

by using the feature selection proposed in Smarra et al. 
(2022), it is possible to select a minimum number of features, 
resulting in faster execution of the entire algorithm. 

 

Algorithm 1: Monte Carlo-Based Regression Tree  

Input   : 𝑋 = [𝑋𝐷  𝑋𝐸], �̅�, 𝑛𝑟, 𝐸, 𝑥𝑖  
Output:  𝑥𝑖 
Process: 
# Initialization 

𝑞 = [ ]  
𝑝 = [ ]  
𝑏 = [ ]  
 
# RTs model derivation 

for 𝑥 𝑖𝑛 𝐸 

𝑥𝑗 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑡𝑟𝑒𝑒(𝑋𝐷 , 𝑥𝑗)  

end for 

𝑥𝑖 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑡𝑟𝑒𝑒([𝑋𝐷  𝑥𝑗], 𝑥𝑖)  

 
# Assigning MC model to leaves 

𝑙 = 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑙𝑒𝑎𝑓(𝑥𝑖)  
for 𝑖 = 1 ∶ 𝑙 

𝑥𝑙 = 𝑙𝑒𝑎𝑓_𝑠𝑎𝑚𝑝𝑙𝑒(𝑇, 𝑥𝑖 , 𝑙)  
𝑞(𝑖, : ) = 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒([0.25 0.5 0.75], 𝑥𝑙)  
𝑛𝑙 = 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑎𝑚𝑝𝑙𝑒(𝑥𝑙)  
𝑝_𝑡𝑒𝑚𝑝 = 𝑧𝑒𝑟𝑜𝑠(4,1)  
𝑏_𝑡𝑒𝑚𝑝 = 𝑧𝑒𝑟𝑜𝑠(4,1)  
for 𝑗 =  1 ∶  𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑙) 

if 𝑥𝑙(𝑗) < 𝑞(𝑙, 1)  
𝑝_𝑡𝑒𝑚𝑝(1) = 𝑝_𝑡𝑒𝑚𝑝(1) + 1  

𝑏_𝑡𝑒𝑚𝑝(1) = 𝑏_𝑡𝑒𝑚𝑝(1)+ 𝑥𝑙(𝑗)  
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elseif 𝑞(𝑙, 1) ≤ 𝑥𝑙(𝑗) < 𝑞(𝑙, 2) 
𝑝_𝑡𝑒𝑚𝑝(2) = 𝑝_𝑡𝑒𝑚𝑝(2) + 1  

𝑏_𝑡𝑒𝑚𝑝(2) = 𝑏_𝑡𝑒𝑚𝑝(2)+ 𝑥𝑙(𝑗)  
elseif 𝑞(𝑙, 2) ≤ 𝑥𝑙(𝑗) < 𝑞(𝑙, 3) 

𝑝_𝑡𝑒𝑚𝑝(3) = 𝑝_𝑡𝑒𝑚𝑝(3) + 1  

𝑏_𝑡𝑒𝑚𝑝(3) = 𝑏_𝑡𝑒𝑚𝑝(3)+ 𝑥𝑙(𝑗)  
else 

𝑝_𝑡𝑒𝑚𝑝(4) = 𝑝_𝑡𝑒𝑚𝑝(4) + 1  

𝑏_𝑡𝑒𝑚𝑝(4) = 𝑏_𝑡𝑒𝑚𝑝(4)+ 𝑥𝑙(𝑗)  
end if 

end for 

𝑝(𝑙, : ) = 𝑝_𝑡𝑒𝑚𝑝/𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑙)  
𝑏(𝑙, : ) = 𝑏_𝑡𝑒𝑚𝑝/𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑙)  

end for 

 

# MCRT model prediction 

𝑙𝑡 = 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑒𝑎𝑓(𝑇, �̅�)  
𝑥𝑟 = 𝑟𝑎𝑛𝑑([0 1], 𝑛𝑟)  
𝑔 = [ ]  
for 𝑖 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑟)  

if 𝑥𝑟(𝑖) < 𝑝(𝑙, 1)  
𝑔(𝑖) = 𝑏(𝑙, 1)  

elseif 𝑝(𝑙, 1) ≤  𝑥𝑟(𝑖) < 𝑠𝑢𝑚(𝑝(𝑙, 1: 2)) 
𝑔(𝑖) = 𝑏(𝑙, 2)  

elseif 𝑠𝑢𝑚(𝑝(𝑙, 1: 2)) ≤ 𝑥𝑟(𝑖) < 𝑠𝑢𝑚(𝑝(𝑙, 1: 3)) 
𝑔(𝑖) = 𝑏(𝑙, 3)  

else 

𝑔(𝑖) = 𝑏(𝑙, 4)  
end if 

end for 

𝑥𝑖 = 𝑚𝑒𝑎𝑛(𝑔)  

 
3. Research Methodology 

 
In this section, the discussion will commence with an 

overview of the datasets utilized in this research. 
Specifically, two datasets, namely UWDP from Indonesia 
and TICS from Russia, will be examined. Additionally, an 
explanation will be provided on how the algorithm discussed 

in Section 2 was adjusted to accommodate the unique 
requirements of the chosen datasets. Subsequently, the 
methodology employed for conducting numerical 
simulations in this research will be expounded upon. This 
will include a detailed description of the simulation 
procedures, parameter configurations, and performance 
metrics utilized to assess the algorithm's effectiveness. 
Through rigorous numerical simulations, the goal is to 
demonstrate the efficacy of the algorithm and its capacity to 

yield meaningful insights from real-world data. 
 

3.1. 1
st
 case study: Universitas Widya Dharma 

Pontianak (UWDP) 
 

The first electrical dataset was obtained from a 

University building located in Pontianak, West Kalimantan 
Indonesia. The data for this 10-floor building was provided  
by the Indonesian state electricity company or PLN 
(Indonesian: Perusahaan Listrik Negara), in which the 
dataset consists of 3,113 samples with 18 features: date, 

times of the day, frequency and 3 phases of voltages (V), 
currents (A), active powers (W), reactive powers (VA), and 
apparent powers (VAR). Figure 1 shows the picture of the 
UWDP main campus building. 

Due to unknown reasons, the UWDP dataset provided 
by PLN consists of only 3,113 samples while it was 
measured for about 3 years, dated from 1st January 2020 up 
to 27th February 2023. Furthermore, the dataset was recorded 
completely at a random period and there is a gap from 1 
sample to the next consecutive sample (i.e., the next data is 
recorded on a different date from the previous data). 

 

3.2. 2
nd

 case study: Trapeznikov Institute of 

Control Sciences (TICS) 

 
The second electrical dataset was obtained from the 

Trapeznikov Institute of Control Science or TICS which is 
located in Russia (The Center of Digital Solutions for Smart 
Grid, 2021). The dataset is measured from 1st January 2021 
until 31st December 2021 and sampled every second. The 

dataset was collected from the administrative and laboratory 
buildings. The administrative building has 30 feeders while 
the laboratory building has 65 feeders. The whole data was 
separated into monthly datasets, where each dataset consists 
of around 300,000 samples (varied for each month) with 21 
features, where it has the same 18 features as in the UWDP 

Figure 2 

Trapeznikov Institute of Control Science (TICS) main 

building located in Trapeznikov, Russia 
 

 
 

Figure 1 

Universitas Widya Dharma Pontianak (UWDP) 

main building located in West Kalimantan, 

Indonesia 
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dataset + another 3 phases of total harmonic distortion data. 
Figure 2 shows the picture of the TICS building. 

 

3.3. Power consumption via MCRT algorithm 

 
The goal of this research is to develop an algorithm 

capable of predicting the power consumption of a building 

even with a scarce dataset. In this regard, regarding the 

proposed algorithm in Section 2, the total active power (𝑃) 

is chosen to be the 𝑥𝑖 for both case studies. In addition, only 

three phases of currents, namely 𝐼1, 𝐼2, and 𝐼3, were taken 

into account as parameters related to 𝑃. This choice stems 
from findings presented in Tjen et al. (2023), which 
demonstrate that currents are the most influential parameters 

Figure 3 

Block Diagram for predicting the power consumption via the MCRT Algorithm 

 

 

 
 



Journal of Data Science and Intelligent Systems  Vol. XX Iss. XX yyyy 

______________________________________________________________________________ 

 6 

in predicting power consumption. In particular, the first step 
of the MCRT algorithm shown in Section 2 yields the 
following RT models: 

𝐼1(𝑘) = 𝑓𝑅𝑇1(𝒙𝑫(𝑘)), 

𝐼2(𝑘) = 𝑓𝑅𝑇2(𝒙𝑫(𝑘)), 

𝐼3(𝑘) = 𝑓𝑅𝑇3(𝒙𝑫(𝑘)), 

�̂�(𝑘) = 𝑓𝑅𝑇𝑃 (𝒙𝑫(𝑘), 𝐼1(𝑘), 𝐼2(𝑘), 𝐼3(𝑘)) . (7) 

The 𝑛𝑟 = 1000 was considered for the random numbers in 
the 3rd step. The choice was made by considering the trade-
off between the time complexity and the model predictive 
accuracy of the algorithm. 

In the first use case, the entire dataset was considered, 
whereas for the second use case, only the dataset from June 
2021 was utilized. This choice was informed by the average 
temperature observed during June, which corresponds to the 
onset of summer and closely resembles the climate in West 
Kalimantan. Figure 3 shows the block diagram of the process 
of predicting the power consumption with the MCRT 
algorithm. 

 

3.4. Experimental setup 

 
The numerical simulation comprises two main parts: 

testing the hypothesis and measuring the model's predictive 
accuracy. It was asserted that the MCRT algorithm enhances 
the predictive accuracy of the RT algorithm introduced in 
Tjen et al. (2023), which was developed after the e-ss RT 
proposed in Smarra et al. (2022). To validate the 
performance of the proposed algorithm, a T-test was 
conducted on the following hypothesis: 

𝐻0:  The model predictive accuracy of the MCRT algorithm 
is equal to the RT algorithm. 

𝐻𝑎:  The model predictive accuracy of the MCRT algorithm 
is not equal to the RT algorithm. 

 
The hypothesis testing was done by considering the model 
predictive accuracy of both algorithms for 50 different 
datasets generated by taking randomly 50% of the available 
samples from the 1st dataset as the train dataset and use the 
rest to validate the model accuracy. The model predictive 
accuracy in this case is represented by the Normalized Root 
Mean Square Error (NRMSE) as in (8): 

𝐴(𝑦, 𝑦) = (1 −𝑁𝑅𝑀𝑆𝐸(𝑦, 𝑦)) × 100%

𝑁𝑅𝑀𝑆𝐸(𝑦, 𝑦) =
1

√𝑛 ⋅ 𝑦
√∑(𝑦(𝑖) − 𝑦(𝑖))

2
𝑛

𝑖=1

 (8)
 

Where: y is the observed data,  𝑦 is the predicted data,  𝑛 is 

the number of samples and  𝑦 is the mean of 𝑦. In this paper, 
the NRMSE was selected as the evaluation metric to assess 
the accuracy of the models. The NRMSE measures the 
average discrepancy between real and estimated values, with 
lower values indicating better predictive accuracy (Hodson, 
2022). This metric is commonly used in regression analysis 
and provides a standardized measure of model performance.  

Both datasets were utilized for the second part, which 
focused on assessing model predictive accuracy. 
Specifically, in the first case, 2,800 samples (approximately 
90% of the available data) were selected as the training 

dataset, with the remaining samples used for validation. In 
the second case, 150,000 samples, equivalent to 50% of the 
total available data, were used for training the model, while 
the remainder served as the test dataset. The model 

predictive accuracy is reported as the accuracy in (8) and also 
in the Root Mean Square Error (RMSE) which is defined as: 

𝑅𝑀𝑆𝐸(𝑦, 𝑦) =
1

√𝑛
√∑(𝑦(𝑖) − 𝑦(𝑖))

2
𝑛

𝑖=1

 (9) 

 

4. Numerical Results and Discussion 
 
In this section, the initial focus will be on presenting the 

results of the T-test conducted on the proposed hypothesis, 
demonstrating the superiority of the MCRT algorithm over 
the RT algorithm proposed in Tjen et al. (2023). 
Subsequently, the numerical simulations conducted to 
predict power consumption in both case studies will be 

showcased.   
 

4.1. Hypothesis testing 
 
Table 1 shows the model predictive accuracy of both MCRT 
and the RT algorithm proposed by Tjen et al. (2023), while 
Table 2 shows the result of the T-test performed on the data 
in Table 1. 

From Table 1, it is evident that, on average, the MCRT 
algorithm performs slightly better than the previous RT 
algorithm. Notable differences in accuracy are observed in 

datasets No. 8, 9, 10, 20, 21, 23, and 49, where the MCRT 
algorithm improves the model predictive accuracy of the RT 
algorithm by more than 1% (up to 2 %). Conversely, in 
dataset no. 1, 3, 4, 18, 24, 32, 34, 36, 40, 41, 42. 44, 46 and 
47, the RT algorithm outperforms the MCRT, albeit with a 
very subtle difference (less than 0.1%). It is reasonable to 
assume that the accuracy of the RT algorithm in these 
datasets is comparable to that of the MCRT algorithm. 
Overall, the MCRT algorithm outperforms the RT algorithm 

in 38 out of 50 datasets. 
This result demonstrates that integrating the MC 

algorithm into the leaf of the RT algorithm significantly 
enhances the predictive capability of the RT-based model. 
This outcome aligns with expectations, as the classical RT 
model calculates the output by averaging the samples within 
the leaf. In contrast, the MCRT algorithm considers the 
probability of samples, resulting in more accurate 

predictions compared to the classical RT algorithm.  
From Table 2 it can seen that the P-value for 2 tail test 

is less than 0.05. This means the 𝐻0 is rejected and thus, 𝐻𝑎 
is accepted. This outcome is somewhat unsurprising when 
considering that the MCRT algorithm demonstrates superior 
performance compared to the RT algorithm, with 
improvements of up to 2%, as depicted in Table 1. This result 
indicates that the MCRT does improve the model predictive 
accuracy of the RT algorithm. And Thus, justify the claim 
that the MCRT algorithm outperforms the RT algorithm 

proposed by Tjen et al. (2023). 
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4.2. Model predictive accuracy 
 
Table 3 shows the model predictive accuracy for 

MCRT and RT algorithms for both case studies. From Table 
3, it is observable that the MCRT algorithm outperforms the 

RT algorithm for both UWDP and TICS cases. However, a 
more notable difference comes from the TICS dataset, where 
the MCRT algorithm accuracy is around 2 % higher than the 
RT algorithm. Instead for the UWDP case, the MCRT still 
outperforms the RT algorithm, however, with a smaller 
margin which is less than 1%. However, if both cases are 
considered, it can be seen that the UWDP model predictive 
accuracy is much lower than the TICS.  

 

Table 1 

Model predictive accuracy comparison between 

MCRT and RT 
* improvement over 1% 
 
 

Table 2 

T-Test result of Table 1 

*significant at 𝛼 = 0.05 
 

Table 3 

Model predictive accuracy for both case studies 
 

Universitas Widya Dharma Pontianak (UWDP) 

Parameter MCRT RT 

RMSE 292.27 306.25 

NRMSE 0.17 0.18 

Accuracy 82.76 % 81.93 % 

Trapeznikov Institute of Control Sciences (TICS) 

Parameter MCRT RT 

RMSE 49.19 72.34 

NRMSE 0.06 0.08 

Accuracy 94.33 % 91.66 % 

  
Figures 4 and 5 show the plot for the observed power 

consumption and its prediction with the MCRT algorithm for 
both UWDP and TICS datasets, respectively. As shown in 

Figure 4, the MCRT model failed to predict the peak 
dynamics of the power consumption, especially when there 
is a “spike” in the power consumption which occurred due 
to some electrical appliances being turned on. For this case 
study, due to the limitation of the available dataset, the 
model can not properly learn the dynamics of power 
consumption. Hence, predicted the dynamic is much worse 
than in Figure 4. 

For the TICS instead, it can seen from Figure 5, that the 
MCRT algorithm followed the pattern almost precisely, 
which resulted in higher accuracy than in the UWDP case. 
Even though there are also “spikes” for the TICS dataset 
(which is unavoidable, as any electrical equipment can be 
used anytime during the day), it is observable that the MCRT 
algorithm provided a better estimation of it rather than in the 
UWDP case, due to the model being exposed to a sufficient 

amount of data. It is worth noting, that the model is only 
trained with 50% of the available data and validated on the 
remaining half data, yet able to provide a precise prediction. 
This result shows the potency of the MCRT algorithm in 
predicting the power consumption inside a building. 

 

N. dataset 
Accuracy (%) 

RTMC RT RTMC-RT 

1 86.198 86.209 -0.010 

2 86.041 85.994 0.047 

3 86.672 86.677 -0.006 

4 86.988 86.990 -0.002 

5 86.428 86.137 0.291 

6 85.365 85.362 0.003 

7 86.682 86.358 0.324 

8* 86.437 83.953 2.484 

9* 87.301 86.274 1.028 

10* 87.214 84.592 2.623 

11 87.462 87.458 0.004 

12 85.622 85.621 0.001 

13 87.353 86.660 0.693 

14 86.570 85.953 0.617 

15 86.376 86.372 0.004 

16 86.392 85.827 0.565 

17 86.261 86.259 0.002 

18 85.484 85.484 0.000 

19 85.923 85.921 0.001 

20* 87.521 86.222 1.299 

21* 86.786 85.775 1.011 

22 85.427 85.426 0.000 

23* 87.152 85.318 1.834 

24 86.564 86.571 -0.007 

25 84.974 84.971 0.003 

26 84.895 84.893 0.002 

27 86.724 86.238 0.487 

28 86.751 86.624 0.127 

29 86.452 86.450 0.003 

30 87.318 87.317 0.001 

31 85.554 85.551 0.003 

32 86.542 86.544 -0.002 

33 87.102 87.101 0.001 

34 87.173 87.184 -0.011 

35 87.121 87.120 0.001 

36 86.251 86.254 -0.002 

37 86.535 85.610 0.924 

38 85.591 85.588 0.003 

39 86.612 86.611 0.001 

40 86.415 86.418 -0.002 

41 86.219 86.225 -0.006 

42 86.329 86.330 0.000 

43 87.115 86.870 0.244 

44 85.120 85.123 -0.003 

45 86.324 86.320 0.005 

46 86.812 86.813 -0.001 

47 85.890 85.892 -0.002 

48 86.986 86.312 0.674 

49* 86.401 83.846 2.555 

50 85.701 85.701 0.001 

Average 86.423 86.066 0.356 

Parameter Value 

N. observations 50 

Degree of Freedom 49 

t Stat 3.648556 

P-value (one tail) 0.000319 

t Critical (one tail) 1.676551 

P-value (two-tails) 0.000639* 

t Critical (two-tails) 2.009575 



Journal of Data Science and Intelligent Systems  Vol. XX Iss. XX yyyy 

______________________________________________________________________________ 

 8 

5. Conclusion  

 
In this paper, the challenge of predicting power 

consumption in buildings using a scarce dataset was 
addressed. A novel algorithm based on the RT algorithm was 
proposed, wherein an MC simulation is assigned to each leaf 

in the tree generated from the RT. Results from numerical 
simulations demonstrate that the MCRT algorithm 
outperforms the previous RT algorithm introduced by Tjen 
et al. (2023). In a test comprising 50 random datasets, the 
MCRT algorithm demonstrated superior performance over 
the RT algorithm in the majority of datasets (38 out of 50), 
with an average increase in model predictive accuracy of 
0.36%. Moreover, the algorithm improved the model 

predictive accuracy for both case studies by up to 2%. 
Significance tests also confirmed the superiority of the 
MCRT algorithm over the RT algorithm. 

 
 
Given the capabilities of the proposed algorithm, this 

research holds potential for regulating the usage of electronic 
appliances in buildings. Firstly, the algorithm can establish a 
baseline for building power consumption, which can be 

integrated into Internet of Things (IoT) devices. Specifically, 
the algorithm can function as a detector to identify instances 
where electrical equipment is active when it should be 
inactive, thereby enabling more efficient energy 
management. 

For further study, it is suggested to switch the MC 
simulation with another MC-based method, such as Markov 
Chain Monte Carlo (MCMC), and find which MC algorithm 

is the best to be paired with the RT algorithm in order to 
provide a better estimation of power consumption. 
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